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Abstract: The question whether barometric altimeters can be applied to accurately track 

human motions is still debated, since their measurement performance are rather poor due to 

either coarse resolution or drifting behavior problems. As a step toward accurate short-time 

tracking of changes in height (up to few minutes), we develop a stochastic model that 

attempts to capture some statistical properties of the barometric altimeter noise. The 

barometric altimeter noise is decomposed in three components with different physical 

origin and properties: a deterministic time-varying mean, mainly correlated with global 

environment changes, and a first-order Gauss-Markov (GM) random process, mainly 

accounting for short-term, local environment changes, the effects of which are prominent, 

respectively, for long-time and short-time motion tracking; an uncorrelated random 

process, mainly due to wideband electronic noise, including quantization noise. 

Autoregressive-moving average (ARMA) system identification techniques are used to 

capture the correlation structure of the piecewise stationary GM component, and to 

estimate its standard deviation, together with the standard deviation of the uncorrelated 

component. M-point moving average filters used alone or in combination with whitening 

filters learnt from ARMA model parameters are further tested in few dynamic motion 

experiments and discussed for their capability of short-time tracking small-amplitude,  

low-frequency motions. 

Keywords: barometric altimeters; stochastic modeling; system identification;  

motion tracking 
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1. Introduction 

Barometric altimeters can be used for measuring the height of an object above a given reference 

level, e.g., the sea level—a popularly used term for this height is pressure altitude. Common 

applications are, e.g., in avionics, where barometric altimeters can help in stabilizing the vertical 

position and velocity of a flying object [1,2]. Recently, barometric altimeters have been considered for 

interesting human-centric applications, such as personal navigation and human motion tracking and 

monitoring. Beside their use as wristop computers for leisure and sports, barometric altimeters were 

integrated within multi-sensor pedestrian navigation systems and activity monitors, for improving 

performance of dead-reckoning algorithms or classifiers of human motion patterns: e.g., they were 

used to detect the moving styles of going up/down the stairs or in an elevator [3]; to determine the 

correct floor of a user in a multi-storey building [4]; to detect stair ascent-descent in ambulatory 

monitors designed for estimating the energy expenditure incurred during activities of daily living, 

including stair-walking [5,6]. More recently, it was proposed that the measured pressure altitudes 

might help improving accelerometry-based fall detection systems [7–10]. The rationale behind this 

application is that, when a person is standing, the difference in atmospheric air pressure between the 

waist and the feet can be monitored for sudden changes that would indicate a fall event [7]. However, 

rapid changes in pressure uncorrelated with altitude can be generated, outdoors, by unpredictable 

atmospheric conditions, and, indoors, by frequent opening/closing of windows or doors and by air 

conditioning systems [11]. The consequence is that barometric altimeter data tends to be very noisy, 

and their accuracy is rather poor.  

Recent advances in MEMS sensing technologies have led to the availability of barometric 

altimeters that are well suited for integration in mobile and portable systems. The most popular 

barometric altimeters for human-centric applications are manufactured by Bosch Sensortec 

(Reutlingen, Germany) [8–12] and VTI Technologies (Vantaa, Finland) [6,7,9]. These sensors can be 

used in few measurement modes, which differ in the resolution offered for a given sampling rate. 

Published recipes for pressure altitude signal conditioning and pre-processing do not go beyond 

generic prescriptions for low-pass filtering, e.g., in order to obtain an accuracy of 0.1 m using the 

barometric altimeter alone, several seconds of averaging would be necessary [12].  

In this paper we develop a method for capturing salient statistical properties of the noise that affects 

barometric altimeters (stochastic approach to noise modeling). Using the developed model we intend 

to assess the short-time tracking performance of small-amplitude, low-frequency motions. By the term 

short-time motion tracking we refer to motions with durations up to few minutes, in which relative 

changes of altitude are to be tracked. Conversely, long-time motion tracking involves accurate tracking 

of absolute altitude over long time intervals. In human-centric applications, both tracking modes are 

involved: short-time tracking, e.g., fall detection; long-time tracking, e.g., personal navigation. Under 

conditions of short-time motion tracking, the time-varying mean is expected to vary very slowly, 

contributing an offset in the measured pressure altitude with no practical effect on the tracking 

accuracy. In those applications where accurate absolute altitude is needed, barometric altimeters in 

