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Abstract: This paper presents a novel way to address the extrinstoraabn problem for
a system composed of a 3D LIDAR and a camera. The relativefoanation between the
two sensors is calibrated via a nonlinear least squares)pitdblem, which is formulated in
terms of the geometric constraints associated with a trdd@dbject. Precise initial estimates
of NLS are obtained by dividing it into two sub-problems tlzaie solved individually.
With the precise initializations, the calibration paraerstare further refined by iteratively
optimizing the NLS problem. The algorithm is validated ortthsimulated and real data,
as well as a 3D reconstruction application. Moreover, stheetrihedral target used for
calibration can be either orthogonal or not, it is very ofte@sent in structured environments,
making the calibration convenient.
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1. Introduction

Multi-sensors are commonly equipped on mobile robots fergation tasks. Currently, for instance,
ranging sensors such as high-speed 3D LIDARs are often nseohjunction with cameras for a robot to
detect objectsl,2] and reconstruct scene3p]. In these sensor fusion-based applications, a prergguisi
Is to extrinsically calibrate the relative transformatibatween the sensors. The result of extrinsic
calibration highly impacts subsequent fusion processes.
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A variety of methods have been developed to address the LiPdRera extrinsic calibration
problem. Among them, early interest focuses on systemsstorgsof a 2D LIDAR and a camer®{9].
Wasielewski and Straus$][and Naroditskyet al. [7] calibrate a 2D laser scanner with respect to a
camera by making use of special calibration rigs, such asi@ wlanar board covered with a black line.
The work of Zhang and PlesS8][relies on a planar checkerboard pattern. Corners of thenpafL0]
are first detected in images and used to determine the popésnels in camera frames. Meanwhile, 3D
points falling on the checkerboard are taken into constamrdo estimate the planes’ poses in LIDAR
frames. Using the geometric constraint of the planar targatcouple of LIDAR-camera observations,
the extrinsic calibration problem is formulated as a nadinleast squares (NLS) probleml] and
solved iteratively.

In recent years, with the development of 3D laser ranginigrtegies, several methods were proposed
to calibrate 3D LIDAR-camera systembs2-18]. Unnikrishnan 2] and Pandeet al. [13] extend the
checkerboard pattern-based meth8pffom 2D to 3D LIDARs. Mirzaeiet al. [19] utilizes a planar
board covered with fiducial markers for calibration, whighgessence, is of the same rationale as the
checkerboard-based approaches. They further divide tig&dgptimization problem into two least-square
sub-problems and solve them analytically. The checkethgattern is also used in the work of
Geigeret al [20]. They calibrate a 3D LIDAR-camera system using a singlet stemtaining
such multiple patterns. Instead of using planar checkedopatterns, there are several alternative
methods that rely on correspondences of poi@t,[lines [22] or circles [L4], or employ inertial
sensors 2324]. Compared to plane-based approaches, most of these msetieetl to build
point- or line-wise correspondences between images andRIpoints. However, due to the lower
and non-uniform resolution of LIDAR measurements, it igidifit to achieve high accuracy.

In this work, we propose a novel way to conduct the extrinalibcation between a 3D LIDAR and a
camera. In contrast to most of the published techniquespetinod distinguishes itself in two aspects:

1. It takes advantage of a trihedron—which may or may not beoghal—for calibration. Such
trinedral targets are ubiquitous in both indoor and outdstnrctured environments, such as two
adjacent walls of a building together with the floor. Hendesiquite convenient for a robot
to collect data for calibration. Compared to the aforenwered calibration rigs, the trihedral
configuration is less likely to be perturbed even under sewerather conditions, and is easier to
be captured.

2. In contrast to these calibration-rig-based methods tlatire a user to specify both the region of
a plane in 3D LIDAR and the corners in images, our method reguewer user inputs. Only the
region of each plane of the trihedron in the sensors’ dataesled. Moreover, the precision of the
manual inputs does not make much of a difference.

