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Abstract: The vibration based signal processing technique is one of the principal tools for 

diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a  

time-frequency analysis technique, has been widely used to process vibration signals of 

rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To 

overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was 

proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The 

performance of EEMD, however, depends on the parameters adopted in the EEMD 

algorithms. In most of the studies on EEMD, the parameters were selected artificially and 

subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition 

method is proposed in this paper. In the method, the sifting number is adaptively selected, 

and the amplitude of the added noise changes with the signal frequency components during 

the decomposition process. The simulation, the experimental and the application results 

demonstrate that the adaptive EEMD provides the improved results compared with the 

original EEMD in diagnosing rotating machinery. 

Keywords: adaptive ensemble empirical mode decomposition; fault diagnosis; sifting 

number; added noise; rotating machinery 
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1. Introduction 

The signal processing technique based on vibration is one of the principal tools for diagnosing 

faults of rotating machinery [1–3]. It is possible to extract fault information from vibration signals by 

using the signal processing techniques. Empirical mode decomposition (EMD), as a time-frequency 

signal processing technique, has been developed to process nonlinear and non-stationary problems and 

widely applied to feature extraction and fault diagnosis of rotating machinery [4–7]. It is based on the 

local characteristic time scales of a signal and could decompose the complicated signal into a set of 

complete and almost orthogonal components named intrinsic mode function (IMF) [8,9]. The IMFs 

represent the natural oscillatory mode embedded in the signal and work as the basis functions, which 

are determined by the signal itself, rather than pre-determined kernels. EMD, however, has the 

problem of mode mixing, which is defined as either a single IMF consisting of components of widely 

disparate scales, or a component of a similar scale residing in different IMFs [10,11]. 

Consequently, ensemble empirical mode decomposition (EEMD), an improved version of EMD, 

was presented to solve the problem of mode mixing in EMD [10]. EEMD is a noise-assisted data 

analysis method. By adding finite white noise to the signal to be investigated, EEMD is supposed to 

eliminate the mode mixing problem. The performance of EEMD, however, depends on the parameters 

adopted in the EEMD algorithms, such as the sifting number, the amplitude of the added noise, etc. In 

most of the current studies on EEMD, these parameters were set as constant values. However, 

according to our investigation, different frequency components contained in signals have different 

sensitivities to these parameters [12]. As a result, the problem of mode mixing is not solved as 

expected and the performance of EEMD needs to be improved further. 

Based on the investigation of the filtering behavior of EMD/EEMD and the relation between the 

signal frequency components and the amplitude of the added noise, we present a new adaptive 

ensemble empirical mode decomposition method in this paper. In this method, the sifting number is 

adaptively selected and the amplitude of the added noise varies with the signal frequency components 

during the decomposition process. By adopting both the adaptive sifting number and the adaptive 

added-noise amplitude, it is expected that the proposed EEMD method is able to improve the 

performance of the original EEMD in feature extraction and fault diagnosis. 

The remainder of this paper is organized as follows. Section 2 briefly introduces the algorithm of 

EEMD. Section 3 is dedicated to a description of the proposed adaptive EEMD and generates a 

simulation to illustrate the method. In Section 4, experiments on a planetary gearbox test rig are 

conducted and vibration signals are collected to demonstrate the effectiveness of the proposed method 

in diagnosing gear faults. In Section 5, the proposed method is applied to diagnose an early fault of a 

heavy oil catalytic cracking machine set. The simulation, the experimental and the application results 

show that the adaptive EEMD produces the improved results compared with the original EEMD. Some 

concluding remarks are drawn in Section 6. 

2. Ensemble Empirical Mode Decomposition 

EEMD was developed by Wu and Huang to solve the problem of mode mixing of EMD [10]. It is a 

noise-assisted data analysis method, which defines the true IMF components as the mean of an 
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ensemble of trials. Each trial contains the decomposition results of the signal plus a white noise of 

finite amplitude decomposed by EMD [10,11]. The principle of EEMD is as follows: the added white 

noise would populate the whole time-frequency space uniformly with the constituting components of 

different scales. Once a signal is added to this uniformly distributed white noise background, the 

components in different scales of the signal are automatically projected onto proper scales of reference 

established by the white noise in the background. Because each of the noise-added decompositions 

includes the signal and the added white noise, each individual trial may certainly generate a noisy 

result. But the noise in each trial is different in separate trials. Thus it can be decreased or even 

completely cancelled out in the ensemble mean of enough trails. The ensemble mean is treated as the 

true answer because finally, the only persistent component is the signal as more and more trials are 

added in the ensemble. 

