
Sensors 2013, 13, 15880-15897; doi:10.3390/s131215880 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Dynamic Characteristics of Micro-Beams Considering the Effect 

of Flexible Supports 

Zuo-Yang Zhong, Wen-Ming Zhang * and Guang Meng 

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 

Shanghai Jiao Tong University, Shanghai 200240, China;  

E-Mails: zhongzuoyang123@163.com (Z.-Y.Z.); gmeng@sjtu.edu.cn (G.M.) 

* Author to whom correspondence should be addressed; E-Mail: wenmingz@sjtu.edu.cn;  

Tel.: +86-21-3420-6813 (ext. 818). 

Received: 9 September 2013; in revised form: 4 November 2013 / Accepted: 8 November 2013 /  

Published: 25 November 2013 

 

Abstract: Normally, the boundaries are assumed to allow small deflections and moments for 

MEMS beams with flexible supports. The non-ideal boundary conditions have a significant 

effect on the qualitative dynamical behavior. In this paper, by employing the principle of 

energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent 

stiffness are derived based on the Boussinesq’s and Cerruti’s displacement equations. The 

non-dimensional differential partial equation of the motion, as well as coupled  

boundary conditions, are solved analytically using the method of multiple time scales. The 

closed-form solution provides a direct insight into the relationship between the boundary 

conditions and vibration characteristics of the dynamic system, in which resonance 

frequencies increase with the nonlinear mechanical spring effect but decrease with the effect 

of flexible supports. The obtained results of frequencies and mode shapes are compared with 

the cases of ideal boundary conditions, and the differences between them are contrasted on 

frequency response curves. The influences of the support material property on the equivalent 

stiffness and resonance frequency shift are also discussed. It is demonstrated that the 

proposed model with the flexible supports boundary conditions has significant effect on the 

rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed 

analytical solutions are in good agreement with those obtained from finite element analyses. 

Keywords: equivalent stiffness; flexible supports; micro-beams; resonance frequency  

shift; dynamics 
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1. Introduction 

Micro-beams [1–3] are widely used as the key components of diverse sensing and actuation  

systems [4–6]. Their relatively simple geometries make them very advantageous [7–9], both from a 

design and microfabrication point of view. In the wide range of applications [10–13], ranging from the 

mean residual stress measurement, microscopy, mass flow sensors to bio-medical or DNA analysis, the 

sensing mechanism depends upon the sensitivity or response of the MEMS beam to some applied 

excitation. They accurately predict the dynamic features of the device such as its natural frequencies and 

forced-vibration response [14–16]. 

Microfabrication methods and limitations can lead to boundary support conditions for suspended 

MEMS beams that are not rigidly clamped [17,18]. Real system behavior may deviate from the idealized 

support conditions [19–23]. Under the ideal conditions, a beam connected at ends to rigid supports by 

pins is modeled assuming that the deflections and moments at the supports are zero. In reality, 

fabricating MEMS beams of ideal anchors with the precise intended design dimensions is hard to 

achieve practically due to fabrication imperfections, such as undercuts near anchors and initial 

deformation of MEMS beams due to residual stresses. Small deviations from the ideal conditions indeed 

occur at the ends [24,25]. The concept of non-ideal boundary conditions has been proposed to be applied 

to micro/nano-resonator systems [11,26]. Alkharabsheh and Younis [27] demonstrated that non-ideal 

boundary conditions can have significant effect on the qualitative static or dynamic behavior of MEMS 

beams, which includes lowering the natural frequencies from the expected range of operation and 

causing unpredictable dynamic pull-in. In this regard, support boundary characterization is important in 

the applications such as flexible optical waveguides [28] and AFM cantilever probes [29]. In the AFM 

tapping mode (dynamic mode), non-classical boundary supports have a big influence on the frequency 

response of the AFM probe. Furthermore, Boyaci et al. [21,30,31] reported that the non-ideality causes a 

shift in the frequency-response. By shifting the frequency-response curve, a system under resonance 

may be brought to a safer operating condition. 

Hence, the boundary support conditions need to be theoretically quantified [32], and experimentally 

validated [33]. The numerical results of Mariani et al. [34] showed that the acceleration at sensor 

anchors couldn’t be considered an objective indicator for drop severity. Instead, accurate analyses at a 

sensor level were necessary to illustrate how MEMS could fail because of drops. For flexible supports, 

several approaches have been followed to model the non-ideal boundaries conditions. Most researchers 

have attempted to solve the complete beam and supports structure using FEM [10,11,35–37]. 