To present the proposed method, we organize the remaindbisgbaper as follows. In Sectidd
we first describe the extrinsic calibration problem via makadvantage of an trihedral calibration rig,
and introduce the associated geometric and motion contrédectior8 presents the entire calibration
procedure. Experiments conducted on both simulationsealdiata are exhibited in Sectidnfollowed
with conclusions in Sectiob.
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2. Problem Description

Let us formally define the problem of 3D LIDAR-camera extiatsalibration. We are given a camera
and a 3D LIDAR that are rigidly mounted with respect to eadeat Both sensors are assumed to be
pre-calibrated, meaning that their intrinsic parametezkaown. A trihedron is observed synchronously
by them. Our objective is to determine the relative tramsftiion between the two sensors, by taking
advantage of the constraints associated with the trihedron

For the sake of clarity, in the remaining of this section, widduce the related definitions and
notations, together with the geometric and motion conssastablished between the measurements of
the two sensors.

2.1. Definitions and Notations

Figure 1 demonstrates a typical calibration configuration. It iKlels a system composed of a
Ladybug3 omnidirectional camer24] and a commercially available high-speed Velodyne HDL-64E
3D LIDAR [26], as well as a trihedral target viewed by both sensors. Ireexgents, the trihedron is
fixed and the sensor system moves to obtain multiple configmsa In such configurations, several
reference frames are defined:

Figurel. Atypical calibration configuration aj is a Ladybug3 camera anb)(is a Velodyne
HDL-64E LIDAR. Both are rigidly assembled with respect tele®ather. A trihedral object
(c), which may or may not be orthogonal, is observed by bothaens

Zc

Yc

Xc P2
Ry, Ty
(a) Ladybug3 camera
R, T,
R.T (¢) Trihedral calibration rig

WL> = WL

(b) Velodyne 64E HDL Lidar

e Camera frame: The proposed method is not restricted to a specific camgm, ts long as
the camera is of a single viewpoir?q and pre-calibrated. The camera frame is set up to be



Sensor013, 13 1905

coincident with the one defined in its projection model. Tiagfe is represented By’; }, in which
i =1--- N indicates the* configuration.

e LIDAR frame: The LIDAR frame is also defined to be coincident with the ondts own
projection model, and is denoted By }.

e World reference frame: The world reference frame is fixed on the trihedron. Sineettinedral
object can be either orthogonal or not, the reference frametiup in such a way that the origin is
at the common vertex and the aX{saligns with one intersection line. The axssis aligned with
the direction of the planéy’s normal vector, and” is further determined following the right-hand
rule, as illustrated in Figurg(c). The world frame is denoted Hy1'}.

Once the frames are defined, we represent the relativeaotatid translation from one framéto
another frame3 by R 45 andT 45, WhereA, B € {C;, L;, W}. Then, given a 3D poirl 4 in the frame
A, the corresponding poif® z in B is computed vidPz = R gP 4 + T 4. In practice, the sensors are
rigidly mounted on a mobile robot, and the transformaticosithe LIDAR to the camera.e. R,
andT;,,, are fixed in all configurations even when the robot moves.cegthey are simply denoted
by R;c andT -, which are the parameters we aim to estimate in the caldrratisk.

In addition, we know that a plane in a frame is specifiedyP — d = 0, whereP is an arbitrary
3D point lying on the plane, and andd are, respectively, the normal vector and the distance. éenc
we use{N’,, &, } to describe thg" plane of the trihedron with respect to the framgj = 1---3, and
PQ’“ specifies thé!" point on the plane.

2.2. Geometric and Motion Constraints

The proposed method makes use of a trihedron as a calibrégioilence, in order to address the
extrinsic calibration problem, several constraints akemanto consideration. They are summarized as
follows.

e Trihedral constraint: Let us consider the trihedron with respect to a sensor fraine If
its three pIanes,{NQ,dﬂl}, are estimated, then the relative rotati®ty, 4 and translation
Ty from the world frame to the sensor frame are uniquely deteechi We represent

Rwa = [ rwal rwa2 rwad |, wherery 41, ry 42, andry 43 are column vectors. Then,
we have
rWAS = Ni
NL xN3
rwal = i Sw] (1)

rWA2 = rWAS X I‘WAl
and the translation is

=T T
Twa= | Ny N3 NG| 2)
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e Planarity constraint between two frames: This constraint implies that, if points in a frameare
coplanar, then they must lie on a plane when transformeddthanframeB. It means that, in the
absence of noise, we have a plg®éz, dp} such that

