
Sensors 2013, 13, 14954-14983; doi:10.3390/s131114954

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Reliability-Based Particle Filter for Humanoid Robot
Self-Localization in RoboCup Standard Platform League

Eduardo Munera Sánchez, Manuel Muñoz Alcobendas, Juan Fco. Blanes Noguera,

Ginés Benet Gilabert * and José E. Simó Ten

Instituto de Automática e Informática Industrial (ai2), Universitat Politecnica de Valencia,

P.O.Box 22012, Valencia, Spain; E-Mails: emunera@ai2.upv.es (E.M.S.);

mmunoz@ai2.upv.es (M.M.A.); pblanes@ai2.upv.es (J.F.B.N.); jsimo@disca.upv.es (J.S.T.)

* Author to whom correspondence should be addressed; E-Mail: gbenet@disca.upv.es;

Tel.: +34-96-387-000 (ext. 85721); Fax: +34-96-387-759.

Received: 2 August 2013; in revised form: 9 October 2013 / Accepted: 29 October 2013 /

Published: 4 November 2013

Abstract: This paper deals with the problem of humanoid robot localization and proposes

a new method for position estimation that has been developed for the RoboCup Standard

Platform League environment. Firstly, a complete vision system has been implemented in

the Nao robot platform that enables the detection of relevant field markers. The detection

of field markers provides some estimation of distances for the current robot position. To

reduce errors in these distance measurements, extrinsic and intrinsic camera calibration

procedures have been developed and described. To validate the localization algorithm,

experiments covering many of the typical situations that arise during RoboCup games have

been developed: ranging from degradation in position estimation to total loss of position

(due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is

based on the classical particle filter algorithm. The main contribution of this work is a new

particle selection strategy. Our approach reduces the CPU computing time required for

each iteration and so eases the limited resource availability problem that is common in

robot platforms such as Nao. The experimental results show the quality of the new

algorithm in terms of localization and CPU time consumption.

Keywords: humanoid robots; self-localization; perception system; particle filter;

RoboCup SPL

OPEN ACCESS

Sensors 2013, 13 14955

1. Introduction

The RoboCup SPL is a robotic competition that features soccer matches between two teams of five

Nao humanoid robots. The Nao is a small humanoid robot manufactured by the French company

Aldebaran Robotics (Paris, France). In this league, the localization system has become as important as

any other basic task. Precise information about robots’ positions is essential for achieving fluid

movements in the field and playing as a team to score goals and win matches. Recent changes in the

rules have set the same color for both goals. Until now the two halves of the field could easily be

differentiated by checking the color, but this option is no longer available and this task must be handled

by the localization system. Thus making self-localization more important in this competition—as has

occurred in other areas of robotics where a high degree of autonomy is needed. To obtain a reliable

localization system, the kinematic system and sensorial information (inertial, visual, etc.) must

be adjusted.

In this paper, the implementation of a full localization system is described: ranging from data

acquisition to localization itself. All the introduced developments are part of the improvements carried

out by the Hidalgos Team that is actively involved in the SPL. Three main goals are achieved:

 Firstly, the implementation of a vision-based measuring system to obtain information

regarding robot surroundings. This goal requires a previous study of the camera settings and

development of a new software tool for obtaining these settings and evaluating how to

compensate for errors.

 The second goal is the definition of a local model system for modeling the sensed

surrounding. Auxiliary tools must be implemented that enable the robot to deal with the

information provided by the vision system.

 Finally, the main goal is the localization system and global modeling, which must manage

the information from the local model to estimate the real position of the robot and its

equivalent global model.

This article is organized as follows: in Section 2 the problem of localization and some of the most

common solutions are discussed. The following section discusses the architecture used by the Hidalgos

Team, while Section 4 describes the main characteristics of its perception system. The developments

of the previously referred goals are contained in Section 5 (distance estimation), Section 6 (local

modeling) and Section 7 (localization system). In each section, the work performed and the results

obtained are carefully described. Conclusions are presented in Section 8.

2. The Localization Problem

An increasing number of studies have focused on the localization problem and this has promoted a

constant evolution of these systems. Therefore, new localization methods have been developed as

existing techniques have been improved.

Early location systems were purely based on odometric readings, but this approach can provide

erratic values due to the effect of foot or wheel slippage, or unpredicted slack in the joints in the case

of humanoid robots. Moreover, these errors cannot be corrected because of the absence of any

feedback, which could help the robot detect its errors. Thus, most sophisticated localization systems

Sensors 2013, 13 14956

make use of sensors to provide such feedback. Sensorial information combined with an appropriate

statistical procedure enables an estimation to be made of the robot position with a certain degree of

accuracy. The robot soccer teams that participate in the SPL competition have adapted most of their

localization systems. In [1] a compilation of the methods used by some of the participant teams can be

found—as well their advantages.

One popular method for localization in mobile robotics is the particle filter (PF) and its derivatives.

Most implementations are based on the Monte Carlo particle filter (MCL), as described in [2,3]. The

MCL method represents an approximation, based on a finite number of random samples (characterized

as particles) in the workspace. Each of these particles has an assigned weight corresponding to its

probability of matching the observation. Consequently, the belief of each state is determined by a set

of tuples:

  niii wxxBel ,...,1,)( (1)

This belief distribution is expressed as the output of a Bayes filter that estimates the robot position:

Bel(xt) 
p(ot | xt ,at1,...,o)p(xt | at1,...,o)

p(ot | at1,...,o)
 (2)

Normalizing with n as a constant:

n  p(ot | at1,...,o)1 (3)

Bel(xt)  n.p(ot | xt) p(xt | xt1,at1)Bel(xt1) dxt1 (4)

The evolution in time of this set of particles is conditioned by the actions performed by the robot in

the specified period of time. The progression of these values in the PF is usually determined by a

recursive update through three steps:

(1) Particle distribution update and resampling: in this step each particle xi(t-1) on the set is

updated according to the previous belief distribution and the weights on that iteration:

 (5)

(2) State update: the current set of positions xi(t) is computed by taking into account the

performed action a(t-1), which usually correspond to a displacement of the robot and the

previous distribution x(t-1):

 (6)

According to the sampling/importance resampling (SIR) method, described in [4], the

proposed distribution for the current iteration can be expressed as:

 (7)

(3) Particle weighting: the proposed distribution qt expressed in Equation (7) is related with the

distribution obtained in the Bayesian filtering procedure expressed in Equation (4), which

takes into account the sensorial information (including the observations) in the Equation. As

a result of this comparison, the weighting value of each particle involved in the filter can be

obtained as follows:

xi(t 1) ~ Bel(x(t 1))

xi(t) ~ p(x(t) | x(t 1),a(t 1))

qt : p(x | xt1,at1)Bel(xt1)

Sensors 2013, 13 14957

(8)

These weights must be scaled, as the sum never exceeds 1. Thus, the value of the importance

characteristics of the ISR method is obtained in each new iteration.