Meanwhile, Mariani [38] proposed correction factors to be used in the analytical expressions (which 

neglect the compliance of the supports) that were obtained by comparing a linear model and FEM 

results. The information provided by the testing also provides feedback in understanding the effect of the 

correction factors. 

In accordance, the boundaries are assumed to allow small deflections and moments [21,27,39]. 

Another approach that has been used by Boyaci et al. [21,30,31] and Ghayesh et al. [40] is to model the 

non-ideal boundary supports by introducing small deflection and moment as perturbation parameters in 

analytical models. The effect of the non-ideal boundary conditions is analyzed together with the 

non-linear effects. Spring elements have been added to the edges of the microstructures to model their 

compliant supports in the analytical modeling of Rinaldi et al. [41–45], which include normal, tangential 
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and torsion springs. However, the values of spring constants [42] which are usually used to model the 

supports were obtained by comparing a linear elastic model or FEM results. In addition, due to the 

difficulties in directly measuring forces and other device parameters at the micro-scale, the spring 

constant of MEMS beams couldn’t be extracted accurately from the dynamic response of the device.  

Esmailzadeh et al. [46] developed a feed-forward back-propagation artificial neural network which was 

used instead of the analytical solution. The performance of their neural network was evaluated for 

different values of parameters to save computation time. 

In this paper, a rigorous theoretical solution is presented for the case of flexible supports of 

microbeams. Equivalent deformation in the normal and tangential direction at the boundary of the 

microbeam were formulated by Boussinesq’s and Cerruti’s displacement equations [47–49] due to  

a concentrated force acting on the surface of a semi-infinite elastic body. Then the tangential and 

rotational equivalent stiffness equations were separately derived by employing the principle of energy 

equivalence. The solutions described in this paper deal with the fundamental theoretical problem based 

on the classical elastic mechanics theory, which fills in the gap between the above three approaches for 

modeling the flexible supports of MEMS beams. The advantage of the proposed solution is that no 

approximated displacement and force fields are introduced during the derivation. The closed-form 

solution derived by the method of multiple timescales provides direct insight into the relationship 

between the boundary conditions and vibration characteristics of the system. 

2. The Equivalent Stiffness 

2.1. The Tangential Equivalent Stiffness 

The displacement of any point (x, y) in the tangential direction formulated by Cerruti’s displacement 

equations [47–49] due to a concentrated force Q acting on the surface of a semi-infinite elastic body is: 

2

2 22 2
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ˆ( , ) (1 )s

s s
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v Q x
u x y v v

E x yx y

 
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 (1) 

where Es, vs are the Young’s modulus and Poisson’s ratio of the supports material. Utilizing the 

superposition principle and the energy equivalence principle, the tangential equivalent stiffness of a 

rectangle area (w × b) with the uniform vertical load q acted on had been derived as: 
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where, the parameters w and b represent the dimensions of the width and the thickness of the 

micro-beam, respectively. And: 
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2.2. The Rotational Equivalent Stiffness 

When the bending moment is acting on the beam, the non-uniform normal stress is correspondingly 

applied on the support, as shown in the rectangular region (b × w) of Figure 1b. In the presented model, 

the strain distribution based on small deflection theory was studied using the theories of beam bending. 

The curvature of the deflection curve is small under small deformation conditions. The slope equation 

and deflection equation are linear functions of the load. During the derivation of Euler’s formula, the 

precise curvature 
2 2

3
2 2 2 2[1 ( ) ]

d y dx

d y dx
 is replaced by the approximation curvature 

2

2

d y

dx
 due to the small 

deflection theory. Moreover, according to the elastic mechanics theory, the shear effect on the 

distribution and the maximum value of the normal stress is usually less than 5% as the ratio of beam span 

and thickness is greater than 5. Thus, we simply assumed that the linear stress distribution near the 

supports for pure bending was also able to meet the hypotheses and approximations related to the 

Boussinesq’s and Cerruti’s solutions. 

Figure 1. (a) The deformation of the rectangular cross-section beam in pure bending;  

(b) Non-uniform normal stress acting on the cross-section of the beam supports. 

