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Abstract: This study proposes a dynamic hand gesture detection technology to effectively 

detect dynamic hand gesture areas, and a hand gesture recognition technology to improve 

the dynamic hand gesture recognition rate. Meanwhile, the corresponding relationship 

between state sequences in hand gesture and speech models is considered by integrating 

speech recognition technology with a multimodal model, thus improving the accuracy of 

human behavior recognition. The experimental results proved that the proposed method can 

effectively improve human behavior recognition accuracy and the feasibility of system 

applications. Experimental results verified that the multimodal gesture-speech model 

provided superior accuracy when compared to the single modal versions. 

Keywords: hand gesture detection; hand gesture recognition; speech recognition;  

human behavior 
 

1. Introduction 

Hand gestures are one of the primal communication methods. Even in environments where language 

communication cannot be made, hand gestures can deliver messages to achieve the purpose of 

communication. In a digital family care system, hand gestures are the best way for people with language 

disorders, or those who are mobility handicapped, to express themselves. As more studies have focused 
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on human-computer interaction [1–3], how to use automatic hand gesture detection and recognition 

systems in natural environments [4] has attracted wide research attention.  

In a hand gesture recognition system [5–11], hand gesture detection technology is critical to the 

accuracy of hand gesture recognition. Thus, how to accurately detect hand gesture areas in image 

sequencing of natural environments is a topical subject. Traditionally, hand gesture detection is based on 

skin color [12,13], and detects hand gesture areas with statistics of color, space, and predefined 

conditions. However, if hand gestures are detected only by skin color, the complicated backgrounds or 

light source variations in natural environments may cause undesired detection effects in human-computer 

interaction. On the other hand, from the perspective of object detection, background display has little 

variation. Thus, traditional movement object detection technology uses a prior background  

model [14,15]. When an object enters into a prior background model, moving object areas in the image 

can be extracted by detecting the differences between images and background model, as shown in 

Figure 1. In [15], the author detects the moving object by subtracting the background model, and then 

tracks the moving object using a Kalman filter. The author builds a database of contour features for 

moving objects, and the occluded region is restored by searching for the similar moving objects in  

the database. 

Figure 1. Moving object detection. (a) Front image; (b) Background image; (c) Moving object. 

 
(a) (b) (c) 

This study proposes a method for dynamic hand gesture detection, which combines motion 

estimation and skin color detection technology, and uses horizontal and vertical projection of binary 

images to detect the dynamic hand gesture areas. Without prior training, dynamic hand gesture areas 

can be effectively detected in complicated background environments. 

In a human behavior recognition system, the traditional method describes human behavior through 

predefined features; however, this method lacks robustness due to feature variations. For example, the 

features of speed and body size changes are different when running and walking. If the features of speed 

and body size changes are used to describe human behaviors, and a threshold value is defined for 

recognition, the recognition effect may be inaccurate and lacks robustness. Thus, subsequent studies 

have proposed the statistic model concept to describe the variations of each attribute in order to increase 

the recognition rate of human behaviors. 

As discussed above, robustness has a significant impact on human behavior recognition. For the 

dynamic recognition system, this study proposes a Kalman Filter-based dynamic gesture feature 

estimation, which considers relations between adjacent gesture areas based on time, and obtains robust 

features to describe hand gestures. Furthermore, repeated gesture segments in image sequencing are 

detected through an autocorrelation function operation in order to improve the variations of feature 
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extraction, as caused by repeated hand gestures, and the dynamic hand gesture recognition rate in  

natural environments. 

Speech is a natural and direct method of human expression. In a family care system, speech is a 

medium for direct expression of demands for the individuals with disabilities. Thus, this study further 

considers speech information in human behavior recognition. First, the input speech sequence is 

extracted through a microphone, and speech feature parameters are obtained by extracting Mel-scale 

Frequency Cepstral Coefficients. Furthermore, repeated speech segments are detected through 

autocorrelation function operations to reduce variations in feature extraction. Finally, the recognition 

rate of human behaviors can be improved by integrating the technology of a multimodal model of 

gestures with a speech model. 

Human-computer interaction can be achieved by extraction and recognition of human behaviors. This 

study develops a dynamic hand detection and recognition system, which can be used for 

human-computer behavior recognition. Finally, a speech recognition system is incorporated and the 

human behavior recognition rate is improved using the multimodal model technique. The rest of this paper 

is organized as follows: Section 2 describes research and pertinent methods related to ours. Section 3 

presents dynamic hand gesture recognition technology. Section 4 presents speech recognition 

technology. Section 5 presents multimodal model integration. The experimental results are presented in 

Section 6. Finally, Section 7 concludes the presentation of the proposed dynamic hand gesture detection 

and recognition system. 

2. Related Work 

In previous hand gesture detection research, skin color detection is often used in hand gesture 

detection methods [16]. Hand gesture areas can be detected through skin color statistics in RGB color 

space and predefined conditions. In [17] a support vector machine (SVM) was used to cut skin color. 

As SVM must first select samples for training, and classification results depend on sample accuracy, it 

is not suitable for complicated background environments. In response to this problem, hand gesture 

segmentation technology uses color skin detection, and acquires the threshold value of the color space 

using a statistical method. The hand gesture area can thus be obtained after detection of the input 

image. However, this human-machine interface method is restricted in application due to complicated 

background factors, facial skin color, and rays of light.  

In behavior recognition research, the authors of [18] proposed a new feature representation algorithm 

of motion field sequence, and used the projection of sports features in time and space to compare with 

action samples recorded before an event, in order to further recognize human behavior or intention. This 

method considers motion features in an image as basis for recognition of human behaviors. If several 

objects move in the images, the recognition effect obviously declines due to extraction of excessive 

motion feature variations. This method is not suitable for complicated backgrounds, and is thus 

restricted in human-machine interface applications. Many studies of human behavior recognition 

consider the extraction of robustness parameters. The authors of [19] used a Gaussian Mixture Model to 

describe the variation of each feature attribute in order to increase the human behavior recognition rate. 