It has been demonstrated in [3] that successive iterations of this algorithm make the original set of

particles converge on the distribution Bel(x), in which the number of particles is inversely proportional

to the speed of convergence.

This method can be adapted to work with information provided by several types of sensors. In [2,3]

the experimental results are obtained using a robot equipped with a laser range sensor combined with a

sonar device. Other studies apply this method by using other arrangements of sensors, such as that

presented in [5].

However, for our purposes, the application of the MCL using on-board cameras is a preferable

option. These on-board cameras can be used as the main perceptive sensors in addition to odometry.

The most commonly used types of cameras are omnidirectional or pan and tilt cameras (the cameras in

the Nao’s head can be rotated via the neck). Several examples are presented in [6], and in [7] up to

seven methods are introduced in which the weight of the particles is obtained from visual information.

Focusing on the RoboCup SPL, several participant teams have chosen to use an MCL-based

localization system. Most of these implementations attempt to modify the original MCL in order to

adapt its operation to this particular environment. One similarity among all these modifications is the

definition of how the ‘sensor reset’ procedure is applied. When a ‘lost’ situation is detected by the

system (usually produced by a kidnapped robot event or a fall of the robot itself) this procedure

enables the filter to be recovered.

The main issue to discuss about the sensor resetting is how to detect a ‘lost’ situation. Improper use

of this method will produce an anomalous performance of the filter, leading to new lost situations or

wrong estimations. New features were introduced in the filter to achieve sensor resetting only in those

cases where no other solution could be applied. The German team B-Human encourages the use of PF

localization and validates its application through their achievements in the RoboCup competitions.

B-Human proposes an implementation known as the augmented-MCL filter, as described in [8]. In this

approach, the resampling method computes the number of particles to be resampled by the inclusion of

new parameters, which relate the weighting values with the main goal of increasing or decreasing the

effect of the resampling step, as described in the following Equations:

 (9)

 (10)

(11)

where Wavg is the average weight of the current iteration, and where αfast and αslow are constants that

determine the dynamics of the filter. In the iteration, the resampled particles are obtained by a simple

comparison between their probabilities and the resetting value obtained in Equation (11) and this

approach enables the filter to perform as dynamically as needed.

wi  p(o(t) | xi(t))

W fast (t) W fast (t 1)  fast (Wavg W fast)

W fast (t) W fast (t 1)  fast (Wavg W fast)

Wreset max(0,1
W fast

Wslow

)

Sensors 2013, 13 14958

Other authors have started with the augmented-MCL or adapative-MCL filter and tried to improve

the sensory information by adding a multi-observation system, as proposed in [9], to deal with

ambiguous landmarks that can induce the assignation of significant weight to wrong particles and thus

cause erroneous estimations. In the cited approach, when a sensor reset event turns on, the new

particles generated for replacing the old particles will not, as is usually the case, be totally random.

Instead, the multi-observation method is taken into account when spreading a new distribution of

particles on those locations consistent with the current multi-observation. This enables a quicker

convergence to the real position—as long as the information is correct.

At the same level of relevance is the unscented Kalman filter (UKF) based localization system [10].

In the same way as other types of Kalman filters (KF) this technique offers low computational cost and

is represented as a normal distribution and parameterized as a Gaussian function. UKF has

demonstrated better prediction approximation than other KF modifications by using a deterministic

sampling technique to select a minimal set of samples from the observations, as shown in [10].

Typically, the belief of the position is calculated by a 2-step update in which the first step must deal with

‘time update’, while the second performs the ‘measurement update’. Both steps can be expressed as:

(12)

 (23)

In the same way as MCL, Kalman filters can work with an on-board camera as the main perceptive

sensor. Consequently, these filters can also be established as a functional localization system for

general purposes, and specifically, RoboCup. Most approaches used in SPL are centered on

multi-modal variations of the UKF and these demonstrate better results than the original

implementation of UKF. Measurement functions must be previously linearized in order to obtain the

Gaussian representation, and this usually leads to unsatisfactory results and a divergence between real

and predicted positions.

The Austin Villa team (The University of Texas at Austin, Austin, TX, USA) , winner of the 2012

RoboCup competition hosted in Mexico, used ‘Multi-modal 7-state UKF’ localization to obtain

reliable estimations. As reported in [11], in a normal UKF, belief in a 7-dimensional space state

involves seven distinct Gaussian representations; but the multi-modal filter only takes into account a

single representation defined as the weighted sum of all seven Gaussians.

A general implementation for an N dimensional filter must be introduced as follows: given a

concrete model x(t) with N Gaussian distributions, each representing the belief of an estimate estate xi

with a covariance matrix Pi and a weight αi, the final distribution of the model is expressed as:

 (14)

 (15)

The multi-modal approach was said to be in [12] a technique with a high computational cost

because of the Gaussian distributions involved in the weighted sum. For this reason, a new method

based on the general idea of the multi-modal filter was developed in an attempt to solve these issues.

This new approach, introduced by Nao Devils in [12], is the ‘Multi-hypotheses UKF’. Deleting some

bel(xt)  p(xt | ˆ x t ,xt1)bel(xt1)dxt1
bel(xt) p(zt | xt)bel(xt)

bel(x(t))   i
1

(2)n / 2 |Pi |1 / 2 
i1

n



  e(1/ 2(x(t) ˆ x i)T Pi
1 (x(t) ˆ x i))

Sensors 2013, 13 14959

of the terms in the Gaussian sum has been proposed to increase the efficiency of the filter. However, it

must be pointed out that the discard method may lead to a loss of accuracy in estimation—as well as

other problems.