 

The displacement of any point (x, y) in the normal direction due to the force of the differential  

unit dp = σzdmdn acting on the surface can be obtained from the Boussinesq’s displacement  

equations [47–49]: 
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where Mx is the bending moment applied to the supports, Ix is the moment of inertia for the cross-section 

of the support. The normal stress σz of the cross-section of the support is proportional to the bending 

moment. In the same way, utilizing the superposition principle and the energy equivalence principle, the 

equivalent bending stiffness of the flexible support had been derived as: 
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2.3. The Comparison and Validation 

The effect of non-ideal boundary conditions on the dynamics of the arch was investigated by 

Alkharabsheh et al. [27]. To match the experimentally measured natural frequency, rotational and 

transverse springs have been added to each end of the arch model. The values of stiffness coefficients are 

tuned when solving the eigenvalue problem, until theoretical and experimental values of the natural 

frequencies are matched. Table 1 lists the comparison of equivalent stiffness coefficients between the 

proposed results and the experimental data from Alkharabsheh et al. [27]. It can be found that the 

proposed results close to the experimental data [27], which are calculated from Equation (10) and the 

testing data (αt and αR). 

Table 1. The comparison of the equivalent stiffness between the proposed results and the 

reported experimental data [27]. 

The Comparison 
RK  ( 810 .N m rad ) 

Experiment data 1 of Alkharabsheh et al. [27] 9.0396 

Proposed results 7.4270 

Experiment data 2 of Alkharabsheh et al. [27] 10 

Proposed results 8.3001 

A similar experiment for the atomic force microscope (AFM) micro-cantilever probes was presented 

by Rinaldi et al. [41]. The work provided a testing method in which most of the influences were 

quantified or made variant while the supports condition being kept invariant. The testing data from [41] 

and the calculated results are listed in Table 2. It shows that the proposed results follow the evaluation 

approach presented by Rinaldi et al. [41]. As there is no translational motion at the support, the value of 

Kt should be maintained at a high value. Therefore, the difference of the translation stiffness coefficients 

between the presented results and the experimental data [41] has not difficult to understand. 

Table 2. The comparison of the equivalent stiffness between the proposed results and the 

reported experimental data [41]. 

The Comparison 
tK  (N/m) 

RK  (10−8 N m/rad) 

Experiment data 1 of Rinaldi et al. [41] 9.8018 × 107 13.284 

Proposed results 1.9743 × 107 16.567 

Experiment data 2 of Rinaldi et al. [41] 1.6620 × 108 13.521 

Proposed results 1.9801 × 107 17.120 

3. Dynamical Model and Analysis 

In this section, we formulate the problem for the forced vibration of a microbeam of nonideal 

supports. Rotational and transversal springs are added to the boundaries of the beam to model the 

compliant supports shown schematically in Figure 2. Assuming Euler-Bernoulli beam model with 

immovable end conditions causing nonlinear stretching effects, the nonlinear equation of motion 

governing the transverse deflection of the beam is expressed as: 
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where ˆˆ ˆ( , )w x t  is the transverse deflection, x̂  is the spatial coordinate, t̂  is time, A is the cross section, I is 

the area moment of inertia. Eb, ρb and νb are the Young’s modulus, density and Poisson’s ratio of the 

beam material. c  is the damping coefficient. F  and Ω are the magnitude and frequency external 

excitation respectively. In Equation (5), the boundary conditions of the beam are: 
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Figure 2. Schematic representation of an electrically actuated beam with compliant supports. 

 

For convenience, the following nondimensional variables are introduced: 

ˆˆ ˆ, ,w w d x x L t t T    (7) 

where T is a time constant defined by 4
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2=n EI A L  . Substituting the normalized variables of Equation (7) into Equations (5) and (6) yields 

the following non-dimensional equation of motion and boundary conditions: 
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The nondimensional parameters in Equations (8) and (9) are defined as: 
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3.1. The Resonance Frequency and Mode Shape Analysis 

First, we study the effect of non-ideal boundary conditions on the resonance frequencies and mode 

shapes of the beam. These springs affect the stiffness of beam and, hence, its frequencies and mode 