In [20], the authors proposed facial expression recognition system using multi-class AdaBoost with 

dynamic time warping, or by using support vector machine on the boosted feature vectors. The 
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identification of hand motions becomes more difficult as the number of hand motion types  

increases [21]; the work described in [5] includes detecting and tracking bare hand in cluttered 

background using skin detection and hand posture contour comparison algorithm after face 

subtraction, recognizing hand gestures. Hand gesture recognition for real-life applications is very 

challenging because of its requirements on the robustness, accuracy and efficiency [6]. In [11], the 

authors described a nonspecific person gesture recognition system, which consists of sensor data 

collection, segmentation and recognition. 

RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth 

information [22]. In [6] a hand gesture recognition system that is robust to cluttered backgrounds, 

because the hand shape is segmented from the background using a depth camera is proposed. In [23] a 

Kinect-style depth camera is used for building dense 3D maps of indoor environments. They proposed 

a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features 

and shape-based alignments. In [24] a new human-gesture captures sensor solution to use natural 

human body language for human-virtual human interaction. In [25] a new visual representation for 

hand motions based on the motion divergence fields, which can be normalized to gray-scale images. 

3. Dynamic Hand Gesture Recognition Technology 

Hand gesture detection is different from the features of traditional skin color. This study proposes a 

dynamic gesture recognition algorithm using combined motion and skin color cues. The dynamic 

gesture region is determined by vertical and horizontal vector testing [26]. Based on this method, this 

paper uses a self-function to extract the eigenvector model. Without prior training, it can effectively 

detect dynamic hand gesture areas in complicated background environments. Figure 2 shows the 

systemic flow chart of the dynamic hand gesture detection method, which is divided into four parts: 

motion estimation, skin color detection, AND operation, and binary image projection. 

Figure 2. Dynamic hand gesture detection flow chart. 
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The dynamic hand gesture detection flow chart is described, as follows: first, a series of input image 

sequences are extracted through a webcam. The dynamic object can be obtained through motion 

estimation, and skin color area is extracted from the images through skin color detection. Dynamic skin 

color images can be obtained through interactive operations. Finally, dynamic hand gesture areas can be 

obtained by projecting dynamic skin color in the bindery images. 

3.1. Motion Estimation 

In order to rapidly detect moving objects in an image, this study applies the diamond search  

algorithm [27], as shown in Figure 3. It is based on search patterns, and uses a block match algorithm to 

detect moving objects in images. 

Figure 3. Diamond search method. 

 

In Figure 3a, diamond sample plates are used during the search. If the majority of matched blocks are 

located on the blue point, as seen in Figure 3b, the blue point is used as the center point, and another 

diamond sample plate is opened. Thus, new diamond search plates can be obtained after three red points 

are added in the right lower direction of the blue point. It is assumed that, the majority of matched 

blocks, as found during the initial search, are located in the upper right of the diamond sample plates, 

thus, the blue point in Figure 3c serves as center. The three red points of the upper right are added, and 

new diamond search sample plates can be obtained. The small diamond sample plate (red point) is used 

as the convergence step of the final termination condition, when the center point of the diamond sample 

plate searched by the block matching algorithm contains the majority of matching blocks, as shown in 

Figure 3d. In other words, the most matching block in the image can be obtained. 

In this paper, mean square error is used for operation of the block matching algorithm, as shown in 

Equation (1): 
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where ft is the original frame, ft-1 is the reference frame, N is block size, (x, y) is the pixel within the 

block, (m, n) is the starting coordinates of the block, and (i, j) is the moving coordinates within the search 

range. In convergence, after calculation of mean square error, Equation (2) is used for further 

comparison to obtain the minimum mean square error, and the motion vector can be obtained: 
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where (i, j)m,n is the motion vector in block (m, n), the minimum mean square error of (i, j), and R is the 

search range.  

3.2. Skin Color Detection and Intersect Operations 

According to the research results of [28], black/yellow/white skin color areas have no great 

difference in YCbCr with concentration features. Thus, YCbCr is used as the skin color detection space, 

and RGB in Equation (3) is converted into a YCbCr matrix: 

0 0.299 0.587 0.114
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Thus, the skin color area can be obtained through Equation (4): 
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Intersect operations can combine motion estimation with skin color detection to further obtain 

dynamic skin color images. In motion estimation, skin color detection can be used to filter non-skin 

color dynamic areas, such as body motion and dynamic backgrounds. In terms of skin color detection, 

motion estimation can be used to filter static objects of similar skin colors in the background, and obtain 

dynamic skin color areas (including dynamic hand gestures). After motion estimation and skin color 

detection, dynamic skin color images can be obtained through AND operations, as shown in Equation (5): 

     yxSCIyxMIyxDSCI ,,,   (5)

DSCI denotes a dynamic skin color image. MI and SCI are motion images and skin color  

images, respectively. 

In human-machine interaction, commands are sent to computers by hand gestures. Thus, momentum 

in the hand gesture area is greater than the natural body sway. In projection of dynamic skin color 

images, filters can be used to filter non-hand gesture areas. 

High frequency noise composed of strong peak signals can be removed while maintaining sharpness 

of edge. The pixel values in the mask are sequenced to determine the intermediate value, and the 

gray-scale value of the middle pixel in the mask is replaced by the intermediate value. While waiting for 

output, the location of pixel h(i,j) is taken as the center, an n × n mask is designated, and all original 

pixels of the n × n mask are removed. The set of brightness values is S. The brightness center value 

Median of the n2 pixels is found by sequencing, where Median is defined as: (a) Median ϵ S and  

(b) Median has higher brightness than the half elements of S, (c) Median has lower brightness than the 

half elements of S, and 9 original pixels are removed from the 3 × 3 mask, with positions and brightness 

as follows:  

{zk} = {10, 20, 20, 20,100, 20, 20, 25, 15} 

     = {10, 15, 20, 20, 20, 20, 20, 25, 100} 

Median {zk} = 20 
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The intermediate value is “20” after sequencing, which is used as the value of the central pixel h(i, j), 

which only removes the original isolated high brightness noise “100”, while the brightness values of the 

peripheral pixels remain approximately unchanged. Median is conducted before open and close. Open 

and close render the image smooth, while open only processes isolated bright spots, and close only 

processes isolated dark spots.  

Next, the dynamic hand gesture area can be detected through horizontal and vertical projection of the 

binary dynamic skin color images, and such a projection can filter non-dynamic hand gesture areas. 

After determining the global maximum peak value, the minimum values can be further determined on 

both sides of the peak, which are used as intervals of the peak value. Thus, the coordinates within the 

peak values between horizontal and vertical projections of images are the hand gesture area. 