differential mode are perhaps the best option available to deal with slow changes of atmospheric 

pressure [11].  
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The proposed method of analysis decomposes the noise in three additive components with different 

physical origin and properties: a deterministic time-varying mean, correlated with slow pressure 

changes that can be involved in, e.g., local weather forecasting [13] and long-time tracking [14], whose 

modeling is beyond the scope of this paper; an exponentially time-correlated random process, modeled 

as a first-order Gauss-Markov (GM) process, that accounts for short-term, local environment changes, 

whose effect is prominent for short-time tracking; an uncorrelated random process, mainly due to 

wideband electronic noise, including quantization noise. We take the novel approach of using Gauss 

Markov (GM) random processes for modeling the short-time correlated component of altimeter noise. 

The reason for this choice is that GM random processes are mathematically simple, with only a limited 

number of parameters that need to be estimated [15]. Moreover, they seem to fit a wide variety of 

physical phenomena with reasonable accuracy [16]. Autoregressive-moving average (ARMA) system 

identification techniques are used to capture the correlation structure of the piecewise stationary GM 

component, and to estimate its standard deviation, together with the standard deviation of the 

uncorrelated component.  

Experimental results obtained when the barometric altimeter is either motionless (for model 

identification) or moving (for tracking performance assessment) are presented. To this aim M-point 

moving average filters are applied to time-correlated pressure altitude signals, alone or cascaded with 

whitening filters learnt from ARMA model parameters. Advantages and disadvantages of removing the 

short-term correlation of the GM component by whitening filters are discussed. 

2. Methods  

2.1. Measurement Process  

The International Standard Atmosphere (ISA) model can be used to calculate the altitude from the 

output of an air pressure sensor [17]. The basic physical equations used for modeling the atmosphere 

are the hydrostatic equation: 

d
p g

dh
   (1)  

and the ideal gas law: 

,p RT  (2)  

where h is the altitude, p is the air pressure, ρ is the average density of the air, g is the gravity 

acceleration (g = 9.80665 m/s
2
), T is the absolute temperature and R  is the specific gas constant 

(R = 287.058 J·kg·K
−1

, in conditions of dry air). The ISA model prescribes that the standard pressure 

at sea level is po = 1,013.25 hPa, and the standard temperature is To = 15 °C (288.15 K). 

Equations (1) and (2) can be combined together yielding the first-order differential equation: 

. 
d g

p p
dh RT

 (3)  

The assumption of constant gravity is not crucial in solving Equation (3), that is, the variation of 

gravity with altitude and latitude can be safely ignored for short-distance trips [18]. Moreover, it  

is known that temperature tends to change with altitude. The lapse rate is defined as the rate of 
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temperature increase in the atmosphere with the altitude: a constant lapse rate L can be assumed 

between 0 and 11 km (L = −6.5 K/km)—the negative sign indicates that the temperature decreases 

with altitude. 

Equation (3) can be solved under the assumption of constant gravity and lapse rate, yielding the 

barometric formula: 

0.19

1 44.300 1 ,

                          

L R

g
o

o o

T p p
h

L p p
 (4)  

where h is expressed in m. 

The ISA model fails to accurately describe the real atmosphere in many ways. The assumption of 

hydrostatic equilibrium is generally valid, provided that the effects of short-term winds can be 

tolerated. In the real atmosphere significant variations are also observed in pressure, temperature and 

even lapse rate. Moreover, although the ideal gas assumption is highly accurate for air, the behavior of 

an ideal gas is influenced by ,R the value of which depends in turn on mean molecular weight. The 

composition of the lower atmosphere is approximately constant, but in a very wet atmosphere the 

water vapor content can be high enough to significantly lower the density of the air, thus changing the 

value of .R  

Absolute altitude information cannot be easily obtained; in particular, it is necessary to know,  

inter alia, the local sea level pressure, which may differ from standard pressure. Equation (4) still 

applies in cases where the pressure and the temperature differ from those of the standard: the relative 

change in pressure and the actual temperature determine the change in altitude regardless of altitude. 

Fortunately, it is the change in altitude to be important in, e.g., human-centric applications including 

fall detection. To overcome difficulties in matching the ISA model to real atmospheric conditions, the 

use of a reference barometric altimeter at a known and constant altitude has been also proposed to 

obtain altitude from a moving barometric altimeter (differential barometry), although local 

disturbances in pressure were critical for achieving high accuracy [11]. 