D [ING(RasPY + Tup) — dpl|> =0 3)
k

for all coplanar point®% in the frame A.

e Planarity constraint between two images: This constraint describes the relationship between a
set of coplanar feature points and their correspondendegimmages. Given a single-viewpoint
camera, for the purpose of generality, we represent iteption model ap = F(P), whereP is
a 3D point in space ang is the projected image point. The inverse projection maslepecified
by P = yF~!(p), in which~ is an unknown scalar, meaning tfaties on a ray determined hy,
but its distance stays unknown. Now, we consider two cammamadsC; andCs. In the first frame,
the plane on which all the features lie is defined{®y.,, dc, }. Then, pair-wise corresponding
image featurep., andpc, satisfy

dC1 F~! (pC1 )
NglFil (p01 )

Note that this constraint is also known as the homographgtcant 28] when F is a pinhole
camera projection model.

ng -F (RClcg + TClcg) =0 (4)

e Motion constraint: When a robot platform moves from one location to anotherttanslation of
the camera and that of the LIDAR are equal to each other, asetisors are fixed rigidly. Hence,
we have

Twe, — Twe, = RweRy' L (Twr, — Twi,) (5)

3. Algorithm Description

In order to estimate the relative transformation betweea BDAR and a camera, we capture
N (N > 2) observations of a trihedron by both sensors. The sensersdividually calibrated in
each configuration first to get their extrinsic parametets wespect to the world reference. Then, the
LIDAR—camera extrinsic calibration is formulated as a moedr least squares problem in terms of the
constraints introduced above. It is further solved by theenderg-Marquardt (LM) method ]] after
properly estimating the initializations. An overview oktlentire calibration procedure is presented in
Algorithm 1. The details are subsequently introduced below.
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Algorithm 1: 3D LIDAR—camera extrinsic calibration procedure.
Input: N LIDAR—camera observations of a trihedron

Manually selected regions of the trihedron’s planes in theeovations.

Output: R;c andT ¢
fori=1— Ndo

for j=1—3do

| Estimate thg'" plane{N7 ,d} } w.rtthei’" LIDAR frame;

end

Estimate the transformatioRy .,, Twr, };
end
Refine{N’, ,d, . Ry, Twr,} based on all observations;
Detect features on the first image;

fori=2— Ndo
Detect and match features on tifeimage;

Estimate the transformatioR ¢, ¢;, Te, ¢, };
Estimate{N?, , d?, , N7, ,dZ. };
Estimate the transformatioRy ¢, , Twe,, Rwe,, Twe, };
end
Initialize R andT¢;
Refine the estimates & ;- andT ..

3.1. 3D LIDAR Extrinsic Calibration

Given thei' LIDAR observation, this step is to estimate the transfoiamafRy ,, andTyy 1., from
the world to thei*” LIDAR frame. To this end, we first estimate the trihedron’ar@s according to
the LIDAR observation. When a user specifies a set of 3D pdires mostly lie on the trihedron’s
j™ plane, the plane’s parametef®’, ,d’ } are estimated by minimizing the following linear least

squares problem:
M(i,5)

J J.k 7|2
argNgmgji ]; INY, P —dj | (6)
whereM (i, 7) is the number of points on the plane. Once the three planedeteemined with respect
to thei'" LIDAR frame, Ry, and Ty, are computed according to the trinedral constraint given in
Equations {) and Q).
When more than one observation is available, we can furdfarerthe results by using the planarity
constraints established between each pair of the LIDAR ésarithus, we get

N M(ij)

arg  min Z Z HNJ RL LIPJ +Tr,) — dJLle
N AL Nz, S5 b
N M(1,4)

+5° S ING (Reyn P+ To,) — di |2

=2 k=1
It is obtained by forming the first LIDAR frame with each of themaining frames as pairs. Since
Rr.o,, Tr,,, Rr, 1, andTy, 1, are the functions of the planes’ parameters, Equafidrs(a nonlinear

(7)
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optimization problem with respect to the planes’ paranseteiThis problem takes the previously
estimated results as initializations and is solved by LM.