After the dynamic hand gesture area is obtained, features of the detected hand gesture area can be 

extracted. Robust dynamic hand features can be obtained through feature estimation of dynamic hand 

gestures, and thus, further increase the recognition rate of dynamic gestures. 

3.3. Dynamic Hand Gesture Extraction and Feature Analysis 

A complete dynamic hand gesture is a series of image sequence sets. For example, the dynamic hand 

gesture for “come” is a set of image sequences including waving the arms and palms as shown in  

Figure 4a. Another example is page turning by animated hands, in which the dynamic hand gestures 

contain a time correlation. Thus, the movement of a dynamic hand gesture, through continuous images 

of s computer, is calculated and quantized into different directions (angle) in order to describe hand  

gesture behavior.  

Figure 4. Hand gesture and speech training images. 

 

The dynamic hand gesture is extracted as follows: Ht denotes the dynamic hand gesture area detected 

at time t, as shown in Equation (6), where Ht(x) and Ht(y) are the coordinates of horizontal and vertical 

pixels in the hand gesture area, respectively:  
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    yHxHH ttt ,  (6) 

Next, Equation (7) is used to calculate the center of gravity Gt in the hand gesture area at time t. The 

center of gravity is the center point of the hand gesture area, and xt and yt are the horizontal and vertical 

coordinates of center points in the hand gesture area, respectively:  
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 

 
 (7)

After the center of gravity in the hand gesture area is obtained, the differential value between vertical 

and horizontal coordinates in the hand gesture area of current image t and the last image t – 1 can be 

calculated through Equation (8), and is expressed by Xt and Yt. The vector consisting of a differential 

value is the motion track in the hand gesture area: 

   11,,   tttttt yyxxYX  (8)

Finally, according to the dynamic hand gesture motion track, direction (angle) t is calculated 

through Equation (9), as shown in Figure 5, where every 30 degrees is regarded as an interval, which is 

quantized into 12 interval codes and serve as basis of dynamic hand gesture recognition. 
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Figure 5. Diagram of angle interval quantization. 

 

In the detection of dynamic hand gestures, dynamic hand gestures are blurred in a series of image 

sequence sets, due to hand gesture motions and camera shooting speed. Binary dynamic skin color 

images in the detection of the dynamic hand gesture area are horizontally and vertically projected, and 

the hand gesture area has variations (such as inconsistent hand gesture size and position). As a result, 

extraction of track features is not stable. Moreover, dynamic hand gesture detection technology cannot 

absolutely detect hand gesture areas. Thus, incorrect dynamic hand gesture detection may cause 

variations in track feature extraction. 

Based on the above feature analysis, in order to reduce instability of motion track due to variations in 

hand gesture detection areas, a Kalman filter is used to consider the correlation between adjacent hand 
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gesture areas, which can correct motion tracks and obtain robust dynamic hand gesture features to 

improve the hand gesture recognition rate. 

3.4. Using Kalman Filter on Time to Estimate Motion Track  

A Kalman filter [29,30] contains two phases: estimation and measurement: estimation Equation (10) 

and measurement Equation (11): 

         kwkkvkkv  11  (10)

       kekvkHkz   (11)

The Kalman filter estimation technology is measured through noise, and future recursive program 

operation is made to correctly estimate system state. In video sequencing, motion of the adjacent area at 

the time is often highly correlated or consistent. In order to solve the problems of the above features 

analysis, the correlation of dynamic hand gestures on time and the Kalman filter are used for motion 

track estimation, thus improving the recognition rate of motion track features.  

It is assumed the motion track is treated randomly, and the two components are independent. Thus, 

the module of the components can be defined, where motion track information is used in the 

one-dimension auto regressive module, and is the track motion of the center of gravity from the previous 

frame at the time. One-dimensional regression modules (12) and (13) of the motion track are defined: 

     



Sp

xxpx inmwpinmvainmv ,,,,,,  (12)

     



Sp

yypy inmwpinmvainmv ,,,,,,  (13)

where ap is the module coefficient, which may be a time-based variation or non-variation. In order to 

simplify the calculation, it is assumed to be a non-variation of time. This study selects the proximal 

highly correlated adjacent center of gravity for the horizontal and vertical components of the motion 

track. Thus, Equations (12) and (13) are simplified into Equations (14) and (15): 

     inmwinmvainmv xxx ,,1,,,, 1   (14) 

     inmwinmvainmv yyy ,,1,,,, 1   (15) 

In addition, Equations (14) and (15) represent the state space matrix in the execution of Kalman filter 

regression. Thus, the state space is expressed by the following:  

Estimation Equation: 

     inmwinmvinmv ,,1,,,,   (16)

where v(m,n,i) is the state vector of position (m,n,i), Φ and Γ are corresponding matrixes, and Φ = a1 = 1, 

Γ = 1. Thus, Equation (16) can be rewritten as Equation (17): 

     inmwinmvainmv ,,1,,,, 1   (17)
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Measurement Equation:  

     inmeinmHvinmz ,,,,,,   (18)

where H = 1.  

The state equation is the quantity equation in the filter. Thus, the Kalman filter calculation is very 

simple. In a given state space, the general procedure for the Kalman filter is described, as follows:  

(1) Estimation  

State estimation: 

   -ˆ ˆ, , , , -1v m n i v m n i   (19)

Estimation of co-variance matrix: 

     - , , , , -1 , ,T TP m n i P m n i Q m n i       (20)

(2) Update  

State update:  

         - -ˆ ˆ ˆ, , , , , , , , - , ,v m n i v m n i K m n i z m n i Hv m n i       (21)

Update-error co-variance:  

     -, , - , , , ,P m n i I K m n i H P m n i      (22)

Kalman gain matrix:  

        -1- -, , , , , , , ,T TK m n i P m n i H HP m n i H R m n i     (23)

In a Kalman filter algorithm, Kalman gain depends on q(m,n,i) and r(m,n,i). In state update, q(m,n,i) 

and r(m,n,i) can be used to decide the number of predicted values or measured values of reference states. 