Based on the principle mentioned above, the EEMD algorithm can be given as follows [11]. 

(1) Initialize the number of ensemble M, the amplitude of the added white noise, and m = 1. 

(2) Perform the mth trial on the signal added white noise. 

(a) Add a white noise series with the given amplitude to the investigated signal: 

)()()( tntxtx mm 
 (1) 

where nm(t) indicates the mth added white noise series, and xm(t) represents the noise-added 

signal of the mth trial. 

(b) Decompose the noise-added signal xm(t) into I IMFs ci (i = 1, 2, …, I) using EMD, where 

ci,m denotes the ith IMF of the mth trial, and I is the number of IMFs. 

(c) If m < M then go to step (a) with m = m + 1. Repeat steps (a) and (b) again and again, but 

with different white noise series each time. 

(3) Calculate the ensemble mean ci of the M trials for each IMF. 
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(4) Report the mean ci (i = 1, 2, …, I) of each of the I IMFs as the final IMFs. 

EEMD is an improved version of EMD and is supposed to eliminate the problem of mode mixing 

by adding noise to the signal to change the distribution of extrema. The improvement of EEMD, 

however, largely depends on the parameters adopted in the EEMD algorithms, for example, the 

amplitude of the added noise. If the parameters vary, the decomposition results may change 

accordingly. To prove this statement, a simulation signal x(t) is considered here. It consists of three 

components: an impact component, a high-frequency sinusoidal wave and a low-frequency sinusoidal 

wave. The three components and the simulation signal are shown in Figure 1a–d, respectively. 

First, the signal is processed by EEMD with the added white noise amplitude of 0.001 of the 

standard deviation of the simulation signal. Correspondingly, four IMFs are generated and plotted in 

Figure 2a–d, respectively. It is obvious that the impact component and the high-frequency sinusoidal 

component are decomposed into the same IMF c1, i.e., the mode mixing is occurring between higher 

frequency components. It could be explained that the added noise is too small to change the extrema 

distribution of the signal. Then, we process the simulation signal with the increased noise amplitude of 
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0.01. The decomposed IMFs are given in Figure 3a–d, respectively. The impact component and the 

high-frequency sinusoidal component are successfully decomposed into IMFs c1 and c2. However, the 

low-frequency sinusoidal wave is split into two IMFs c3 and c4. That is to say, the mode mixing 

appears in lower frequency components. It is probably because the added noise is too large and 

destroys the extrema distribution of lower frequency components, leading to the mode mixing. 

Figure 1. (a)–(c) the three components, and (d) the simulation signal. 

 

Figure 2. The decomposed result with the added noise amplitude of 0.001. 

 

Figure 3. The decomposed result with the added noise amplitude of 0.01. 
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Based on the simulation results, it is observed that in the process of EMD, high and low frequency 

components have different sensitivity to the intensity of the noise to be added in the investigated 

signal. The original EEMD method, however, adopts the constant noise amplitude and sifting number 

for all frequency components. Therefore, the problem of mode mixing is not overcome well and the 

performance of EEMD needs to be improved further. 

3. The Proposed Adaptive Ensemble Empirical Mode Decomposition 

3.1. The Proposed Method 

In this section, an adaptive EEMD is proposed to further improve the original EEMD in solving the 

problem of mode mixing. In this method, according to different sensitivity of high and low frequency 

components to noise, larger noise and more sifting number are adopted in extracting high-frequency 

IMFs, while smaller noise and less sifting number are used in extracting low-frequency IMFs. To 

satisfy this requirement for noise, different kinds of noise are tried and tested. It is found that the noise 

having the amplitude changing as a sinusoidal function of the frequency performs best. Thus, the noise 

whose amplitude changes as a sinusoidal function of the frequency is constructed and utilized in the 

adaptive EEMD, instead of white noise adopted in the original EEMD. The frequency spectrum of the 

constructed noise is shown in Figure 4, in which fs represents the sampling frequency and e denotes the 

amplitude at the highest frequency. The sifting number for each IMF is adaptively set following 

Equation (4). Figure 5 gives the flow chart of the adaptive EEMD algorithm. It includes the following 

procedural steps. 