Sensors 2013, 13 15886 

 

shapes. The linearized undamped and unforced version of Equation (8) can be obtained by dropping the 

forcing and damping terms and considering only the linear terms in w(x, t), yields: 

( , ) ( , ) 0w x t w x t    (11) 

where the superscript “prime” and “dot”, respectively, mean derivative with respect to x and t. We use 

separation of variables, and assume: 

( , ) ( )ei tw x t x   (12) 

where ϕ(x) is the assumed mode shape and ω is the corresponding natural frequency. Substituting 

Equation (12) into Equations (11) and (9) yields: 
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The homogeneous solution of this fourth-order ordinary differential equation can be expressed as: 
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where ai (i = 1,2,3,4) are integration constants. The eigenvalue problem can be established by applying 

the boundary conditions of Equation (14) on Equation (15), which gives an algebraic system of 

equations to be solved for the natural frequencies: 
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ωi (i = 1,2,3,…) are obtained by numerical solution, and 2
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corresponding mode shapes are obtained as: 
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The equivalent tangential stiffness and equivalent rotational stiffness of the flexible supports are 

listed in the second and third columns of Table 3. It is interestingly found that there are large differences 

of the equivalent stiffness between the two different types of supports material (silicon carbide and 

polysilicon). If the ratio between the Young’s modulus and density of the material is large, we define the 

material as a “hard material”. On the contrary, a “soft material” is defined when the ratio is small [50]. 

From Table 3, it can be found that when a “hard material”, e.g., silicon carbide, is used as the support 

material, the equivalent stiffness is large, while the equivalent stiffness is small for a “soft material”, 

e.g., polysilicon. 

Table 3. The equivalent tangential stiffness and equivalent rotational stiffness of the flexible 

supports and the first four natural frequencies of the beam. The second and third rows relate 

to the supports material [51] of silicon carbide (E = 415 GPa, density = 3,200 Kg/m
3
,  

v = 0.192) and polysilicon (E = 150 GPa, density = 2,300 Kg/m
3
, v = 0.226), respectively. 

 
TK  (106 N/m) 

RK  (10−8 N.m/rad) 
1  (106 Hz) 

2  (106 Hz) 
3  (106 Hz) 

4  (106 Hz) 

Ideal boundary conditions - - 1.1591 3.1950 6.2635 10.354 

Non-Ideal boundary conditions (SiC) 5.4996 17.895 0.95669 2.7104 5.4261 9.1206 

Non-Ideal boundary conditions (PolySi) 1.9929 6.5648 0.80512 2.4305 5.0381 8.6479 

By solving the eigenvalue problem of Equation (16), the first four values of new natural frequencies 

of the beam in the presence of the springs are obtained, as shown in the fourth to seventh columns of Table 3. 

It demonstrates that the natural frequencies of the beam will be smaller when considering the flexible 

boundary conditions. It is also shown that the natural frequencies with the “soft material” (polysilicon) 

flexible supports conditions will be smaller compared with those under the “hard material” (silicon carbide) 

supports conditions. The corresponding mode shapes compared to those of ideal boundary conditions 

are shown in Figure 3. 

Figure 3. First four mode shapes corresponding to the natural frequencies of Table 3. 

((Dashed) Ideal boundary conditions, (blue circle), (red star) non-ideal boundary conditions 

with the supports material of silicon carbide and polysilicon, respectively). (a) First;  

(b) Second; (c) Third; (d) Fourth. 

 

(a)

(c) (d)

(b)
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It is obvious that the qualitative and quantitative behaviors of the mode shape are different for 

different boundary conditions. The amplitude of the ideal supports is less than the flexible one as the 

position close the substrate. However, the situation is almost reversed as the position away from the 

substrate. Moreover, this trend will be more strengthen as the softer material (polysilicon) is used. 

It is also easily observed that the actual modal is more close to the ideal modal when the supports’ 

material performance approximates to the rigid body. Moreover, the softer the supports’ material is, the 

greater the difference between the actual modals and ideal modals will be. 

3.2. Frequency-Response Analysis 

Next, we study the effect of the nonideal boundary conditions on the dynamics response of the beam. 

To solve the Equation (8), two time scales T0 = t, T1 = εt are introduced [52], and a first-order uniform 

approximate solution is given in the form: 

     0 0 1 1 0 1, ; , , + , , +w x w x T T w x T T    (18) 

where T0 is the usual fast time scale and T1 = εt is the slow time scale in the method of multiple scales. 