Letd = {N} ,d, ,N7 ,d’ } be the parameters estimated in Equatin4nd f be the function that
is optimized. Then, the Levenberg—Marquardt method stams a given initial gues8, and iteratively
updates the parameters via

0,1 = 0, + N6, (8)
whereAd; is obtained by solving the following equation
(JTT + MdiagJ7J3)) A0, = I (—£(6,)) (9)

Here )\ is a damping parameter determined adaptively &nslthe Jacobian matrix which is obtained
conveniently by symbolic computation in MATLAB.

3.2. Camera Extrinsic Calibration

This step is to determine the transformatiofB,y¢,, Twc, }, from the world to the camera frames,
together with the plane$Néi,déi}. In contrast to the LIDAR sensor, it is incapable of recoveri
all parameters from one image since no metric informatioavalable. Hence, two LIDAR-camera
observations are needed.

Given two LIDAR-camera observations, we first estimBig -, and T, ¢, between the two camera
frames. Once a user delimits the regions of the planes on itveges, a set of point features are
detected by SIFTZ9] within the regions in the first image and then matched to theespondences
in the second one. The two sets of features are representég;hy and {pf, }, which satisfy the
epipolar constraintdg]

F~'(p¢,) " EF ' (pg,) = 0 (10)
Here, E is the essential matrix. The estimationBfand the recovery oR¢,¢, and T¢, ¢, from E
are the fundamental problems in computer vision, which ateesl by the well-known eight-point
algorithm 8]. However, the recovered'¢, ¢, is of unit norm. We hence use the motion constraint
defined in Equationd) to get its scale.

Once the relative motion between two views is determinedaseable to determine the planes by
taking advantage of the planarity constraint establislesdiéen two images, as defined in Equatidn (
Hence, in the presence of noise, we estimate the pose of @ jpjan

M _ 2
de, F'(pg,)
. k 1 C1
ar min —F (R e T
& Nede, — Pe, < GNL F-L(pk, ) Clcg)
Ney,dey (11)
RC1C27TC1C2
de, F1(pg,) ’
+||pe, — F <chcl —chf F*l(p’g ] + Teyey
2 2

in which R¢,¢,, Te, 0, are also refined. It is a nonlinear least squares problenedddy LM. The
estimates olN., andd., are simply initialized with the corresponding parametare LIDAR frames
for the simplicity. It is reasonable considering that thiatiee transformation between the two sensors
is small when compared with those to the trihedron.
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3.3. 3D LIDAR—Camera Extrinsic Calibration

With the above-estimated parameters, we now formulate HbAR-camera extrinsic calibration task
as a nonlinear least squares problem. In terms of the ptgicarnstraints established between the LIDAR
and the camera frames, we get the form

N M{(i,j)
arg min Z Z ||NZI.T(RLCP£Z€ +Tre) - d£7||2 (12)

It is solved by LM with the initializations obtained from

Ric = Rwe, Ry, (13)

—1
Trec =Twe, — Rwe, Ry, Twi,

with anyi =1--- N.

4. Experiments

We implement the proposed method in MATLAB. The running tiofeour algorithm is coarsely
measured on a laptop with an Intel Core2Duo 2.26 GHz processb3 GB memory. Except for the
manual input procedure, it takes ab@itseconds in average to perform the entire calibration when
9 LIDAR-camera observations are considered. Each cont0@0 LIDAR points and 100 registered
image points. In order to evaluate the proposed method,essarexperiments have been carried out.
The algorithm is first tested on simulated data to validatedtrrectness and explore its sensitivity with
respect to noise. Then, it is used to calibrate a real systenposed of a 3D LIDAR and a camera. The
calibration results are subsequently used for 3D recoctsbru