(1) Initialize the amplitude e of the highest frequency of the added noise, the number of ensemble 

M, generally M = 100 and e = 0.2. Let m = 1. 

(2) Calculate the number of IMFs based on the signal length [10]: 

2log 1I L   (3) 

where L is the signal length. 

(3) Adaptively set the sifting number pi for the ith IMF according to the following equation. 

2( )[2 2]I i

ip   , Ii ,...,2,1  (4) 

where    is a round operator. 

(4) Construct the noise as shown in Figure 4 and add it to the signal to be investigated. 

(5) Perform EMD on the added-noise signal and obtain the mth decomposition result ai,m. 

(6) If m < M then go to step (4) with m = m + 1. Repeat steps (4) and (5). 

(7) Calculate the ensemble mean ai of the M trials for each IMF and report the mean as the  

final IMF. 
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Figure 4. The spectrum of the noise constructed. 

 

Figure 5. Flow chart of the adaptive EEMD. 
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3.2. Simulation Illustration 

A simulation signal is generated to illustrate the proposed adaptive EEMD method in this section. 

Since modulation and impact are two typical fault events in rotating machinery, the simulation signal 

includes modulation and impact components. It also consists of a high-frequency sinusoidal wave and 

a low-frequency sinusoidal wave respectively to represent certain rotating frequencies of machinery. 

Thus, there are four components corresponding to different physical meaning in the simulation signal. 

The four components and the simulation signal combined by them are shown in Figure 6a–e, respectively. 

The adaptive EEMD method is utilized to process the simulation signal and the decomposed first 

four IMFs are plotted in Figure 7. It can be seen from the figure that IMFs 1–4 respectively correspond 

to the impact component, the modulation component, the high-frequency sinusoidal wave and the  

low-frequency sinusoidal wave. Comparing the decomposed IMFs in Figure 7 with the real 

components in Figure 6a–d, it is found that the different components embedded in the simulation 

signal are extracted accurately by the adaptive EEMD. 

For comparison, the simulation signal is analyzed using the original EEMD too and the amplitude 

of the added noise is 0.2 and the sifting number is 10. The decomposition result is displayed in Figure 8. 

It is seen that the problem of mode mixing appears between different IMFs and there are distortions for 

some IMFs. For example, the first IMF contains not only the impact component but also the 

modulation component. In addition, the amplitude of the second IMF corresponding to the modulation 

component changes obviously. This result implies that the original EEMD fails to produce the 

reasonable decomposition. 

Based on the above simulation and comparison, it could be concluded that the adaptive EEMD is 

able to provide more accurate IMFs than the original EEMD, by adding noise having the amplitude 

varying as a sinusoidal function of the frequency into the signal, and adaptively changing the sifting 

number for different IMFs. 

Figure 6. (a)–(d) the four components, and (e) the simulation signal. 
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Figure 7. The IMFs using the adaptive EEMD for the simulation signal. 

 

Figure 8. The IMFs using the original EEMD for the simulation signal. 

 

4. Experimental Demonstration for Fault Diagnosis of Planetary Gearboxes 

Planetary gearboxes, as a kind of special gear transmission structures, are widely used in modern 
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obviously differ from fixed-axis gearboxes and exhibit unique behaviors, which increase the difficulty 

of fault diagnosis [13–15]. 

In this section, experiments on a planetary gearbox test rig are conducted and vibration signals are 

captured to demonstrate the effectiveness of the adaptive EEMD in diagnosing gear faults. As given in 

Figure 9, the planetary gearbox test rig includes two gearboxes, a 3-hp motor for driving the 

gearboxes, and a magnetic brake for loading. One gearbox in the test rig is a planetary one and the 

other is a fixed-axis one. The planetary gearbox is our concern in this study, in which an inner sun gear 
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tooth root of one planetary gear is created in our experiments to simulate gear faults. The cracked 

planetary gear is shown in Figure 10. 
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Figure 9. A schematic model of the planetary gearbox test rig. 

 

Figure 10. The cracked planetary gear. 