According to the analysis results, the greatest distances are caused by errors or instability in the 

detection of the dynamic hand gesture area in the current frame. Thus, one exponential function concept 

is used to approximate variance q(m,n,i), as shown in Equation (24). The detection of the current hand 

gesture area has error or instability when the difference of the hand gesture features (motion track) is 

great. Thus, this study intends to use more estimated values of state (motion track in the previous hand 

gesture area on the time) in order to correct the current measured motion track; otherwise, more 

measured values are considered, as shown in Equation (25): 

     2 2- -ˆ ˆ, , exp - -x x y yq m n i c z v z v
       

 (24)

),,(1),,( immqimmr   (25)

where c is a normalized parameter, and q(m,n,i) is normalized from 0 to 1. Here, c is set to −0.1. 
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3.5. Detection of Repetitive Gesture Area and Autocorrelation Function Operation 

In human-machine interaction, hand gestures are repeated when users give the same command or 

intention, and times of repetition are not consistent in each time. For example, the hand gesture “come” 

is a set of waving a hand up and down, and even two or three times as shown in Figure 4a. Thus, while 

the times of repetition are not consistent, the gesture is repeated. In view of this, repetitive hand gestures 

may cause variations in feature extraction, and affect dynamic gesture recognition accuracy. 

The traditional gesture recognition system extracts hand gesture features in a series of input image 

sequences, but fails to consider the impact of repetitive hand gesture segments on recognition. This 

study detects the repeatability of hand gesture segments, with gesture signals as input through 

Autocorrelation Function operations and estimation, and extracts one gesture signal from repetitive hand 

gesture segments. It is then quantized into 12 directional codes as input vectors for training and 

recognition of dynamic hand gestures in order to reduce variations in feature extraction. 

Figure 6. Detection of repetitive hand gesture segment using autocorrelation function. 

 

Based on the above analysis results, in the detection of repetitive speech or gesture segments, this 

study uses the autocorrelation function to detect repetitive hand gestures or speech signal segments in 

continuous images or speech sequences, as shown in Equation (26): 

)()(
1

)(
1

knxnx
M

kr
M

n
xx  



 (26)

where k is time displacement (the frame on the time axis or sound frame displacement); rxx(k) is the 

autocorrelation function of time displacement k; x(n) is the input signal at time n (hand gesture motion 

track or Mel-frequency cepstral coefficients); M is the total length of the input signal. M represents the 

number of repeated sections to be selected. As shown in Figure 6, the detection result of the dynamic 

hand gesture for “come” in the repetitive gesture segments is described. Lag represents the X-axis, 

which represents time shift, and the Y-axis represents the modified correlativity value after 

autocorrelation. The repeatability of 12, 24 and 36 is seen. Finally, the autocorrelation degree 0.8 point 

Value of Lag12 is used as the eigenvector model. According to the analysis result, there is one repetitive 

gesture segment between wave crests on the curve. When making the hand gesture for “come”, the users 
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may wave a hand five times. In order to reduce feature detection variation caused by repetitive gesture 

segments, features of the first repetitive hand gesture segment are extracted after detecting the repetitive 

gesture segment. The features are then quantized into 12 directional codes, which are used as the feature 

basis for future training and recognition of dynamic hand gestures.  

4. Speech Recognition Technology 

Speech recognition has the same repetitive segment as gesture recognition. In order to avoid feature 

extraction features due to inconsistent times of repetition of speech commands, detection of repetitive 

segments is required for hand gestures. First, Mel-frequency cepstral coefficients (MFCC) are 

determined from audio signals, and used as input. In Figure 7, the autocorrelation function operation 

(Equation (26)) is made to detect repetitive speech segments, and extract the MFCC of the single 

repetitive speech segment. 

Figure 7. Feature extraction flow chart of Mel-frequency cepstral coefficients. 

 

Autocorrelation and HMM operation steps include: (a) the speech signal is obtained from the 

environment, and the speech and image recognition system functions are started; (b) and (c) the speech 

input signal is compensated by pre-emphasis; (d) framing process, in order to observe the feature of 

sound signal and take a number of sampling points to collect observations, and the signal is multiplied 

by a window function for statistical calculation; this paper uses a Hamming Window; (e) and (f) use 

FFT sine and cosine functions to represent the composite wave of the waves of different cycles for 

each original signal, where the composition of the original signal can be obtained by FFT in order to 

observe the energy distribution in the spectrum, obtain the MEL-Cepstrum Weight value, and adjust 

the coefficient of the triangular filter, which is exported to the triangular filter of (f) to calculate the 

Bank of Spectral energy in different triangular filter frequency bands, and determine the harmonic 

series represented by repeated sections in the frequency domain and its correlation function, which is 

then exported to (g) to calculate the energy of the nonlinear logarithm. In (h) the N-order characteristic 

coefficients are determined by DCT; (i) the time difference and the energy value of the previous and 

next frames are used to calculate the distance. Finally, the energy vector value of each frame is 
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exported to (k) and (j), where (k) is a frame energy vector value determined by autocorrelation, and  

(j) HMM is used to train the energy vector value of each frame in each state till the state model 

converges. The results can serve as the input for the speech command recognition model, in order to 

establish human behaviors. The speech recognition block process is shown in Figure 8, which 

according to Figure 7 steps include (d),(e),(f),(g),(h),(i),(k). The calculation procedure is described  

as follows: 

Speech Input:  
waveFile = ‘SpeechWave.wav’; 

[y, fs, nbits] = wavread(waveFile).  

Figure 8. Speech recognition block. 

 

Figure 9. Speech In pre-test volume. 

 

In Figure 9, different corpora real time recording forecast volumes are imported according to Speech 

In. This paper considers the corpus recording volume; however, not all corpus systems have a consistent 

recording volume to avoid overflow of the buffer. This paper modifies the representative computing 

equation for one frame energy, as shown in Equation (27). Adds Ev, takes No. 2, 5, and 8 frames, uses 

poliy-fit to determine the average curve of the frame, and calculates the average volume; where there are 

10 levels, from level 1 to level 10. Ev will automatically adjust the range according to the 10 levels. 