4.1. Simulations

The first experiment validates the correctness and nunietighility of our algorithm. We hereby
generate sets of data to simulate multiple observationgritiedron obtained by a 3D LIDAR-camera
system. The system is of the following properties. The rotaand translation from the LIDAR to the
camera are set, respectively, B§R ) = [11.46°,5.73°,85.94°]7 and T = [0.4, —0.08,0.2]7 m,
where E(R¢) is the Euler angle oR .. An unorthogonal trihedron is synthesized, whose planes
are defined byNy, = [—0.342,0.937,0.067]",d},, = —3.837 m, Ng, = [-0.325,—0.930,0.171]",
d¢, = —7.710 m, andN?, = [0.181,0.028,0.983]", d?. = —2.466 m, with respect to the first camera
frame. Each plane contains 5,000 LIDAR points and 100 reggstimage points. The simulated camera
uses the following Mercator projection model:

u = (180 — atan2(Y, X)) M /360

14
v=acos(Z/VX?+Y?+ Z2)N/180 4

where(u, v) denotes a pixel, andl/ x N = 1024 x 1024 is the resolution of an image. This projection
model is one of the models that the Ladybug3][camera has.
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4.1.1. Performance w.r.t. the Number of Observations

The extrinsic calibration can be conducted with two or mol®AR-camera observations. In this
experiment, we investigate the impact of the observatianber on the calibration performance. Nine
LIDAR-camera observation pairs are generated, in whichs&ian noise with zero mean andtandard
deviation is added. We randomly selectrom the range of0, 0.2] m for LIDAR points and from the
range of|0, 1] pixels for image features. We vary the number of observatfoom 2 to 9. For each
number, 200 independent trials are carried out. The estunzdrameterR - andT ¢ in each trial are
compared with the ground truth and measured, respectivelyre displaced Euler angle of the rotation
and the absolute error of the translation. FigZipdots the mean and standard deviation of the errors.

Figure 2. Errorsvs.the number of observations)(presents the translation’s absolute errors
in X, Y, andZ directions. b) shows the displaced Euler angie 3,~]".

(a) Translation error (b) Rotation error

0.25

y 1.2t BH
0.2 -=-z]] -B-y

0.15¢
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0.1r

Angle(degree)

o
=

0.05¢

5 6 7 8 9 2 3 4 5 6 7 8 9
Image Number Image Number

Figure2 shows no obvious benefits achieved when the number of olisgrséncreases. The reason
is that, even when we use two observations, in total theralezady six planes taken into consideration.
In our simulations, there is even a peak on the error corredipg to 3 observations, partly because
the impact of noise is larger than the benefit achieved framribrease of observations. Hence, on the
leverage of complexity and performance, throughout allftlewing experiments, we continue using
two LIDAR—camera observations.

4.1.2. Performance w.r.t. the Noise on LIDAR Points

Real ranging sensors produce noisy measurements. Hergexferiment explores the sensitivity
with respect to noise on LIDAR points. We conduct the expernimon the first two simulated
observations. Zero mean Gaussian noise is added to poittie @IDAR observations, witlr varying
from 0.02 to 0.2 m. Analogous to the previous case, we conduct 200 indepéias for each noise
level. The errors on the translation and rotation are evatland plotted in Figura.
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Figure 3. Errorsvs the noise level on LIDAR pointsaj presents the translation’s absolute
errors inX, Y, andZ directions. b) shows the displaced Euler angig 3, v].

(a) Translation error (b) Rotation error
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Figure 3 shows that the errors increase linearly with the noise lewghens = 0.1 m, which is a
noise level of a practical LIDAR, the translation errors areund0.005 m in Y and Z directions, and
0.01 min X direction. The rotation errors are about1°. In our simulated configurationX represents
the direction of the optical axis, along which depth infotima degenerates so that larger errors
are resulted in3Q].

4.1.3. Performance w.r.t. the Noise on Image Points

The feature detection and matching algorithm we use in tbikvs SIFT R9], which is of sub-pixel
accuracy. In this experiment, we investigate the sensjtwith respect to the noise on matched image
features. Zero mean Gaussian noise witk [0.1, 1] pixels is added to each feature point on the first
two simulated image data. Analogously to above cases, 248 &re conducted for each noise level.
The performance is evaluated and plotted in Figlure

Figure 4. Errorsvs. the noise level on image pointsa)(presents the translation’s absolute
errors inX, Y, andZ directions. b) is the displaced Euler angle, 3,~]".
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Figure 4 also presents a linear relationship between the errors hednobise level. When
o = 0.5 pixels, which is a noise level higher than the normal noise ttanslation errors are smaller than
0.04 m and the rotation errors are around®.