2.2. Stochastic Approach to Noise Modeling  

Figure 1 shows a typical portrait of the spectrum of barometric altimeter noise (pressure altitude). 

The concentration of noise energy in the low frequency region of the spectrum (colored noise) can be 

explained as the consequence of, e.g., thermal gradients and air flow in the sensor vicinity.  

In this paper the noise n(t) superimposed to the output of a barometric altimeter is assumed to be the 

additive combination of three different components: 

( ) ( ) ( ) ( ).  c un t n t n t b t  (5)  

where b(t) is the slowly time-varying mean, of no interest to us here, since our focus is in short-time 

tracking applications −b(t) was modeled as a GM random process for the long-time tracking 

simulations reported in [14], where model identification from experimental data was not attempted; the 

correlated noise component nc(t) is modeled as a short-term stationary GM stochastic process with zero 

mean, variance 2

c and exponential auto-correlation function with correlation time constant τ, the 
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uncorrelated noise component nu(t) is modeled as a white Gaussian stochastic process with zero mean 

and variance 2 . u  

Figure 1. Pressure altitude noise spectrum from a barometric altimeter. 

 

nc(t) is produced from passing a white Gaussian driving noise with zero-mean and unit variance 

through a first-order shaping filter with frequency response: 

( ) .
1








cH

j
 (6)  

The standard deviation
c at the output of the shaping filter Equation (6) is given by:  

.
2





c

 (7)  

nu(t) can be described in a similar fashion. The zero-order shaping filter can be approximated over 

the sensor bandwidth as follows: 

( ) . uH  (8)  

The standard deviation u is therefore given by: 

. u
 (9)  

Applying the spectral factorization technique to the additive combination of the spectral densities of 

nc(t) and nu(t), which are assumed independent, the following expression of the overall shaping filter  

is obtained: 

2 2 1
( ) ,

1


  
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
 



o

p

j
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j
 (10)  

where: 

2 2

               




 



 
 

p

o

 (11)  



Sensors 2013, 13 15697 

 

 

Since the pressure altitude samples from the barometric altimeter are available only at discrete times 

that are integer multiples of the sampling interval Ts, the shaping filter Equation (10) is discretized 

using the bilinear transform technique, yielding: 

1
1

1

1
( ) ,

1










o

b z
H z H

a z
 (12)  

where: 
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and: 
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Equations (7), (9), (11), (13), (14) allow us to compute c, u and τ from Ho, a, and b. For example, 

the correlation time constant is given by: 

1
.

2 1







sT a

a
 (15)  

Using autoregressive moving average (ARMA) system identification techniques, Ho, a, and b can be 

estimated from air pressure signals that were previously detrended by subtracting the time-varying mean.  

Under the assumption that the shaping filter Equation (12) is identified using the ARMA(1,1) model 

structure and the prediction-error approach to parameter estimation [15], the asymptotic covariance 

matrix of the estimates ae and be of the parameters a and b is given by [19]: 

2 2 2

2 2 2 2

(1 )(1 ) (1 )(1 )11

( ) (1 )(1 ) (1 )(1 )

    
  

     

e e e e ee e

e e e e e e e

a a b a ba b
C

N a b a b b a b
 (16)  

The estimates returned by the prediction-error approach are known to be asymptotically normally 

distributed as the number N of data samples tends to infinity. However, c, u and τ are non-linearly 

related to Ho, a, and b. Departures from Gaussianity can then be observed in the distributions of the 

estimates of c, u and for any finite N. The problem is especially acute for the correlation time 

constant: not surprisingly, since estimating the correlation time constant of a GM random process is 

known to require a relatively huge amount of data for accurate results [20].  

The experimental distribution of τ turns out to be right-skewed, since the estimated value of the 

model pole is close to the unit circle. For a given observation period, as needed to preserve the  

short-term stationarity, the attempts to improve the estimation accuracy by increasing N are 
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counterweighted by the decrease of the sampling interval, with a consequent shift of the model pole 

toward the critical point z = 1. 