When the volume of a recorder or corpora is high, we can select factors that can be dynamically adjusted 

by Ev = e6 or higher, as shown in Equation (28). 
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Now in order to reconstruct an exponential function, we have to exponentiate the fitting line  

y = ax + b, where fit(1) = a and fit(2) = b, it can be rewritten as eax+b = eb + eax  

Matlab coding:  
x = e-data(:,1); 

y = e-data(:,2); 

fit = polyfit(x, log(y),1); 

So we can plot the data with the exponential fit as:  
semilogy(x, y, ‘o’, x, exp(fit(2)).*exp(fit(1)*x)) 
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If one short time interval is a frame, when the sound signal feature is observed, a number of points are 

sampled from the signal for collective observation. When a frame after finishing, as shown in  

Equation (29): 
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~

nwnxnM   (29)

In this paper we adopt Hamming Windows to design amplification constant. The traditional 

approach is shown in Equation (30): 
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where w(n,) is windows function:  
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In order to avoid buffer data overflow, and for convenient identification of data dispersion degree 

(Overflow Data with both Discrete Discrimination, ODDD), an amplification coefficient ODDDv  

is designed: 
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1,2

)()(][
 (32)

Speech signal Sinput (n) is imported xout(n) = xinput(n) – α × x(n–1) in order to compensate for 

elimination of the suppressed high audio frequency of human pronunciation. Generally, the human labial 

cut-off point parameter is set as 0.95~0.985, n is the time factor, and the scale is automatically adjusted 

for improvement. Figure 10 shows the Original wave compare with Humaning Windows. Figure 11 

shows the typical pre-emphasis magnification, parameter value α is 0~1. After automatic adjustment of 

scale, α is 215, and magnification is 63,897.6, where x[n] represents the sound signal, n is the time factor,  

α = 0.975, and the common range is 0.95~0.958. 
  



Sensors 2013, 13 17112 

 

Figure 10. Original wave compare with Humaning Windows. 

 

Figure 11. The typical pre-emphasis magnification. 

 

The sound is acoustically different from the spectrum, and resolution at low frequency is higher than 

that at high frequency. Therefore, pre-emphasis shall be conducted, where the transfer function of 

pre-emphasis is expressed, as shown in Equation (33): 

frameSizennxnxnM alpalp  2,2))1(638982)(()('  (33)

The mask spreading function is due to two reasons, one is the cepstrum, which may result in hundreds 

of multidimensional features, the other is that people cannot distinguish between similar frequencies. As 

a phonetic feature, it can be reduced to MFCC by this phenomenon. When the repeated feature is 

determined, the vector model of one frame is selected from the repeated frames as the feature model. 

This study aims to determine repeated sections in a continuous section. 

In weight cepstrum (WC), the typical practice is the Taylor expansion. This paper creates a SIN 

Circular Table of 12 integral WC, and the SIN operation of FFT has 18 integer values as shown in  

Figure 12(A: Image frames, B: Speech frames). In Figure 12(1), the temporary address of each dynamic 

gesture and speech SIN integer parameter includes timing, Index, etc. In Figure 12(2), for the space 
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defined by these addresses, circular polling is adopted to save memory space, and improve query speed 

and accuracy. In Figure 12(3), the merged image and speech vectorial character models are stored in 

memory according to the respective time stamps. 

Figure 12. SIN Circular Table. 

 

Table 1. SIN Circular Table value. 

Round #1 Round #2 Round #3 ………… Round #8 

Time Index 1 π/2 π/4 π/8 π/256 
Time Index 2 Π π/2 π/4 π/128 

 

Time Index 1 Time Index 2 

A Round #1 π/512 π/256 

The 18 integer mathematic values of SIN converted by FFT are marked, the SIN Circular Table of 

WC is calculated, the SIN operation of FFT has 18 integer values, and the computing values of this stage 

have a SIN Circular Table of 30 elements as shown in Table 1. According processes block in Figure 7, 

we used Hamming window to process signal and output it within the FFT calculation and transfer of SIN 

function, as shown in Figures 13 and 14: 
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where F(k) is ][~ nx  Fourier transform, k represents the k-th Frequency Bin. 

Define a mel-scale:  

    ..885.9991log25951log2595 700
1000

1070010  fscalemel  

    ..446.6071log25951log2595 700
500

1070010  fscalemel  

    ..371.6061ln11251ln1125 700
500

700  fscalemel  
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Figure 13. Multiplied by Hamming Windows time domain distribution. 

 

Figure 14. Frequency domain energy distribution of FFT. 

 

Figure 15. Frequency to mel-scale of frequency curve. 

 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10 ... 

frequency 20 160 394 670 1,000 1,420 1,900 2,450 3,120 4,000 ... 

mel-scale 0 250 500 750 1,000 1,250 1,750 2,000 2,250 2,500 ... 
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The mel-scale is calculated isometrically, and the value of the corresponding frequency of x-axis is 

calculated and stored in the corresponding Circular Table. The integer value of the look-up table is 

searched by Binary Search, i.e., the value in the corresponding Time index and the previously 

integralized logarithmic value, in order to avoid directly use of the rooting function of a floating-point 

number. The corresponding rooting table can increase the computing speed, reduce the memory space 

occupied by the rooting table, and maintain a certain amount of accuracy. The signal in each frame is 

processed by MFCC in order to obtain the spectral energy value parameter of the signal in the frame as 

shown in Figure 15. 

Figure 16. Triangle of band-pass filter in Spectrum. 

 

Using the Mel-filter to signal processing each frame, and its can be calculated spectral energy value 

of the parameters:  
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(35)

where M[m] is the m-th triangular of band-pass filter of spectrum energy of value, the L is a triangular of 

band-pass filter, Hm[k] is the m-th triangle band-pass filter function and Xa[k]2 is a spectral of energy 

values, the triangular of band-pass filter in Spectrum domain as shown in Figure 16. While the feature is 

determined by similar cepstrum (e.g., Diff-cepstrum), the action state columns approach to synchronization 
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in this paper, which consider the speed, and whether there is repeated semantic and recoverable features, 

such as noise interference. 