 

Table 1. Parameters and characteristic frequencies of the planetary gearbox. 

Tooth number of gears Gear number Rotating frequency (Hz) Mesh frequency (Hz) 

Sun Planetary Ring Planetary Sun Planetary Carrier -- 

20 40 100 3 20 8.33 3.33 333.33 

An accelerometer is mounted on the planetary gearbox casing and is utilized to capture the vibration 

signals. The motor speed is about 20 Hz and the sampling frequency is set as 5,120 Hz. The 

experimental parameters and the characteristic frequencies of the planetary gearbox are shown in Table 1. 

It is noticed from the table that the rotating frequency of one planetary gear is 2.5 times as large as that 

of the carrier. Therefore, when the carrier rotates 2 cycles, the planetary gear meshes 5 periods with the 

ring gear, i.e., 200 teeth. This tooth number is twice as large as that of the ring gear. That is to say, the 

ring gear meshes 2 periods with the planetary gear. In other words, the planetary gear returns to the 

initial position once the carrier rotates 2 cycles. For the carrier to finish rotating 2 cycles, it takes 

2/3.33 = 0.6 s. 

The collected vibration signal from the test rig with the cracked planetary gear is given in Figure 11a. 

Figure 11b displays its frequency spectrum. We notice that there are a series of impulses in the  

time-domain waveform. The period of the impulses is almost t = 0.1 s. It implies that the impulse 

frequency is 10 Hz. There are three planetary gears in the studied planetary gearbox, which pass the 
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fixed accelerometer in turn. As a result, the pass frequency of the planetary gears equals 3 times as 

large as the rotating frequency of the carrier, i.e., 10 Hz. It is obvious that the impulses in the  

time-domain waveform are caused by the rotation of the carrier, and therefore they are the vibration 

components of the normal gearbox. Besides these impulses, it is difficult to find any fault 

characteristics. The reason could be explained that the fault characteristics of the planetary gearbox are 

buried by the normal vibration components. The frequency spectrum of the vibration signal shown in 

Figure 11b is also analyzed and it is seen that there are rich sidebands around the mesh frequency. The 

interval of the sidebands is 3.33 Hz, which equals the rotating frequency of the carrier. Obviously, it is 

not the fault characteristics either. Thus, the fault characteristics of the cracked planetary gear are 

found from neither the time-domain waveform nor its frequency spectrum. 

Figure 11. The experimental signal (a) time-domain waveform, and (b) frequency spectrum. 

 

To extract the fault characteristics of the cracked planetary gear, the adaptive EEMD method is 

utilized to process the above signal. The first IMF extracted by the adaptive EEMD contains the richest 

information among all the IMFs and therefore it is selected for further analysis. The IMF is plotted in 

Figure 12. It is seen that there are impulses with the period T = 0.6 s. Based on the above analysis, it is 

concluded that once the carrier rotates 2 cycles, the cracked planetary gear returns to the initial 

position. Thus, the fault period of the cracked planetary gear is twice as large as the rotating period of 

the carrier, i.e., 0.6 s. That is to say, the impulse component with the period T = 0.6 s is caused by the 

cracked planetary gear. Thus, the adaptive EEMD method is able to extract the fault characteristics 

from the normal components effectively. For comparison, the original EEMD with the sifting number 

10 and the constant noise amplitude 0.2, is also used to process the same signal and the first IMF is 

given in Figure 13. Although it is observed that there are periodic impulses in the waveform of the 

IMF, the impulse (T = 0.6 s) caused by the cracked gear and those (T = 0.1 s) caused by the rotation of 

the carrier are decomposed in the same IMF, i.e., the mode mixing happens. Through the comparisons, 

it is believed that the adaptive EEMD is more effective than the original EEMD in extracting fault 

characteristics of the planetary gearbox. 
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Figure 12. The first IMF extracted by the adaptive EEMD method. 

 

Figure 13. The first IMF extracted by the original EEMD method. 

 

5. Application to Rub-Impact Fault Diagnosis of a Machine Set 

In this section, the adaptive EEMD method is applied to diagnosing an early rub-impact fault 

occurring in a machine set named heavy oil catalytic cracking unit in an oil refinery. A heavy oil 

catalytic cracking unit is one of the key machine sets and also typical rotating machinery used in oil 

refineries. It is significant to diagnose the faults of the heavy oil catalytic cracking unit as early as 

possible from the point of view of reducing loss. One picture of the machine set is given in Figure 14a. 