2.3. Sensor Hardware  

The experiments described in this paper were performed using a battery-powered wearable inertial 

measurement unit (WIMU) whose development is undergoing in our lab for applications in human 

motion ambulatory monitoring and assessment. The WIMU is endowed with a 32-bit ARM Cortex 

processor (LPC1768, NXP Semiconductors, Eindhoven, the Netherlands) and a Bluetooth transceiver 

for data communication with an Android-based smart-phone (Samsung Galaxy SII, GT-I9100, 

Samsung, Seoul, South Korea). The WIMU sensors are a digital tri-axial gyro (ITG-3200, InvenSense, 

San Jose, CA, USA), a digital tri-axial accelerometer (BMA180, Bosch, Reutlingen, Germany), a 

digitaltri-axial magnetic sensor (HMC5843, Honeywell, Morristown, NJ, USA), and a digital pressure 

sensor (Bosch BMP085).  

The measurements by the BMP085 digital pressure sensor are noisy, including a significant amount 

of quantization noise due to a coarse resolution of about 1 Pa (corresponding to about 8.43 cm). The 

BMP085 was used in the ultra-low power mode (no oversampling was performed internally to the 

sensor). The ANSI C code by the sensor manufacturer was used to implement the compensation 

algorithm for pressure and temperature measurement using the integrated thermal sensor [21]. We 

ported this piece of software to the ARM controller of the WIMU, together with the routine for 

calculating the altitude from calibrated pressure measurements using Equation (4). The temperature 

was measured once per second, and this value was used for all pressure altitude measurements during 

the same period. Pressure altitude data were computed by the ARM controller of the WIMU and 

logged to the smart-phone at a rate of 50 Hz, before their upload to a PC for subsequent analysis. 

2.4. Experiments  

The barometric altimeter was tested in static and motion conditions. The barometric altimeter was 

motionless on a table while six data acquisition trials, each of one lasting 10 min, were performed in 

different day hours, either in a household environment or outdoors (tests in static conditions). The 

testing procedure was repeated a second time, days later, in similar environmental conditions as above. 

Static tests allowed ARMA model identification and validation. Based on the ARMA model 

parameters, a whitening filter was also designed by inverting and discretizing the shaping filter 

Equation (10), as explained in the next subsection. 

Two motion tracking experiments were also performed (tests in motion conditions). These 

experiments with a moving barometric altimeter were used to test few methods of signal processing: 

Method A (no filtering); Method B (4-point moving average filtering); Method C (4-point moving 

average filtering cascaded with the designed whitening filter). In the first experiment, the WIMU was 

mounted at the waist of a person who walked indoors along stairs spanning 1.7 m for each floor in a 

series of three distinct floors from ground level (stair-walking). During the second motion tracking 

experiment (forced circular motion), the WIMU was affixed at the distal part of a plastic rod; the rod 

was hinged on the axis of an electric motor controlled in rotation speed using a user interface running 

on a PC. The rod was lying in a plane aligned to gravity, so as the barometric altimeter traced a circle 
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of radius 30 cm; the rod was rotated for two minutes at each of four different motion frequencies,  

0.25, 0.5, 1, and 1.5 Hz. The measurement data (pressure altitude from the barometric altimeter and 

rod angular position by the incremental encoder fitted to the motor axis) were electrically synchronized 

and logged to the host computer for further analysis. The vertical position of the barometric altimeter 

relative to its initial position was estimated using the encoder measurements and the known length of 

the rod, yielding the reference against which the relative change in pressure altitude estimated by the 

barometric altimeter was compared for Root Mean Square Error (RMSE) analysis.  

During motion tracking experiments, the relative pressure altitude was computed by taking the 

average value of the absolute pressure altitude ˆ ˆo ob s  during a rest period of 1 s before the motion 

started; the absolute pressure altitude signals were then detrended by subtracting this constant value 

from them (bias capture), Figure 2.  

Figure 2. Tested methods of signal processing. 

 

2.5. Data Processing for ARMA System Identification  

Data processing was carried out using MATLAB. Piecewise constant fitting of raw data from static 

tests was performed using data windows of fixed size (1 min), and data were locally detrended by 

subtracting the constant level (detrended raw data). After applying a 4-point moving average filter, the 

filtered data were downsampled by 5 (Ts = 0.1 s), in preparation for ARMA system identification, 

Figure 3. 

Figure 3. Pressure altitude noise pre-processing (modeling task). 