As a new feature, a resampling step similar to that applied in the MCL has been added. In that step,

the weighting updates are adjusted to discard the outlier values. This approach also adds new terms

based on sensor measurements, independently of previous measurements. Low-weighted models were

introduced enabling the filter to achieve a ‘sensor resetting state’ that will be explained in more

detail below.

A comparison between UKF and MCL can be found in [13], which reviews the standard algorithms

for both methods and discusses some simulation results. The main conclusion is that the MCL method

is computationally worse than UKF. However, it must be pointed out that MCL still offers some

relevant advantages: (a) MCL is more accurate in certain cases; and (b) MCL can deal efficiently with

problems such as kidnapped robots. Moreover, some MCL implementations with a small number of

particles can computationally perform in a similar way to the UKF, although performance may

be compromised.

Localization systems for humanoid robots usually follow the path created by simpler mobile robots,

such as wheeled robots. It is usually easy to find studies centered on new techniques and alternative

methods that have not yet been transferred to the SPL frame. In [14] a variation of the UKF is

introduced that implements a fuzzy logic adaptative system. As has been shown, the main problem in

using KF is the inability to deal with non-linear systems because of the process and measurement

noises; and the fact that sensor fusion is required. To improve localization accuracy, a fuzzy inference

system has been designed to determine the bounds of that noise. In [15], a visual self-location

evolutionary algorithm is presented that estimates robot location. For that task, several sets of

individual positions (similar to particles) are characterized with a certain ‘health’ value obtained after

the image analysis. Each of these individual positions is placed in the space based on the perceived

information. A fine-grain search among all these positions is performed. This algorithm is specially

designed for dealing with symmetries that work with current visual information or visual memory as is

defined in the study. To validate this last method, two experiments are shown that involve the Nao

robot in an environment that is different to RoboCup.

Finally, it must be emphasized that an efficient localization system must always include reliable and

continuous information about the environment. Thus, the acquisition and processing of perceptual

measurements is a key to success in the localization problem. In [16], several techniques and upgrades

for producing faster game play and better localization in SPL are presented, and these include

synchronized head movement, shared information between robots (similarly to the global ball model),

and a path planning system.

3. Hidalgos Team Control System Architecture

The Hidalgos Team control system is based on several SW modules encapsulated into libraries that

are organized according to their function. The main modules of the system can be seen in Figure 1 and

are termed:

 COMMS: Dedicated to communications between robots and game referee.

Sensors 2013, 13 14960

 PAM: Deals with the perceptual hardware for obtaining relevant environmental information.

 CTRL: Responsible of the correct execution of state machines and behaviors involved.

 GM: Intended for global modeling and position estimation.

 CMD: Manages access to hardware and system resources.

Figure 1. Hidalgos Team control system structure overview.

Figure 2. Diagram with the SW routines involved in location and positioning.

Obviously, to perform its tasks the CMD deals with the NAOqi middleware provided by Aldebaran

Robotics and the OS (which in this case is an embedded Linux distribution). All the information that

must be shared between distinct modules is exchanged through a shared blackboard structure.

Also, a distributed management and calibration tool, known as H-Manager, has been developed to

adapt the robot configuration before the football match. Moreover, this H-Manager enables a quick

switch between the selected modes and behaviors.

Sensors 2013, 13 14961

The proposed goals of location and positioning will be achieved by the combination of many steps.

Some improvements in the perception system are needed to obtain a reliable localization. Several

modules of the Hidalgos architecture may be combined to encourage an optimal flux—from the

acquisition of the information needed by the system to the previous data treatment involved and

described in Figure 2.

4. Perception System in the Hidalgos Team

As previously discussed, every type of localization system must have sensorial information about

robot surroundings to determine the current position. This information will affect the performance of

the localization system. Features in the game field are the main sources of information. Each spotted

feature is usually characterized by a distinctive color, shape, and position. The issues related to the

recognition of these characteristics will be detailed in this section. The sensor adjustments required for

guaranteeing a reliable distance estimation and the auxiliary tool for obtaining the camera settings will

also be detailed. In each case, the related problems and the adopted solutions are described.

4.1. The Nao Vision Sensor

Nao robots have two cameras on the head as depicted in the Figure 3. The two cameras have CMOS

sensors that provide VGA images at a maximum of 30 fps. Both cameras have the same field of view

(FOV) angle, which may vary depending on the version, as well as the same offset between the centers

of the visual beams.

Figure 3. Camera placement in a Nao robot. Side views of the head camera layout. Note

the field of view (FOV) of each camera: (a) Nao V3, (b) Nao V4.

(a) (b)

These differences can be appreciated by examining Figure 3. The robot head has been assembled on

the body through a neck formed of two servomotors, which are responsible of the pitch and yaw

movements respectively. These movements allow the robot to perform a visual scan to recognize

objects in a large range defined as the frontal side of a sphere bounded by the configuration of the

cameras and servos. These movements give Nao the capacity to perform visual servoing for tracking

objects such as the soccer ball and to keep it in the FOV. A revision of the visual servoing procedures

can be found in [17].

Sensors 2013, 13 14962

4.2. Image Capture

To perform better localization and more efficient game playing, the capture method has been

improved by adding a camera management system to the Hidalgos project. Its main function is to

provide an optimal use of both cameras by enabling the correct camera for each instant.

For this purpose, three operating modes are introduced: upper camera fixed; lower camera fixed;

and camera alternation. The first mode (upper camera fixed) is usually the least used mode due to its

activation conditions and its effective range limitations. This mode will only be used in those cases

where the ball or other relevant object is situated several meters from the robot and it must be tracked.

The second mode (lower camera fixed), in contrast with the previous mode, is the mode most often

used during the match. This mode must be active when the robot tracks an object situated near the

robot. The third mode (camera alternation) is activated when a scan of the environment must be made

and the limits of the game field do not appear in the FOV of the lower camera, as illustrated in Figure 4.

This third mode is also used when a shot-to-goal must be made and the ball cannot be framed with the

goal in the same picture. By using this alternation, a considerable amount of unnecessary head

movements are saved and more information is obtained per cycle.