Figure 14b shows its structure sketch. This machine set includes a gas turbo, a compressor, a gearbox 

and a motor. Bushes #1 and #2 are to support the gas turbo shaft, bushes #3 and #4 are to support the 

compressor shaft, and bush #5 is to support the gearbox shaft. The hub and the laminas (left 
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to be a fractional harmonic of the rotating frequency. But it is verified by further investigation that it is 

the rotating frequency of the low-speed shaft of the gearbox. Therefore, we fail to find useful 
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characteristics from the spectrum to diagnose the fault because the fault is still in its early stage and the 

characteristics are quite weak. 

Figure 14. (a) One picture of the heavy oil catalytic cracking unit, and (b) structure sketch. 

 

To explore the cause leading to abnormality of the machine set, the original EEMD with the 

constant noise amplitude 0.2 and the fixed sifting number 10 is first used to analyze the signal in 

Figure 15a. The extracted four IMFs are plotted in Figure 16. From the first IMF, it seems that there 

are some small impulses, but they are not that obvious because the fault is still in its early stage. The 

second IMF represents the rotating frequency of the machine set. The third IMF is a periodic 

component with the 1/4 rotating frequency, which is the rotating frequency of the low-speed shaft of 

the gearbox. The forth IMF is generated due to the end effects and does not provide any useful 

information. Thus, it is difficult to judge the fault mode and cause based on the above IMFs extracted 

by the original EEMD. 

Then, the proposed adaptive EEMD is adopted to process the vibration signal. Figure 17 displays 

the decomposed four IMFs. A series of periodic impulses are seen in the first IMF and the interval 

between two adjacent impulses can be roughly estimated. It is about T = 0.031 s and approximately 

equals three times rotating period of the machine set, i.e., 1/97.65 = 0.01024 s. It means that the 

impulse frequency is equal to 1/3 rotating frequency of the machine set. According to References [17,18], 

1/3 fractional harmonic of the rotating frequency is a symptom of an early rub-impact fault in rotor 

systems. Therefore, it is concluded that there is an early rub-impact fault between the shaft and the 

bush in the machine set. In addition, IMFs 2–4 produced by the adaptive EEMD are similar to those 

decomposed by the original EEMD but much smoother than the latter. Actually, the rub-impact fault 

was confirmed by disassembling the machine set in the subsequent maintenance. 

According to the comparisons between the adaptive EEMD and the original EEMD, it is verified 

that the adaptive EEMD is able to effectively extract the rub-impact features that cannot be detected 

from the vibration signal, the frequency spectrum, and the IMFs extracted by the original EEMD. 

Therefore the proposed method performs better in extracting early fault information. 
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Figure 15. (a) The vibration signal at bush #5 of the machine set, and (b) the frequency spectrum. 

 

Figure 16. The IMFs extracted using the original EEMD for the vibration signal of the machine set. 

 

Figure 17. The IMFs extracted using the adaptive EEMD for the vibration signal of the machine set. 
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6. Conclusions 

This paper develops an adaptive ensemble empirical mode decomposition (EEMD) method to 

improve the original EEMD for fault diagnosis of rotating machinery. In the proposed method, the 

amplitude of the added noise varies with the signal frequency components and the sifting number is 

adaptively selected during the decomposition process. We use simulations to compare the adaptive 

EEMD and the original EEMD, and find that the former produces more accurate IMFs than the latter. 

The method is also demonstrated by detecting gear crack using the experimental data from a planetary 

gearbox test rig. Then it is applied to diagnosing an early fault occurring in a heavy oil catalytic 

cracking machine set. All results including simulations, experiments and applications reveal that the 

adaptive EEMD improves the performance of the original EEMD in feature extraction and fault diagnosis. 

Although the proposed adaptive EEMD obtains improved decomposition over the original EEMD 

for the simulation, the experimental and the application of this study, we cannot guarantee that it works 

for all applications. The method is developed based on some experience and therefore it is not perfect 

enough. We are still thinking about how to improve the scientific soundness and the robustness of the 

method and hope that the improved result can be obtained and will be reported in near future. 
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