The time derivatives are defined as: 
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yields for order ε
0
 and order ε

1
, we get a set of linear partial differential equations: 

0 2

0 0 0

0 0 1 0 0 1

0 0 0 0 1

D + =0,

(0, , ) 0, (0, , ) 0,

(1, , ) 0, (1, , ) 0.

ivw w

w T T w T T

w T T w T T



  

  

 (20) 

1
1 2 2

0 1 1 0 0 0 1 0 1 0 0 0
0

1 0 1 0 0 1 1 0 1 0 0 1

1 0 0 0 1 0 1 0 0 1

ˆˆD + = 2 D 2D D ( ) cos( )

ˆ ˆ(0, , ) (0, , ), (0, , ) (0, , )

ˆ ˆ(1, , ) (1, , ), (1, , ) (1, , )

iv

R T

R T

w w w w w w dx F T

w T T w T T w T T w T T

w T T w T T w T T w T T

  

 

 

     

    

    


 (21) 

The general solution of first equation of Equation (20) can be written as: 

      0

0 0 1 1 0 1 1, =a cos ( ) Y(x)=( ( )exp )Y(x)
j T

w T T T T T A T cc
    (22) 

where 1( )

1 1( )=a( ) 2
j T

A T T e
 , and cc denotes complex conjugate. Substituting (22) into (20) yields the 

boundary value problem: 

2Y Y=0,iv   (23) 

(0) (0) (1) (1) 0Y Y Y Y        (24) 

The solution is: 

cos .cosh =1, ( 1,2,3,...)i i i    (25) 

( ) [cos( ) cosh( )] sin( ) sinh( )i i i i i iY x x x x x         (26) 
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where sin( ) sinh( ) cos( ) cosh( ) cos( ) cosh( ) sin( ) sinh( )i i i i i i i i i              （ ）（ ）（ ）（ ）, and 

Yi(x) is normalized such that 
1

0
YY dx  ｉ ｊ ｉj. 

At order ε, one substitutes (22) into the right hand side of (21). The result is: 

01
1

2 2 2

0 1 1 1 1
0

ˆˆD + =[ 2 D 2 3 ( ) 2exp )] exp
i Ti Tivw w i AY i AY A AY Y dx F NSY cc
            (27) 

where NSF stands for non-secular terms. It is assumed that the external excitation frequency is close to 

one of the natural frequencies of the system: 

     (28) 

Where σ is a detuning parameter of order 1. A solution of the form is assumed as: 

0

1 1 1 0 1= ( , )exp ( , , )
i T

w x T W x T T cc
    (29) 

The first part of the solution is the one corresponding to secular terms and the second is the one 

corresponding to non-secular terms. Substituting Equation (29) into Equation (27) with boundary 

conditions yields: 

1
1

2 2 2

1 1
0

ˆˆ- = 2 D 2 3 ( ) 2exp
i Tiv i AY i AY A AY Y dx F
            (30) 

1 1 0 1 1 0

1 1 0 1 1 0

ˆ ˆ(0, ) ( ) (0), (0, ) ( ) (0)

ˆ ˆ(1, ) ( ) (1), (1, ) ( ) (1)

R T

R T

T A T Y T A T Y

T A T Y T A T Y

   

   

    

    
 (31) 

Since the homogeneous problem has a non-trivial solution, the non-homogeneous problem (30) and (31) 

have a solution only if a solvability condition is satisfied. Therefore, by multiplying Y(x) on both sides of 

Equation (30), and then integrating them from 0 to 1, the non-trivial solution can be obtained. Through 

combining the boundary conditions of Equations (24) and (31), it is found that: 

1 11 1 1 1

0 0 0 00 0

1
2

0

1
2 2 2 2

0

(1) (1) (0) (0) (1) (1) (0) (0) (1) (1) (0) (0)

(1) (1) (0) (0)

ˆ ˆ[ (1) 4 ] [ (1) 4 ]

iv iv

T R

Ydx Y Y Y Y Y dx

Y Y Y Y Y Y

Y Y Ydx

A Y A Y Ydx

     

     

   

     

         

              

   

    

 





 (32) 

So the solvability condition of Equations (30) and (31) requires: 

12

1 1
ˆˆ2 (D ) 3 2exp 0

i T
KKA i A A A A F

         (33) 

where: 
2 2

2

: [4 [ (cos cosh ) sin sinh ] ]

[4 [ ( sin sinh ) cos cosh ] ]

T

R

KK x

x

      

     

    

     
 

1 1
2

0 0

4 2 2 2 4 2

2 2 2?