Figure 4. Different situations and camera modes: in the left picture, image information

from both cameras is required, while in the right picture, only the lower camera is required.

Figure 5. The camera management system offers support for camera activation and

switching—depending on each robot version.

Sensors 2013, 13 14963

Although both versions (V4 and V3) of the Nao robot have two cameras, the hardware

configurations vary. The newer V4 has two separate ports for each camera, but in the V3 all the

cameras use a single port and a switch is used to enable each. Taking this into account, some relevant

structures have been developed to independently perform image acquisition on both cameras. The

grabber thread must apply the appropriate method according to the version of the robot that is running

the code, as shown in Figure 5.

4.3. Segmentation

Once a frame is captured, the contained information must be extracted. The first step is to perform

the segmentation process by colors. A look up table (LUT) is used for this purpose, which has

previously been configured using the H-Manager application for the definition of the range of values

that match each color. This process has a high computational cost, as it must examine each image pixel

and determine its color. To lower these costs, a subsampling method known as scanlines was

implemented as described in [18]. This technique avoids processing the whole image by skipping

certain pixels, and so produces the same cost as would be obtained by processing a low-resolution

version of the picture. Thus, the number of skipped pixels in this process is strictly related with the

computational costs as shown in Figure 6. However, skipping pixels increases the difficulty of finding

a feature in the image. If the number of ignored pixels is too high, some information may be missed.

To preventing this problem arising, a system for managing the subsampling method was implemented.

Figure 6. Segmentation times vs. different image resolutions.

The vision system must select a suitable resolution every time. The current position of the head and

active camera must be taken into account. Thus, when the robot is looking at its own feet the lowest

resolution can be used, because all the spotted objects will fill a large part of the image and so enable a

remarkably large amount of pixels in the image to be skipped. In other cases, such as when the top

camera is being used, almost the whole image must be processed because some objects such as the ball

will only represent a few pixels on the image and skipping some can induce it to overlook the ball.

Nevertheless, in particular cases, such as when the robot is looking for big objects like the goal, the

resolution can be slightly lower without changing the results.

Sensors 2013, 13 14964

4.4. Blob Forming and Object Recognition

Starting from the segmented picture, all the contiguous regions of the same color must be

assembled, forming a blob that will potentially represent a game feature. For this purpose, the seed

region growing (SRG) technique [19] is used in our approach. Figure 7 shows the complete sequence

followed in a real image.

By providing the spotted blobs, the recognition system can determine which corresponds with a

game object and (if it were the case) what type of object they represent. Blob classification is

performed by analyzing characteristics of the blobs such as their size, position from the horizon, and

other parameters that can be configured using the H-Manager application.

Figure 7. Results from image acquisition and processing: (a) Original picture;

(b) Segmented image; (c) Bounding boxes of the goal and ball.

(a) (b) (c)

4.5. Distance Estimation

One of the most important measurements that can be extracted from the blob is the distance

between the robot and the feature. Nevertheless, the process to obtain this value from the image is not

trivial. Thus, a distance estimation procedure must be implemented. In this process, several camera

factors that relate the real 3D world objects with the plain 2D figures found on the image are involved.

Figure 8. A simple geometrical calculus can provide the distance estimation of the feature of interest.

For computing the correct relations, a two-step adjustment process of the camera has been proposed

in this paper. The first step deals with the intrinsic adjustment to compensate for lens distortion, while

the second step performs an extrinsic adjustment based on the position of the camera. Finally, by a

Sensors 2013, 13 14965

simple triangulation involving the real angle between the camera and the vertical axis of the robot and

its height, the real distance can be estimated as illustrated in Figure 8.

Once the camera has been adjusted through this process, the distance between the robot and the

object of interest can be obtained, expressed in its polar form, and starting from the visual information.

The whole process is represented step by step in Figure 9.

Figure 9. Diagram for object-to-robot distance estimation.

5. Camera Settings and Error Compensations

As discussed in the previous section, the camera settings are the key for success in vision-based

distance estimation. For that reason, it is necessary to obtain the sensor model and the parameters that

enable us to perform the camera adjustment. There are many studies focused on camera-based distance

estimation and camera adjustments. A clear example can be found in [20].

5.1. Intrinsic Adjustment

Intrinsic parameters are required to compensate for the distortion effect on the captured image

produced by the curvature of the camera lenses. Although there are several relevant methods such as

those proposed by [21] or Tsai [22], we selected the method based on the Zhang [23] procedure, as

suggested in [24]. By extrapolating the previous conclusions obtained in Section 4.5, we can assume

that a relationship can be found between the number of pixels in the image, the angle of separation

between them, and the real position of the camera in the 3D world.

By using pixel-angle conversion it is possible to estimate the correct distance to non-centered

features. The aperture of the lens, in both horizontal and vertical axis, and the image resolution,

characterize this conversion. Unlike the intrinsic case, this correction must be applied separately from

the top and bottom camera, as there are no two identical lenses.

It must be also pointed out that lenses introduce additional non-linear distortion. There are several

types of distortion, which can be defined as barrel or pin-cushion. The shape of the distortion in the

image may vary as defined in [23]. After exhaustive analysis of the Nao camera, Figure 10 shows an

example of the radial distortion of the lens.

Sensors 2013, 13 14966

The correction must be made along each axis if the lens does not have to be symmetrical. In this

particular case, the ‘estimating radial distortion by alternation’ method was applied as described in [23]

in the ‘dealing with distortion’ chapter. This method involves the use of three parameters ki for each

axis obtained from the following Equation (16):

(u  u0)(x 2  y 2) (u  u0)(x 2  y 2)2 (u  u0)(x 2  y 2)4

(v  v0)(x 2  y 2) (v  v0)(x 2  y 2)2 (v  v0)(x 2  y 2)4











k1

k2

k3



















u  u

v  v









 (16)

New capability for dealing with the distortion has been implemented in the system—depending on

the radius from the image center to the pixel of interest.

Figure 10. Example of radial distortion of the Nao camera lens: the coefficients marked on

each circle represent the factor of distortion induced in each pixel located in that area (units

are in pixels).