Discrete Cosine Transform Process of step in Figure 7h block. MFCC of FFT signal is the frequency 

domain within that we are used a discrete cosine transform (DCT) method transform to signal of 

frames in time-domain analysis, when its gets spectrum energy from the filter group, and whichever of 

the values into the discrete cosine transform is obtained the characteristics of N-order factor, where N 

is a factor of numbers setting to 30. Discrete cosine transform formula is as follows: 
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where i = number of MFCC, N = number of band—pass filter. Mj is a Log (M[m]), the m-th triangular 

of band-pass filter of spectrum energy of log value. Performing discrete cosine transformation, that its 

can adjust the weights w(i) the value of the energy for the filter bank to turning its, show the formula 

as follows: 
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where w(i) is the i-th triangular band-pass filter weights. Details of calculating the features based on 

MFCCs. The first order regression coefficients are computed by the following regression Equation: 
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where di is the delta coefficient at frame i computed in the corresponding basic coefficients Cm+i  

to Cm-i:  
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Autocorrelation and crosscorrelation are common concepts for calculating signal analysis, and 

represent correlativity between the values of two time series, as obtained at two different time points in 

the same time series, respectively. Namely, the cross correlation function describes the correlativity 

between the values of stochastic signals rx1(k ) and ry2(k), as obtained at two different time points t1 and 

t2. The autocorrelation function describes the correlativity between the values of stochastic signal rxx(k ), 

as obtained at two different time points, k1 and k2 as shown in Equation (26). The cross correlation 

function gives a judgment index of correlation between two signals in the frequency domain connecting 

the cross spectrum and autospectrum of signals between two measuring points, and determines how 

much of the output signal is derived from the input signal, which is very effective at correcting 

measurement errors resulted from accessing a noise source. 
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The correlation coefficient is merely a ratio, is neither an equivalent unit measure, nor a correlated 

percentage, and is generally two places of decimals. The sign of a correlation coefficient only represents 

the correlated direction, while the absolute value represents the degree of correlation. As it is not an 

equivalent unit measure, the correlation coefficient of 0.7 is not twice 0.35, but the correlativity between 

two columns of variables with a correlation coefficient of 0.7, which is higher than the correlativity 

between two columns of variables with correlation coefficient of 0.35. In addition, the increased 

correlation coefficient from 0.70 to 0.80 cannot be regarded as identical to an increased correlation 

coefficient from 0.30 to 0.40. The values of correlation coefficient are expressed, as shown in Table 2. 

Table 2. The values of correlation coefficient. 

Correlation Coefficient Correlativity Interval 

0.00–±0.30 Slight correlation  
±0.30–±0.50 Actual correlation  
±0.50–±0.80 Significant correlation  
±0.80–±1.00 High correlation 

5. Multimodal Model Integration 

The traditional human behavior recognition method only considers single media information, such as 

image or speech. The variations in feature extraction may lower the total recognition rate if only speech 

or an image is considered in human behavior recognition, meaning human behaviors cannot be correctly 

deduced. In addition, linear combinations of the image recognition model and speech recognition model 

can improve single model recognition. However, it has difficulty in deducing the weight (importance) of 

image and speech models for human behavior recognition in complicated natural environments, thus, the 

correction effect is limited.  

The fusion of multi-sensor information is based on mathematical derivation of statistics:  

P(Tk/S1,S2,S3,..Sn) = P(S1/Tk) × P(S2/Tk) × …P(Sn/ Tk)/∑P(S1/Ti) × P(S2/Ti)…P(Sn/Ti) (40)

where P(Tk/S1,S2,S3……,Sn) represents the probability of attaining the goal, and Tk represents the 

multi-sensor environment. The basic thought of the model probability of the two forecast examples is 

described as follows: 

(1) Suppose image sensor tracker (T1) computes a feature vector for track #1, denoted as  

T1: T1 = {5.0,10.0, 75.0, 60.0, 2.0, 150.0, 75.0, 20.0}, and suppose the audio sensor for the microphone 

tracker (T2) outputs a feature vector for track #2, denoted as T2: T2 = {10.0, 40.0, 85.0, 65.0, 2.0, 140.0, 

65.0, 85.0}. The correlation coefficient between the two feature vectors is equal to 0.87. Therefore, the 

result of the fusion action is that track #1 and track #2 are two distinct tracks. 

(2) Suppose the image sensor tracker produces a feature vector for track #1, denoted as  

T3: T3 = {30.0,20.0, 60.0, 70.0, 2.0,100.0, 60.0, 30.0}, and suppose the Audio Sensor for the microphone 

tracker defines a feature vector for track #2, denoted as T4: T4 = {30.0, 20.0, 60.0, 70.0, 2.0, 100.0, 60.0, 

30.0}. The correlation coefficient between the two feature vectors is equal to 1.0. Therefore, the result of 

the fusion action is that track #3 and track #4 most likely characterize the same target. 
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During recognition of human actions, in addition to speech command recognition and hand gesture 

recognition models, the corresponding relationship between state sequences of the hand gesture model 

and speech model is further considered in order to increase the accuracy of human action recognition. 

The mathematical expressions are defined as follows: 

Figure 17. Gesture and speech recognition model adopted Bayesian theorem. 

 

When the hand gesture recognition and speech recognition models are considered, it is expected to 

consider the potential coincidence relation in state sequence between models, thus, in Figure 17(1) 

approximates as shown in Figure 17(2). In Figure 17(2) can be resolved into Figure 17(3) by the Bayes 

theorem. As the coincidence relation between gesture and speech models states that sequences are 

unrelated to the observation probability, it is neglected to obtain Figure 17(4). The present input gesture 

and speech observation data are recognized with given gestures and speech model parameters, where a 

group of the most matching (G,A) model parameters are determined by input gesture and speech 

observation data, and the action type of (G,A) is the final recognition result. T is enumerating every 

possible state sequence of length T; there will be NT possible combinations of state sequence where N is 

the total number of states. Suppose there is one state sequence SG and it is set of {G1, G2,…GT}: 
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(G,A) is the hand gesture and speech model of the same action: p(OG,SG|G) and p(OA,SA|A) are the 

hand gesture and speech command recognition models, respectively; p(SA|SG,G) shows the 

correspondence probability of speech state sequence SA in hand gesture model G after a certain hand 

gesture state sequence SG is given; p(SG|SA,A) is the correspondence probability of the hand gesture 

sequence SG in speech command model A after a certain speech state sequence SA is given. Regarding 
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recognition, the biggest action category (G*,A*) of the posterior probability p(OG,SG|G) p(SA|SG,G) 

p(SG|SA,A) p(OA,SA|A) is the human behavior of the last recognition. 

Figure 18. Multimodal model merging. 