 

ARMA model parameters were then estimated for each non-overlapping data window of N = 300 

data samples (i.e., 30 s) using the prediction-error approach. The adequacy of the fitted model was 

assessed applying the Bartlett’s test of whiteness to the prediction-error sequence at the 95% level. The 

Akaike’s final prediction error criterion was used to defend the ARMA(1,1) model against  

higher-order models. 
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The sampling interval and the window length were chosen with the aim to reduce the model 

parameter uncertainty while preserving the short-term stationarity of the processed data. The  

short-term stationarity was assessed using the spectral error measure approach [15]. The model 

parameters values were averaged (10% trimmed mean) and the standard deviation (SD) was computed 

on the trimmed values—the reason for trimming was to reject outliers that were observed, especially 

when the correlation time constant was estimated. Once the model was successfully identified and 

validated, the shaping filter Equation (10) was inverted and discretized using the bilinear transform 

technique at the sampling frequency of 50 Hz (whitening filter). The detrended raw data were then 

filtered using the 4-point moving average cascaded with the whitening filter and the procedure of 

model identification was applied to time-decimated filtered data. In principle, the whitening filter 

generates surrogate data where the serial correlation present in the input data is removed. When 

ARMA system identification was applied to surrogate data, zero-pole cancellation was verified by 

testing the null hypothesis that the difference between ae and be was null (paired sample t-test, p > 0.1). 

The standard deviation of the uncorrelated noise component was computed as u = Ho. 

3. Results 

3.1. ARMA Model Identification and Validation  

Tables 1 and 2 report the 10% trimmed mean value ± SD of c, u and τ for the experiments in 

static conditions of the first and second day, respectively. The last column gives the total standard 

deviation s of the pressure altitude signals.  

Table 1. ARMA model parameters (10% trimmed mean ± SD)—first day. 

 τ, s c, m u, m s, m 

Indoors static tests 

1 0.71 ± 0.27 0.26 ± 0.03 0.23 ± 0.01 0.33 ± 0.03 

2 0.87 ± 0.34 0.27 ± 0.04 0.24 ± 0.01 0.34 ± 0.03 

3 0.72 ± 0.21 0.26 ± 0.02 0.23 ± 0.01 0.33 ± 0.02 

Outdoors static tests 

1 0.77 ± 0.30 0.26 ± 0.03 0.24 ± 0.01 0.34 ± 0.02 

2 0.68 ± 0.32 0.29 ± 0.02 0.24 ± 0.01 0.36 ± 0.04 

3 0.65 ± 0.23 0.27 ± 0.03 0.23 ± 0.01 0.34 ± 0.03 

Table 2. ARMA model parameters (10% trimmed mean ± SD)—second day. 

 τ, s c, m u, m s, m 

Indoors static tests 

1 0.69 ± 0.32 0.27 ± 0.04 0.24 ± 0.01 0.35 ± 0.04 

2 0.82 ± 0.23 0.27 ± 0.05 0.25 ± 0.01 0.35 ± 0.04 

3 0.78 ± 0.36 0.29 ± 0.05 0.27 ± 0.01 0.38 ± 0.05 

Outdoors static tests 

1 0.75 ± 0.34 0.24 ± 0.03 0.22 ± 0.01 0.32 ± 0.03 

2 1.26 ± 0.39 0.29 ± 0.03 0.23 ± 0.01 0.34 ± 0.04 

3 0.98 ± 0.26 0.28 ± 0.04 0.25 ± 0.03 0.36 ± 0.05 
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The standard deviation of the correlated noise component took higher values than in relatively 

unperturbed conditions, while the standard deviation of the uncorrelated noise component was 

relatively unchanged. Figure 4 reports a representative plot of measured pressure altitude. 

Figure 4. Pressure altitude recorded from the barometric altimeter (outdoors static test). 

 

Table 3. ARMA model parameters (10% trimmed mean ± SD)—surrogate data, first day. 

 τ, s c, m u, m s, m 

Indoors static tests 

1 -- -- 0.22 ± 0.02 0.24 ± 0.01 

2 -- -- 0.23 ± 0.02 0.24 ± 0.01 

3 -- -- 0.22 ± 0.02 0.23 ± 0.01 

Outdoors static tests 

1 -- -- 0.22 ± 0.03 0.25 ± 0.01 

2 -- -- 0.23 ± 0.02 0.25 ± 0.01 

3 -- -- 0.21 ± 0.03 0.24 ± 0.01 

Table 4. ARMA model parameters (10% trimmed mean ± SD)—surrogate data, second day. 