5.2. Extrinsic Adjust

The extrinsic parameters of the camera describe the coordinate transformation between the robot

and the object represented by a given point of reference in an undistorted image. These parameters are

strictly dependent on camera position as seen in [20]. The distance measured is directly related to the

head position that relays the configuration of the servo-motors at this time. A study of the

characteristic profile of each servo involved on the camera movement must be made. The profile of the

servo positions has been introduced as the main factor responsible for the equivalence between an

image point and its corresponding point in the 3D world. In other words, this is the main reason why a

full study of the behavior of the motors will lead to an accurate distance estimation.

It must also be taken into account that when the camera plane and the ground plane form a near

π/2 angle the resolution on the measurements decreases drastically. Thus, this situation must be

avoided during operation of the robot, and the head pitch angle must be carefully adjusted. This

adjustment will rely in the NAOqi’s kinematic system, which can provide a mostly reliable

measurement of the camera height; while the value of its yaw angle can be modeled with a fixed offset.

Sensors 2013, 13 14967

By making an empirical test, the profile of the camera pitch movement can be obtained for every

robot, associating the central point of the image with its corresponding distance in the real world.

Figure 11 shows a polynomial function that can be used to adjust the shape of the empirical

measurements, giving us the capability of making a straightforward conversion from angle to distance.

This procedure can be applied for both cameras, taking into account that they use the same motor, and

consequently, present the same adjustment, but with the offset between camera positions.

Figure 11. Example of polynomial adjustment (based on empirical measures) that

establishes the relationship between head angles and distance-to-features centered in

an image.

5.3. Auto-Adjust Procedure

After both extrinsic and intrinsic parameters have been obtained, a reliable estimation can be

performed. However, it must be taken into consideration the fact of that each robot is likely to show

some differences in the values of the configuration parameters. Moreover, these values may be

modified over time due to mechanical damage (falls or knocks). This is the main reason we designed

an auto-adjusting system—so that each robot can obtain its own parameters by executing an

autonomous procedure.

Focusing on this idea, an OpenCV based application has been developed to obtain these parameters

and store them on an XML file located in the robot memory; enabling the configuration parameters to

be loaded each time the robot is restarted. To adjust both (extrinsic and intrinsic) types of parameters,

the robot must be placed in a known position and once there, it must recognize some characteristic

features of the game field (such as corners or line crossings) using the OpenCV application.

The auto-adjust system is designed as a new functionality offered by the previously mentioned

H-Manager tool. The developed algorithms are not running in the robot hardware, instead of this the

application applies for a picture from the robot and the subsequent image processing is carried out

using the H-Manager. The application then calculates the new position for each head servo, and sends

the information to the robot again. Thanks to this mechanism, the adjusting process can be supervised

by the computer; working quickly in a distributed and supervised manner.

Sensors 2013, 13 14968

First of all, the extrinsic parameters will be obtained by making the servomotors of the camera

move to locate the lines of the game field, whose distance to the robot is known because the robot’s

position is known. The obtained (distance, pitch angle) pairs of values measured during the camera

movement are used to obtain the parameters of the polynomial adjust, as shown in Figure 11.

To find the robot position that offers the best calibration through the lines, an optimization method

has been developed that provides the required location by evaluating all the potential positions.

The described calibration procedure is applied on the head bottom camera, and taking into account

that both head cameras move in common (always having a fixed offset between them) the adjusted

polynomial can also be used for the upper camera by accounting for this offset between cameras. This

offset between cameras can be measured for better performance by finding the same point with both

cameras and computing the difference between the reached positions.

The next step in the auto-adjust procedure is to obtain the intrinsic parameters to compensate for

lens distortion. For this purpose we have chosen to use a game field feature that is easy to locate and

has a well-defined point: the corner. Thus, the camera is moved to locate the corner point in the center

of the image, which is supposed to be unaffected by any kind of radial distortion. Once this point is

reached, the camera must be moved to find the same feature but from in a non-centered position. This

operation is repeated several times, enabling several images to be captured that situate the same feature

in new positions at different radii from the image center and covering all the value range. Equation (16)

can then be applied to the experimental data, producing a distortion map similar to the one represented

in Figure 10. During this intrinsic adjust, the image processing algorithm is charged with the task of

finding the exact corner point from the L-shape of the image, as shown in the Figure 12.

Figure 12. L-shape recognized on an image (a corner of the game field). This pattern helps

us to obtain camera settings.

5.4. Estimation Results

To evaluate the above described auto adjust procedures; an experiment was conducted to compare

the errors in distance estimation without auto adjust by taking the default parameter values with the

errors produced under the same circumstances; but after applying the auto adjust procedures. As

indicated; one of our goals was to achieve the capability of measuring distances between the robot

position and a given feature.

The experiments were designed as follows: firstly, the robot was manually placed at several

distances from the same object, ranging between 0.5 m and 3.0 m, and the distance was estimated

Sensors 2013, 13 14969

using simple triangulation, as indicated in Figure 8. For each position, the distance was measured by

moving the head to locate the feature of interest in three positions in the image: (a) A feature located in

the center of the image (centered); (b) A feature located in the lower half of the image (under

centered); and (c) A feature located in the upper half of the image (over centered). These three

measuring approaches were chosen to deal with different coefficients of distortion. The errors obtained

for the three centering approaches are shown in Figure 13.

In a second phase of the experiments, the robot was re-positioned in the same locations as the

previous experiment, but in this case, the distances using the same object were measured by taking into

account the adjusted values of parameters, following the auto-adjust procedure above described. The

new set of errors obtained in the distance estimation is shown in Figure 14.

Figure 13. Errors in distance measurement when tested without adjustments.

Figure 14. Errors in distance measurement when tested with adjusted parameters.

In view of the results shown in Figures 13 and 14, it is clear that the set of results obtained using the

auto-adjust procedure was far more accurate in distance estimation in all the cases: ranging from 2%

Sensors 2013, 13 14970

for short distances and 13% for distances of two meters (the worst case). Unadjusted results yield

errors of 20% for distances of 0.5 m, increasing with distance values to 100% for 3 m.