 

The proposed multimodal model integration is as shown in Figure 18. For the input sequence (hand 

gesture OG and OA), where detection of repetitive hand gestures and speech segments is completed, hand 

gestures and speech can be recognized through the hidden Markov model. The corresponding 

relationship between state sequences of hand gestures and speech model state sequences is further 

considered. In the hand gesture model, the correspondence between state sequences of the hand gesture 

recognition model and the speech recognition model should be considered, besides itself. Likewise, in 

the speech recognition model, the correspondence between state sequences of the speech recognition 

model and hand gesture recognition model should also be considered. 

The proposed multimodal model merging method can be divided into two parts for description. In 

training phase, feature extraction is made for collected parallel data (input of hand gestures and speech 

commands). For hand gestures, a multimode Kalman filter is used to extract features for re-estimation 

and autocorrelation functions in order to detect repetitive hand gesture segments. For speech, the 

repetitive speech segment is detected by using autocorrelation functions. 

Next, the hand gesture and speech Hidden Markov models are separately trained to obtain the optimal 

state sequence and the correspondence. For example, the blue dotted lines in Figure 19 represent a 

speech sequence boundary, while the red dotted lines represent a hand gesture state sequence boundary. 

The speech model has three states, and the hand gesture model has four states. The second state of 

speech corresponds to the fifth hand gesture image, the fourth state corresponds to the second state of the 

hand gesture, and the first state corresponds to the third state of the hand gesture. From this, the 

probability of the second state of speech corresponding to second state of hand gesture is four fifths. 

Through the correspondence method, the correspondence between state sequences of hand gesture and 

speech can be obtained through the correspondence of the collected training data. 
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Figure 19. Correspondence between state sequences of speech and hand gesture.  

 

In the testing phase, for the input state sequences of hand gestures and speech, where detection of 

repetitive segments is completed, the recognition result is obtained through the model established before 

training. Moreover, the recognition result should be corrected through correspondence between the state 

sequences of hand gestures and speech. Figure 20 illustrates correspondence between the optimal hand 

gesture and speech state sequence in the testing phase. For recognition results of the hand gesture and 

speech models, the n paths are separately listed (the n paths are reserved after completion of Viterbi). For 

each path, correspondence between state sequences in training is used to calculate correspondence 

between the optimal hand gesture and speech in this path. Finally, an optimal path can be found, and 

maximum probability can be obtained by Equation (41). The human behavior of maximum probability is 

the final recognition result. 

Figure 20. Correspondence between state sequences of optimal speech and hand gesture. 

 

6. Simulation and Results 

This study used a PC configured with Pentium 4 3.0 G and 1 G for all tests. The programs were 

developed using Borland C++ Builder 6.0, and performed by a Logitech “Logitech QuickCam™ 

Sphere” (with inbuilt microphone).  
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6.1. Experiment System Flow Chart  

Figure 21 shows the human behavior recognition system flow chart. First, we extract the input image 

and speech sequences from a webcam and microphone. In hand gesture, we extract the hand gesture area 

by the dynamic hand gesture detection technique. Furthermore, the Kalman filter and autocorrelation 

function can be used to reduce variations in feature extraction. In speech, after extraction of the 

Mel-scale frequency, the Cepstral coefficients autocorrelation function can be used to reduce the 

variations of feature extraction in repetitive speech segments. Finally, human behavior is recognized 

through multi-modal model merging. 

Figure 21. Human behavior recognition flow chart. 

 

In a special application case, human behavior interacts with a machine in a situation based on the 

interaction between an electronic pet dog and human behavior. This system defines 32 actions and one 

EPD Name, where one user (keeper) can raise multiple pets (one File is opened for independent EPD). 

The EPD Game system executes keeper authority, the first UI is entered, and the EPD randomly 

migrates in a 3D scene. When the volume energy heard through the microphone is greater than the 

threshold, Step 1 (dotted line) is entered, and the recording action is initiated. This step has no hand 

gesture recognition, and the training name is repeated more than five times. Each training and previous 

model value iterative constructs model training. After the second recognition, if the system recognition 

is correct, the EPD wags its tail. A question mark occurs if recognition is wrong. Step 2 is the path of the 

training “command-action” model (solid line), which switches to another command edit menu for  

32 “command-action” training, where speech and gesture synchronization actions are trained each time, 

with the procedure of speech similar to the aforesaid.  

Example: naming, each sampling time is 5 s, repeat speech sampling, repeat three times. Figure 22 

shows the behavior sequence uses a Markov state probability decision-making form for MPD training, 

where in Figure 22a is the preliminary training state of one command, and in Figure 22b action sequence 

is randomly generated. In each training round, the EPD generates a behavior sequence according to the 

action table in MPD, and guesses a relevant action, where errors will be punished through a reward and 

punishment system, correct or incorrect will reward-penalty {50, 25, −25, −50} value. 
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Figure 22. Reinforcement learning and behavior control.  

 

The complete parameter set λ of the HMM parameters for hand gestures represent vector π and two 

matrices A and ϕ, where HMM parameter set λ is for training the parameters of the state model. The 

probability of the vector model is evaluated by observing the maximum likelihood performance of 

observable output symbol sequence S. The probability of the maximum likelihood of the state sequence 

is represented by (S |λ). It is a 3-state HMM array by Ajk as shown in Figure 23. 

Figure 23. It is a 3-state HMM array by Ajk. 

 

Determine optimal state sequence:  

The HMM parameter set λ is given to observe output observable symbol sequence G in order to 

determine an optimal {G1; G2;…GT} state sequence of SG. The Viterbi algorithm is applied to determine 

the single best state sequence SG = {G1; G2;…GT} state sequence. We give the observable symbol 

sequence S = {s1,…,sT} and the HMM parameter set l in order to maximize P(SG|S, λ), it can be  

written as: 
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The best state transfer process is selected according to the given model and observed sample 

sequence, and the most probable state of the picture frame/voice at time t can be found, as shown in 

Figure 24. Finally, the feature model is determined by parameter estimation using the baum-welch 

method. The process of HMM parameters for speech recognition is the same as above,  
SA＝ {A1,A2…AT}. SA is the speech using the Viterbi algorithm to find the single best state sequence. 

This paper uses HTK for HMM testing of 13D-dimensional inside test and outside test, where the 

recognition rate is apparently increased in 39D dimensions, as shown in Figure 25. 