4.2. Real Data

To further evaluate the proposed algorithm, we employ itdbbcate a real system and use the
calibration results to reconstruct 3D scenes. The systecongposed of a 3D Velodyne HDL-64E
LIDAR [26] and a Ladybug3 spherical vision systeb], which are rigidly mounted on the roof of
a vehicle, as shown in Figue Both sensors produce omnidirectional measurements.

Figure5. The robotic platform and the sensors in our experimextis(the robotic platform,
which is equipped with a Ladybug3 camera and a 3D Velodyne8BE LIDAR, (b) shows
the front view of the two sensors, ang) {s the side view.

(a) Robot platform

(b) Front view

(c) Side view

In the experiments, we collect two LIDAR-camera measurdémeha scenario containing a trihedral
object. The trihedron consists of two adjacent walls of ddmug, together with the ground plane,
as shown in Figure$ and7. Due to imperfect construction techniques and noise, thagd of the
trihedron are not strictly orthogonal to each other. Durihg calibration procedure, regions of the
planes are manually marked out on both LIDAR and image dathfeatures on the imaged trihedrons
are detected and matched by SIZB|[ A portion of the matched feature points are shown in Figlire
Table 1 lists the calibration results of our method. For the purposeomparison, we also include
the results obtained by the checkerboard pattern-basdubh§t?] using six observations. From the
results, it is difficult to determine which one is more acteyasince no ground truth is available.
Our proposed method, however, is more convenient, as itsgemr#o collect calibration data and
requires less manual input.

In order to validate the calibration results, the determieetrinsic parameters are further used for 3D
reconstruction. With the calibratdgl, - andT;, 3D LIDAR points in a view are first transformed into
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the camera frame and then registered to the image. The adfloegistered image pixels are taken to
render the corresponding upsampled LIDAR points. Fidgigcg and Figure/(c) demonstrate the colored
3D scenes of the two calibration views (only the data withir®@f field of view are shown for a better
visibility), from which we see that the walls and the bushesraconstructed well.

Figure 6. The first LIDAR-camera view used for calibrationa) (is the panoramic image
captured by a Ladybug3 camera, afd is the 3D point cloud collected by a Velodyne
HDL-64E LIDAR. (c) shows the reconstructed 3D scene.

(a) Panoramic image

(b) 3D point cloud
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Figure7. The second LIDAR-camera view used for calibratiaa).i§ the panoramic image
captured by a Ladybug3 camera, amj (s the 3D point cloud collected by a Velodyne
HDL-64E LIDAR. (c) shows the reconstructed 3D scene.

(a) Panoramic image

(c) Colored 3D point cloud
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Figure 8. A portion of matched features on the trihedron. The matckatlfe pairs on the
three planes are marked with lines in different styles.

Table 1. Calibration results of a real 3D LIDAR-camera system.

Tx (m) | Ty (m) | Tz () | o (deg) | 5 (deg)| v (deg)
The proposed method 0.257 | 0.007 | —0.323| —1.788| 1.446 | —88.542
The method in12] 0.203 | 0.036 | —0.285| —1.358| 1.799 | —88.996

5. Conclusions

In this paper, we have presented a new method of conductmgpttrinsic calibration for a 3D
LIDAR-camera system. Specifically, instead of using plasteeckerboard patterns, we take advantage
of arbitrary trihedral objects, which might be either ogboal or not, for calibration. This kind of
configuration is ubiquitous in structured environmentsthad it is very convenient for a mobile robot
to collect data. We have validated the algorithm on both &ted and real scenarios. Although the
experimental results are presented from 3D LIDAR and omaatiional camera systems, the algorithm
is applicable to systems composed of any kind of 3D LIDARs eawtieras. Our method is interesting
for both indoor or outdoor mobile robots equipped with suehs®rs. The calibration results can be
further used for data fusion applications.
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