Obviously, unadjusted estimation is not a suitable method for distance estimation, because world

modeling requires a more precise localization system. Fortunately, the accuracy obtained with adjusted

parameters seems adequate for world modeling purposes using the proposed particle filter.

6. Environment Data Processing and Local Modeling

Once the robot can estimate the distance to objects detected in a captured image, relevant

information about the main game field features can be obtained. This information will be useful to

construct the surrounding environment. By processing this data we obtain a local model of the

game space.

6.1. Landmarks

Some elements of the game field in the SPL can be used for information about the robot position.

However, there is no single distinctive feature that can be used as a single solution. The model of the

local surroundings can help to reduce the options. Landmarks are defined as the field features to be

modeled. Currently, the main landmarks used are: the goals, the borderlines of the game field, and the

information shared by others robots of the same team. Other landmarks have been discarded because

the increase in computational cost was not compensated with a relevant improvement in position

estimation. However, future developments based on newer Nao versions (equipped with more

powerful CPUs) open new possibilities for improvement.

The goal position usually generates sufficient information to determine the position of the robot in

the field. This measure has been defined as the relative distance from the robot current position to the

goal and the inclination angle between the robot orientation and the imaginary axis passing through the

crossbar expressed in the global system. By considering this information there are only two possible

situations on the field, as shown in Figure 15a, but usually the result of previous estimations helps to

nullify one of the options and resolving any uncertainty about the robot position.

White borderlines also give information that help locate the robot position in a point situated on the

parallel line separated from the border at the measured distance, with an orientation based on line

inclination. Figure 15b shows how this information only provides a rough approximation of the real

position, but offers good information if the robot cannot see the goal and so prevents the particles from

being scattered around the field.

Although landmark detection offers an acceptable localization, this is not enough to solve the

problems caused by the game field symmetry, given that without previous information there is no way

to discern which midfield the robot playing in—no matter how good the sensed information. By

inputting the shared information (using communication between players) from robots with a reliable

position, the robot can reinforce its own information and more quickly converge to a single position by

discarding an incoherent symmetric position.

Sensors 2013, 13 14971

Figure 15. Possible robot positions (d, θ, φ) deduced by a given landmark detection:

(a) goal information; (b) borderline information.

(a) (b)

6.2. Landmark Modeling Filter

Distance information from each detected landmark is used to model the local surroundings as

discussed before. As indicated previously, using the auto-adjust procedure already described can

drastically reduce the errors in distance estimation, but it must be taken into consideration that the

distance measurement tests have been made with a motionless robot. In real game situations, it is

highly desirable that the robot be able to make dynamic distance measurements while walking.

Locomotion vibrations and bounces while walking will affect the quality of the estimation by

adding noise—which prevents a stable local model being obtained. A filter is proposed to reduce noise

and enhance the dynamic distance estimations.

Induced noise appears as a high frequency signal added to the real values. Using a simple mean

filter could mitigate this problem. After analysis of the usual noise characteristics, we have designed a

simple moving average filter that obtains the mean of the last 50 distance samples. This type of filter is

optimal for removing the noise and can be implemented using a fast recursive approach [25]. The

designed filter will take the last 50 samples to obtain the filtered value, assuming a quasi-constant

acquisition rate of 55 samples/s. The time window is about 0.9 s. The filter size has been chosen as a

result of numerous tests showing that the best cost/performance ratio was 50 samples per window.

However, if the robot loses sight of a certain feature, the filter stops and resets all the previous values

to avoid using invalid results.

One of the main problems associated with this kind of filter is the delay produced in the resultant

value. To cancel the effect of this delay, a prediction step has been added to the filter. In this step, the

trend of the previous filtered values is analyzed, making an estimation based on the current trend to

predict the real value instead of the delayed value. Although the predicted result improves the time

response, it may produce some added noise. Bearing this in mind, another study has been made to

determine the level of prediction that offers the best balance between temporal and noise

reduction performance.

Sensors 2013, 13 14972

6.3. Data Integration and Local Modeling Results

Once each feature detected in the game field has been analyzed, the system fuses all the information

to establish a local model. This model represents the position of the features detected at a given time,

deleting all the information relative to previously detected elements that have been lost from sight.

This action avoids the actualization of local data with the odometrical information and prevents the

system working with false values.

Figure 16. Measured distance from robot to right goal. Lower plot: robot trajectory during

walk. Upper plot: obtained errors in distance estimation during this walk.

Figure 16 shows a simple experiment in which the robot is approaching the goal. During this test

the real trajectory described by the robot is stored (obtained from a zenithal camera system) and the

distance measured to the goal. This last value will be used for local modeling and will describe the

information of the featured position relative to the situation of the robot. The lower 2D plot in Figure 16

shows the real trajectory of the robot during its displacement from left to right.

The upper part of the Figure 16 shows the distance errors (in millimeters) obtained during this

displacement as a function of the real distance to the right goal. In this plot, three different sets of data

have been represented: (a) measured raw data (blue, very noisy); (b) data after filtering (red); and

(c) predicted data from filtered values (black).

Figure 16 illustrates how the quality of the measured distance has been notably enhanced by means

of the simple filtering procedure described. In the non-filtered data (in blue), the effect of the walking

bounces on the readings is evident. Also, the filtered set (in red) presents a very reduced amount of

Sensors 2013, 13 14973

noise, but a biased response can be also appreciated, giving a positive mean error of about 250 mm

(the distance is over-estimated due to the time delay introduced by the filter).

Finally, the predicted data set (in black) shows a balanced behavior, as the mean error is near to

zero, while the amount of noise is also very reduced—with a maximum value during the robot walk of

600 mm for distances above 4 m. As a conclusion, the proposed filter for the distance measurements

enables us to obtain errors in distance estimations within tolerable margins for local modeling purposes.

7. Localization System: Algorithm Description and Results

7.1. Auto-Localization System and Global Modeling

This section describes the algorithm that has been developed for robot self-localization. As

previously indicated, we have used a modified version of the particle filter, taking into account some

features of the augmented filters and techniques inspired by the UKF already used by other RoboCup

teams. Our implementation corresponds with the following description.