Figure 24. Viterbi algorithm path. 

 

Figure 25. HMM model training. 

 

6.2. Experimental Settings and Evaluation  

The experimental results can be divided into two parts, as per the system flow chart: 

(1) Hand gesture recognition results 

In dynamic hand gesture detection, two students made four different hand gestures: come, sit down, 

turn in circle, and get down as shown in Figure 4. Each student repeated each hand gesture five times. In 

each time, 60 images were extracted, and the frame format was SIF. Each hand gesture had 600 images 
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for evaluation, as shown in Table 3. The total number of tested images (including four actions) was 

2,400, among which dynamic hand gesture images from correct recognition was 2,225, and dynamic 

hand gesture images from wrong recognition was 175, with an average detection rate of hand gestures 

of 92.7%. 

Table 3. Accuracy of dynamic hand gesture. 

Hand Gesture 

Diction Result  

Come  Sit Down  Turn in Circle Get Down  

Number of tested images 600 600 600 600 

Correct detection  554 517 570 584 

Wrong detection 46 83 30 16 

Accuracy 92.3% 86.2% 95.0% 97.3% 

The recognition results without a Kalman filter, with a Kalman filter, with a Kalman filter plus 

repetitive segment detection, and with a FD HMM [26], were compared, as shown in Tables 4–7 and 

Figure 26. The two students made four hand gestures, including come, sit down, turn in circle, and get 

down. Each person made one gesture five times. In the recognition results of 40 dynamic hand gestures, 

the correct recognition of dynamic hand gestures without a Kalman filter was 27 times, the wrong 

recognition without a Kalman filter was 13 times, with an average recognition rate of 67.5%. The correct 

recognition of dynamic hand gesture with a Kalman filter was 33 times, and wrong recognition with a 

Kalman filter was seven times, with an average recognition rate of 82.5%. The correct recognition of 

dynamic hand gesture with a FD HMM was 34 times, and wrong recognition with a FD HMM was  

6 times, with an average recognition rate of 85%. With a Kalman filter, plus repetitive segment 

detection, the correct recognition of the dynamic hand gestures was 35 times, and wrong recognition was 

5 times, with an average recognition rate of 87.5%. The recognition result is better than that without 

Kalman filter or with Kalman filter.  

Table 4. Confusion matrix for recognition results of dynamic hand gestures without a Kalman filter. 

     Hand Gesture 

Input Model 
Come  Sit Down  Turn in Circle Get Down  

Come 9 1 0 0 

Sit down 1 9 0 0 

Turn in circle 2 1 3 4 

Get down 1 1 2 6 

Table 5. Confusion matrix for recognition results of dynamic hand gestures with a Kalman filter. 

Hand Gesture 

Input Model 
Come  Sit Down  Turn in Circle Get Down  

Come 9 1 0 0 

Sit down 1 9 0 0 

Turn in circle 1 1 7 1 

Get down 1 0 1 8 
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Table 6. Confusion matrix for recognition results of dynamic hand gestures with a Kalman 

filter, plus repetitive segment detection. 

Hand Gesture 

Input Model Come  Sit Down  Turn in Circle Get Down  

Come 9 1 0 0 

Sit down 1 9 0 0 

Turn in circle 0 1 9 0 

Get down 1 0 1 8 

Table 7. Confusion matrix for recognition results of dynamic hand gestures with a FD HMM. 

Hand Gesture 

Input Model 
Come  Sit Down  Turn in Circle Get Down  

Come 8 1 0 1 

Sit down 2 8 0 0 

Turn in circle 0 0 9 1 

Get down 0 1 0 9 

Figure 26. The recognition results of dynamic hand gestures. 

 

(2) Results of speech recognition and multi-modal model  

Regarding human behavior action recognition, the Hidden Markov Model Toolkit [31] was used for 

recognition. The hand gesture recognition model is a hidden Markov model, with six states from left to 

right (including start to end). The speech recognition model is a hidden Markov model, with five states 

from left to right (including start to end).  

In training the recognition model, and tested 10 males and five females in the experiment room 

performed four different actions: come, sit down, turn in circle, and get down as shown in Figure 4. 

Each action was repeated 20 times, which served as trained data. In testing, each person repeated each 

hand gesture 10 times and each action 20 times. The recognition results in the speech recognition model, 

hand gesture recognition model, traditional linear combination of speech recognition model, with a hand 

gesture recognition model, were compared with that of the proposed multimodal model, as shown in 

Figure 27. The correct recognition rate of the speech recognition model was 84%; the correct recognition 
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rate of the hand gesture recognition model was 80.25%; the correct recognition rate of the traditional 

speech and hand gesture combined recognition model was 91.25%; the correct recognition rate of the 

proposed multimodal model was 95.5%. Experimental results verified that the multimodal 

gesture-speech model provided superior accuracy when compared to the single modal versions. The test 

result shows that the recognition is reduced by about 2.5%. It is preliminarily found that there is 

influence when two conditions are tenable. First, the subjects have similar tones, e.g., similar 

pronunciations of Coming and Getting. Second, the tracks and lengths of the gestures of Coming and 

Sitting are similar; therefore, the recognition rate decreases when the two conditions are tenable. 

However, it is stabilized at 95.5% when the number of trainings is increased by 20. 

Figure 27. The correct recognition rate of the recognition models. 

 

7. Conclusions 

This study proposed a dynamic hand gesture detection and recognition system. The preliminary 

experimental results confirmed that the proposed method can effectively detect dynamic hand gesture 

areas in complicated natural environments. The proposed hand gesture feature re-estimation and 

detection technology of repetitive hand gesture segments can effectively improve the recognition rate of 

dynamic hand gestures. In the future work, we will combine Ontology and Q-table to implement  

32 action command using speech spotting and gesture spotting.  

In this study, a speech recognition model, with correspondence between state sequences of hand 

gestures and speech models were further considered. The experimental results proved that the proposed 

multi-modal model can effectively improve human action recognition. The recognition rate of a 

traditional HTK running MFCC is about 80%–85%, where image recognition is implemented by the 

above recommended method (vector model trained by direction parameter and quantified by movement 

track). The single test recognition rate is about 80%. The combined recognition rate of speech and hand 

gestures is increased to 91%, and the recognition rate is increased to 95% by the multi-model integration 

of Bayes. 
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