2 4 2

: ( )

exp {[2 2 cos 2 1 2( 1)sin 2 ]e 1 4( 1) e 1 4( 1) }
4

{[7 2 (cos 2cosh )(( 1)sin 2 cos ) 2( 1)cos .sinh ]exp

1 4( 1) e 1 4( 1) }

YY Y dxdx

  






       

          

 



  

         

       

   

 
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Then by expanding the trigonometric functions, and separating real and imaginary parts, the secular 

terms yields two first order nonlinear ordinary-differential equations that describe the amplitude α and 

phase β modulation of the response: 

1

3

1 1

1 ˆD = sin
2

1 3 1 ˆˆD = cos
2 8 2

a a F

a a KKa a F

  

    

 

  

 (34) 

where 
1= T   . The steady-state motions occur when 

1 1D a=D =0 , which corresponds to singular points 

of Equation (34): 

31

ˆ
sin

2

ˆˆ3
cos

2 8 2

F
a

KK F
a a a

 



 

  




   

 (35) 

Therefore, a function of the independent variables can be given by: 

2
2 21

2 2

1
3

2 8 2 4

KK F
a c

a




  


       (36) 

In Figure 4, the first four frequency response curves are compared between the ideal and non-ideal 

boundary condition cases as c = 0.6, f = 4, respectively. The polysilicon microbeam has the material 

properties: Young’s modulus E = 150 GPa, density ρ = 2.3 × 10
3
 kg/m

3
 and Poisson’s ratio νs = 0.226. It 

is shown that small variations of deflections and moments at the ends would affect the frequencies of the 

response, deviations from the ideal conditions lead to a drift in the frequency-response curves. 

Figure 4. First four resonance response curves. (Black) Ideal boundary conditions. (blue), 

(red) non-ideal boundary conditions with the supports material of silicon carbide and 

polysilicon, respectively. (a) First; (b) Second; (c) Third; (d) Fourth. 

 

(a) (b)

(c) (d)
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From Equations (2) and (4), it is known that the softer the support material is, the smaller the 

equivalent stiffness will be. Furthermore, it is easily observed from Figure 4 that the smaller the 

equivalent stiffness is, the smaller the resonance frequencies of the MEMS beam resonators will be. 

In the published literatures [19–21,26,30], Boyaci et al. studied the ideal and non-ideal as well as 

frequency response curves using the method of multiple scales. Their results shown that small variations 

of deflections and moments at the support ends affected the response frequencies. The values of the 

dimensionless spring stiffness of KT and KR in their article are set to represent different cases. The 

frequencies may increase or decrease depending on the mode numbers and amplitudes of variations. 

Deviations from the ideal conditions lead to a drift in frequency response curves which may be positive, 

negative or zero depending on the mode number and amplitudes of variations. 

However, with the equivalent stiffness we have derived, it is found from Figure 4 that the  

drift in frequency response curves all are negative no matter what the mode number and  

amplitudes of vibrations are. This is a new finding different from the existing conclusions of  

Boyaci et al. [19–21,26,30]. 

4. Results and Discussion 

The first four natural frequencies and mode shapes of the beam are obtained using the finite element 

software under rigid and flexible boundary conditions, respectively. 

The results were list in Table 4 and contrasted with the proposed results which list in Table 3. It is 

clear that the proposed analytical solutions are in good agreement with the finite element results. The 

natural frequencies of the beam under the flexible boundary conditions are smaller than the ones under 

rigid boundary conditions. Moreover, the corresponding modal vectors of the first and fourth mode 

shapes are shown in Figure 5. 

Table 4. The first four natural frequencies of the beam solved by FEM. 