Given a distribution of a set of X particles where each element is defined as:

For every filter iteration, the values of the distribution are updated according the translation and

rotation movements carried out by the robot, which are expressed as an increment in the odometrical

values given by NAOqi. This action will be represented as action ak; and a noise vk will be added to

model the odometrical error affected by the reliability coefficient R which will be introduced below:

A new distribution Z is defined as the probability of making a correct estimation of all the features

in the field, in this case the goal and the ball. Therefore, each value of probability zi is associated with

the probability of having a successful estimation S using the particle xi included in the distribution.

(19)

zi  p(S | xi) (20)

The values of Zk are obtained as a function of the elements in Xk, the previous estimation Ek-1, the

perceptual observations at time k, and the well-known model of the game field M:

This procedure belongs to a ‘coherence system’ that tries to find the common elements from the

global information perceived by the robot.

Once the Zk distribution is available, the quality of the estimation can be obtained by computing the

probability of having a successful estimation using each sample on the Xk distribution:

ZK  [z1..n] 
pGoal1..n

pLines1..n











(17)

 (18)

 (21)

Xk  x1..n  
(x,y)1..n

1..n











Xk  f (Xk1,ak)  vkR

Zk  f (Xk,Ek1,k,M)

Sensors 2013, 13 14974

Consequently:

The set of probabilities of success will determine the value of the reliability R as shown below:

This coefficient will determine the accuracy of the estimation of the distribution Xk. It may also

affect the amplitude of the odometrical noise by adding more dispersion to the actualization of the

particle positions when required.

The next step is to obtain xref, which is defined as the ideal member for the distribution Xk based on

the perceptual observations n, the model a priori X, and the previous estimation. In this way, xref

represents the theoretical position that makes the measured observations adjust to the known model of

the game field:

This new element will take part in a new distribution X’ defined as:

The proposed estimation xref must always guarantee that:

The obtained reference particle is the most adequate location according to the sensorial information,

and is obtained through the application of the ‘coherence system’.

Before proceeding with the resampling phase of the filter it is necessary to assign respective

weights to each particle. These weights are represented by the distribution W:

The value of each weight is obtained as the normalization of every probability of success between

the minimum and the maximum value in the estimation, which corresponds to the xref probability.

(22)

(23)

(24)

 (25)

 (26)

(27)

 (28)

(29)

p(xi | S) 
p(xi) p(S | xi)

(p(xx)p(S | xx))
x1

xn



p(xi | S) 
nzi

zx
x1

xn



R 
p(xi | S)

ni1

in



xref  f (Ek1,k,M)

Xk
'  Xk  xref

Wk  w1..n 

wi 
p(xi | S) min(p(xx | S)xx  X)

p(xref | S) min(p(xx | S)xx  X)

Sensors 2013, 13 14975

For this implementation, the number of resampled particles is dynamically modified according to

the Wthreshold value, which determines the minimum particle weight to remain for the next iteration of

the filter; otherwise it will be surrogated with a copy of xref. This Wthreshold is obtained as a function of

the reliability coefficient R and the weight variance s.

The variance s defined as:

Finally, the estimation of the pose Ek is obtained by performing a weighted mean of the components

of the distribution X’k that offers the maximum weight and the reference particle xref.

This procedure is reflected in Algorithm 1 as follows:

Algorithm 1: Modified particle filter

for i=1 to N do

 x(i) <- prediction(x(i), a,R)

 z(i) <- probabilityCoherence(x(i),n,M, E)

end

for i=1 to N do

 pS(i) <- calcProbability(x, z)

 R <- actualizeReliabity(probS(i))

 minP <- isMin(probS(i), minP)

 maxP <- isMax(probS(i), maxP)

end

(x_ref, p_ref)<- referenceCoherence(E,n,M)

W<- scaleWeights(pS, p_ref , minP, maxP)

s <-calcVariance(W)

(_x,_w)<-addAndSort(x,xref,w)

w_thresshold <- findThreshold(W,s)

while _w(i) < wThreshold do

 x(i)<- resample(x_ref)

 i++;

end

E<-fuseBestParticles(_x)

--

 (30)

(31)

Ek 
xref  X 'W

W (32)

Wthresshold  f (s,R)

Sensors 2013, 13 14976

The main difference between the presented implementation of the particle filter and others is that

the weights being assigned are not based on the probability of each particle being in the supposed

location, but rather on the closeness of each particle to the calculated reference particle. The sensor

reset is dependent on the size of the best error. If the error value is low, most of the particle values

must gradually reach the real position by updating their position to locations near the reference

position—which produces the best error situation. If the best particle shows incoherence between

sensorial measurements, the threshold value will be increased. This will force the filter to generate new

random particles and enable convergence to the real position.

All these new contributions produce a filter characterized by a fast response to each potential

situation. After several empirical tests, this solution has been shown to perform with a small number of

particles in comparison with other implementations. As will be discussed in the results section, the

designed filter can perform satisfactorily when starting from only 20 particles.

7.2. Positioning System

Once the position has been estimated, the implementation of a position control is trivial.

Nevertheless, the challenge is to decide which position needs to be reached by every robot. This

control only takes part in the game at kick-off, the start of the second half, or after a goal. The

positions are assigned according to the designated player positions. Each robot has a position, which

determines its role in the team, and it is considered satisfactory when the robot approximately reaches

the indicated position, without invading forbidden areas (such as the opposite half or the goalkeeper

area). The position system structures can be used as the core of future works, for example, in the

implementation of complex trajectories.

7.3. Results

7.3.1. Validating the System

For a validation it is necessary to acquire both the estimated and real positions. In the first case, the

robot has the task of writing the estimated position in a file at the same time that it actualizes its global

position on the GM module. In the second case, the complexity increases because there is no direct

way to determine the real position. For this reason, an auxiliary platform has been developed to acquire

this value.

This platform consists of four webcams on the ceiling of the stadium (the number of cameras

conditioned by physical restrictions—such as the low height of the ceiling or field of view). Each

webcam detects each robot that enters its corresponding zone of the game field, as shown in Figure 17.

Obviously, this camera arrangement will produce perspective distortion due of camera positions,

but a homography procedure shown in Figure 18 is performed to obtain a zenithal perspective.