 τ, s c, m u, m s, m 

Indoors static tests 

1 -- -- 0.23 ± 0.02 0.25 ± 0.01 

2 -- -- 0.24 ± 0.01 0.25 ± 0.02 

3 -- -- 0.26 ± 0.04 0.27 ± 0.02 

Outdoors 

1 -- -- 0.21 ± 0.03 0.22 ± 0.01 

2 -- -- 0.20 ± 0.03 0.23 ± 0.01 

3 -- -- 0.25 ± 0.03 0.25 ± 0.03 

A one-way analysis of variance was performed for comparing the means of the six groups of point 

estimates of a and b from the experiments during the first day. The null hypothesis that the means of 

the groups were equal was accepted, yielding: ae = −0.86 ± 0.03 (p > 0.4), and be = −0.52 ± 0.06  

(p > 0.26)—the agreement with the estimation uncertainty computed theoretically from Equation (16) 
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was also very good. The whitening filter designed using these point estimates had a pole at a frequency 

of about 1 Hz, a zero approximately two octave down; a unity-gain constraint was enforced at 25 Hz, 

yielding a DC gain of about 0.21. 

Surrogate data were generated by applying the whitening filter to the detrended raw data from both 

days. Surrogate data were submitted to ARMA identification after 4-point moving average filtering 

and time decimation, as described above. Zero-pole cancellation took place, even when the whitening 

filter was applied to data from the second day, which means that the whitening filter was effective in 

removing serial correlation from surrogate data, Tables 3 and 4. The last column gives the total 

standard deviation s of the whitened pressure altitude signals.  

Detrended raw data from static tests were also submitted to ARMA identification when M-point 

moving average filtering was applied for dyadic values of M, Figure 5. Due to frequent failures of the 

Bartlett’s test of whiteness, the ARMA(1,1) model was unable to fit the data for M ≥ 8. 

Figure 5. Total standard deviation (●), standard deviation of the correlated (♦) and 

uncorrelated (■) noise components. The line superimposed to the values of the standard 

deviation of the uncorrelated noise component indicates the theoretical scaling with the 

number of samples involved in the averaging process. 

 

3.2. Motion Tracking Tests  

Finally, the results of the experiments in motion conditions are presented in Figure 6 and Table 5 

(stair-walking), Figure 7 and Table 6 (forced circular motion). For better readability of the plots, the 

raw relative pressure altitudes (Method A) are not reported in Figures 6 and 7. 

Table 5. Mean value ± SD of the pressure altitude, expressed in meters. Statistics computed 

using signal plateaus for each floor, including ground floor (stair-walking experiment). 

 Ground Floor Floor #1
 

Floor #2
 

Floor #3
 

Reference 0.00 1.70 3.40 5.10 

Method A 0.32 ± 0.53 1.99 ± 0.49 3.97 ± 0.53 5.39 ± 0.53 

Method B 0.31 ± 0.31 1.99 ± 0.27 3.80 ± 0.33 5.41 ± 0.28 

Method C 0.07 ± 0.15 0.41 ± 0.12 0.79 ± 0.14 1.12 ± 0.12 
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Table 6. RMSE between the pressure altitude and the reference vertical position, expressed 

in meters, for different values of motion frequency (forced circular motion experiment). 

 0.5 Hz 1 Hz
 

1.25 Hz
 

1.5 Hz
 

Method A 0.53 0.53 0.50 0.52 

Method B 0.34 0.35 0.32 0.34 

Method C 0.20 0.18 0.18 0.19 

Figure 6. Stair-walking experiment. Transitions to higher-level floors from the ground 

floor are visible in the relative pressure altitudes estimated by Method B and Method C. 

Horizontal lines indicate the reference height of the floors relative to ground floor. 

 

Figure 7. Forced circular motion experiment. The reference height is superimposed to the 

relative pressure altitudes estimated by Method B and Method C. 