Boundary Conditions 
1  (10

6
 Hz) 

2  (10
6
 Hz) 

3  (10
6
 Hz) 

4  (10
6
 Hz) 

Rigid 1.0885 3.0365 6.0639 10.277 

Flexible 0.9461 2.8851 5.8395 9.9402 

It can be easily found from Figure 5b,d that there are small displacements on the support boundary, in 

addition, the displacements in the fourth modal are larger than the ones in the first modal. But there isn’t 

any displacement when the rigid supporting conditions are applied on the beam, which is shown in 

Figure 5a,c. Moreover, the peak value of the mode shape under rigid supports is larger than the ones 

under flexible supports. 

Table 5. The boundary displacements of first four modal vectors. 

Displacement Positions First Modal (10
−6

) Second Modal (10
−6

) Third Modal (10
−6

) Fourth Modal (10
−6

) 

x = 0 6.9028 35.689 103.53 227.74 

x = L 6.9028 −35.689 103.53 −227.74 
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Figure 5. Modal vectors of the first and fourth mode shapes solved by FEM. (a) and (b): 

First modal under rigid and flexible boundary, respectively; (c) and (d): Fourth modal under 

rigid and flexible boundary, respectively. 

 

Figure 6a illustrates the first four mode shapes corresponding to the natural frequencies as listed in 

Table 5, where polysilicon is used as the support material. The partial enlarged figure of each mode is 

intercepted as shown in Figure 6b, where both ends displacements of the flexible supports boundary are 

displayed. The numerical results are also displayed in the Table 5. It is apparent that the small tangential 

displacements of both ends are symmetry with the odd mode number, while asymmetry with the even 

mode numbers. The tangential displacement becomes larger with the higher order modal. 

Figure 6. (a) First four mode shapes corresponding to the natural frequencies of Table 3;  

(b) The boundary displacement of each modal. 

 

(a) (b)
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The maximum amplitude of oscillation is reached when the magnitude under the square root in 

Equation (36) is zero. Hence, 
maxa = F (2 c). So the relation for the resonance frequency shift with respect 

to the maximum amplitude of oscillation can be derived as: 

21

max

3

2 8

KK
a




 


     (37) 

In the above relation, the second term is due to the non-ideal boundary conditions and the third term is 

due to the nonlinearity mechanical spring. It can be obviously seen that the flexible supports conditions 

would decrease the resonance frequency while the nonlinearity mechanical spring increase the 

frequencies. However, it is also apparent of KK that rotational springs become dominant compared to 

transversal springs as the mode number increases. So it may increase or decrease the frequencies 

depending on the mode number i and the amplitudes of the supports variations [20]. Therefore, it is easy 

to infer the effects of the material performances and the geometric sizes of the supports conditions on the 

resonant frequency from Equation (37). The resonant frequency shift to the beam thickness with respect 

to the different flexible supports material is shown in Figure 7. 

The resonance frequencies increase linearly with the beam thickness. Moreover, the resonance 

frequencies of the flexible resonators are smaller than the ones of the ideal support resonators no matter 

what value the beam thickness is. 

Figure 7. The resonant frequency shift to the beam thickness with respect to the different 

flexible supports materials. 

 

In fact, it is revealed that the material performances and the geometric sizes of the supports conditions 

not only influence the system stiffness and the resonant frequency shift, but also affect the system 

vibration amplitude. That was presented in the paper [51] by considering the clamping loss due to the 

phonon tunneling. 

5. Conclusions 

In this paper, we have quantitatively studied the effect of the flexible supports boundary conditions on 

the dynamic characteristics of MEMS beams. Utilizing the tangential and rotational equivalent stiffness 

formulations derived by employing Cerruti’s and Boussinesq’s displacement equations and the principle 

of energy equivalence, rigorous theoretical dynamic analytical models are presented. 

It is of great significance to investigate the rigorous variation of the resonant frequency and dynamic 

response due to the equivalent stiffness of the flexible supports, where the nonlinearity mechanical spring 
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increases the frequencies while the flexible supports conditions decrease the resonance frequency. It is 

also demonstrated that the support material property has an important influence on the equivalent 

stiffness, dynamic response and the resonant frequency shift. The advantage of the proposed solution is 

that no approximated displacement and force fields are introduced during the derivation of the 

equivalent stiffness. Moreover, the proposed analytical solutions are in good agreement with the  

results obtained from finite element analyses. Based on the proposed solutions, it is convenient to  

quantitatively and accurately analyze the dynamics problem of the MEMS beams with the flexible 

support boundary conditions. 
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