 

4. Discussion 

One important result from using the method of analysis developed in this paper is that the generic 

prescription that several seconds of averaging of barometric altimeter data are necessary to achieve 

accuracy in the order of 0.1 m is quite misleading. The correlated noise component should be 

accounted when assessing the benefits of averaging. In all performed static tests, either indoors or 

outdoors, the correlated noise component turned out to have a greater standard deviation than the 
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uncorrelated noise component, Tables 1 and 2, raising concerns about the suitability of, e.g., moving 

average filters to reduce altimeter noise.  

The correlated noise component was virtually unaffected by an M-point moving average filter when 

M ≥ 4 at a sampling frequency of 50 Hz, and its standard deviation would decrease very slowly for 

higher values of M, although it was not possible to estimate the ARMA(1,1) model parameters for  

M ≥ 8, Figure 5. This was due to the fact that data fitting would include the M-point moving average 

filter itself, which called for higher-order ARMA models. The behavior of the total standard deviation 

shows that the 1/ M scaling law, valid for uncorrelated data, is optimistic when dealing with  

time-correlated data [22]. A noise level of 0.15 cm was reached only when M = 256, which 

corresponds to an averaging time of about 5 s and a delay of 2.5 s in the filtering chain; on the other 

hand, M = 32 would suffice to reach a noise level of 0.1 cm if only uncorrelated noise would be present 

in the barometric altimeter output (however, M = 32 is equivalent to a delay in the filtering chain of  

320 ms that can be unacceptably high in several human-centric applications, e.g., pre-impact fall 

detection [23]). 

The whitening filter was a highly effective tool for filtering the correlated noise component, as 

shown by the results reported in Tables 3 and 4. However, a problem with its use in dynamic motion 

experiments was related to where the unity-gain constraint was enforced. Since the correlated noise 

component occupies the low-frequency part of the spectrum, the whitening filter presents a typically 

high-pass frequency response, which tends to amplify uncorrelated noise unless the unity-gain 

constraint is moved from DC to higher frequencies. Accurate height tracking would then be possible 

for dynamic motion frequencies exceeding, say, few Hertz; unfortunately, typical vertical human 

motions, such as walking up or down a staircase, have motion frequencies much smaller than the  

−3 dB corner frequency of the whitening filter. The amplifying effect on the uncorrelated noise 

component due to a unity-gain constraint enforced at DC would require, approximately, a 25-fold 

increase in the length of the M-point moving average filter for achieving the same Signal-to-Noise 

ratio, which is untenable in practice.  

The results of the stair-walking experiment clearly show the difficulty of placing the unity-gain 

constraint at high frequency (Figure 6 and Table 5). The pressure altitude change from one floor to the 

next floor was underestimated, on average, by a factor close to the whitening filter DC gain when 

Method C was used, as compared to Method B, at the expense of much smaller fluctuations around the 

mean value. The advantages of using the whitening filter can be seen when analyzing the results of the 

forced circular motion experiment (Figure 7 and Table 6), in which the motion frequencies were 

higher than in the stair-walking experiment.  

5. Conclusions 

In this paper we have developed a method of analysis of barometric altimeter noise based on system 

identification techniques. Beside the slowly time-varying mean, which was outside our scope in the 

present context, the noise-like fluctuations on barometric altimeter output were interpreted as the 

superposition of a GM random process that explained short-term temperature and pressure changes 

(environment-dependent) and an uncorrelated noise component with relatively time-invariant statistics, 

which accounted for electronics noise. Based on the ARMA model parameters, a whitening filter was 
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also designed and tested, together with standard M-point moving average filters, for improving  

short-time tracking of small-amplitude, low-frequency motions. 

Because of their limited accuracy, it is presently a matter of debate whether barometric altimeters 

can be effectively used in human-centric applications, e.g., fall detection. It is likely that they will find 

their role as aiding sensors in systems where multi-sensor fusion methods for motion tracking and 

event detection are implemented. Oftentimes, these methods are optimal when the sensor noise is 

white, and their robustness may be an issue when the whiteness assumption is not valid [24]. The 

developed method can thus be used in building simulation environments for algorithm testing, as well 

as in providing practical tools, e.g., whitening filters, by means of which the performance of a given 

signal processing method can be improved. Moreover, the developed method can be used to perform a 

sort of environment probing, namely local environmental effects can be directly gauged in terms of the 

percentage of the total variance due to noise in barometric altimeters. 
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