A computer vision algorithm has been developed that can detect each robot by searching on the

image for a well-defined circular shape—as seen in Figure 19a. Once detected, the disk will determine

the robot position and its orientation, after a correction of the viewing angle of the head of the robot

(which produces a false projection on the ground). This adjustment is described in Figure 19b.

Sensors 2013, 13 14977

Figure 17. Graphical overview of the auxiliary platform for measuring the real position of

robots. Note the four cameras distributed on the ceiling of the game field.

Figure 18. Perspective correction of the captured images. Left: original image,

Right: image after homography.

Figure 19. (a) Circular disk placed on the head of the robot for ceiling camera detection.

(b) Correction of the perspective effect.

(a) (b)

The heights of both the ceiling camera and the robot head are used to compute the over-measure

produced (as shown in Figure 19b) and the distance correction is obtained.

Sensors 2013, 13 14978

One example of a real situation is introduced in Figure 20. In that image, a robot position is

detected by the recognition of the disk (red box). The corrected real position of the robot has been

marked with a black box (corresponding with the feet positions).

Figure 20. Recognized (red square) and corrected (black square) position of a robot in the image.

The ceiling camera system works with four QVGA images due of limited bandwidth restrictions in

the installation. These four images detect the robot on the game field. Because of low resolution and

the limited configurable parameters of the cameras, the results suffer a positioning error that can vary

from ±10 mm to ±100 mm and an orientation error from ± 5° ± 15° depending on the area.

7.3.2. Localization and Positioning Results

To appreciate the improvements obtained with the proposed localization system a set of tests was

carried out after selecting the number of particles to be used. As previously indicated, the reduced

number of particles needed for the filter performance is one of the benefits of our proposed method.

Therefore, we must determine the optimum number of particles. Several normal playing situations

have been performed configuring the filter to work with different numbers of particles, storing in each

case the computational cost of execution. Each execution was running for about five minutes, and the

times were computed as the difference in time before and after the filter routine. The results obtained

are shown in Table 1. For each selected number of particles it was determined if unstable situations

due to the non-convergence of the algorithm occurred or not, and marking as stable or unstable the

corresponding test.

As expected, the results in Table 1 show that a lower number of particles leads to slower execution

times in a quasi-linear behavior. However, we must also be taken into account that for 10 and

15 particles, instability in execution was detected. Therefore, 20 particles is the minimum number of

particles that guarantees stable behavior and a reduced execution time. For that reason, the following

tests were performed using only 20 particles because it offers a good compromise between reduced

execution time and stability.

Sensors 2013, 13 14979

Table 1. Table of execution times obtained by varying the number of particles used in the filter.

of particles Min. Time (ms) Average Time (ms) Max. Time (ms) Stability

10 0.09 0.24 1.12 Unstable
15 0.12 0.28 1.24 Unstable
20 0.14 0.29 1.35 Stable
50 0.32 0.89 2.98 Stable

100 0.67 1.71 5.94 Stable
150 0.94 2.76 7.03 Stable
200 1.29 3.73 9.29 Stable

After this preliminary decision was taken, several tests with and without the proposed localisation

procedure were performed to compare the results. The first experiment was intended to evaluate the

accuracy of the position estimation using only odometry during a real game. During this test, the robot

played in the same way it would in a regular match. The position and orientation errors corresponding

to a real situation that occurred just two minutes after the game started are plotted in Figure 21a. As

can be seen in these plots, the deviation obtained between the real and the estimated orientation grows

to 180º, producing a mistaken identification of each half of the field. The estimated position also

shows large errors of up to five meters prevent the robot from entering into useful play.

The same test was then executed using the proposed localization method. The results of this second

test are plotted in Figure 21b. The plotted data corresponds to 10 min, the length of a half during an

SPL match. In this case, the robot estimated its position with a mean error of 387 mm and orientation

with a mean error of 15°.

Figure 21. Localization tests result using: (a) Odometry-based system. (b) Modified

particle filter localization system.

(a) (b)

Although the presented results may not be as accurate as those obtained by other approaches

presented in Section 2, it must be taken into account that localization results do not depend exclusively

on the localization method. Thus, the quality of perceptual information (such as distance estimation

Sensors 2013, 13 14980

and the odometry system), or the number of features used for position estimation, may be improved to

produce better location results. Furthermore, the provided results must also be affected by the errors

produced by the arrangement of the cameras used for validation.

Another experiment was also conducted to evaluate the accuracy of the positioning system. The

robot was situated on the edge of the game field and was instructed to go to the center of the game

field. In the first test, the robot used its own odometry to do the walk, but in the second test, it used the

modified particle filter. The results are plotted in Figure 22, respectively. In these figures the estimated

trajectories followed by the robot (in blue) and the real trajectories (in red) are plotted on the game

field, showing again major differences between the results of both tests.

In Figure 22a, the robot estimates a straight trajectory to the center, but in the real world the

position reached is two meters and 50° from the estimation. Figure 22b shows that during the entire

walk the real and estimated positions are similar (position error: 250 mm and orientation error: 17°).

Figure 22. Positioning accuracy tests results using: (a) Path followed using

odometry-based system; (b) Path followed using the localization system.

(a) (b)

Figure 23. Results of the ‘kidnapped robot’ test using the proposed resampling PF (time is

relative to kidnapping).

Once demonstrated the performance of the proposed localization system on the real game situation,

it seems appropriate to check the performance of the filter when a ‘kidnapped robot’ situation is

produced. In a new experiment, during a normal play situation, the robot was manually displaced to

another position in the field that was about 3m away from the previous position. The robot used the

Sensors 2013, 13 14981

proposed resampling PF step based on the reliability of the estimation to validate the proposed filter.

Figure 23 shows that about 30 s after the kidnap, the robot had corrected its position and showed the

same performance as before the kidnapping.

The kidnapped robot situation was also repeated using a classical resampling PF step, instead of the

proposed step. Figure 24 shows that the robot can recover its correct estimation, but in this case,

recovery time was around one minute. The differences between these two tests can be explained by a

better adaptation to the dynamic requirements of the filter shown by the proposed method in

comparison with the classical approach.

Figure 24. Results of the ‘kidnapped robot’ test using the classical resampling method.

8. Conclusions

In this article a complete procedure to implement a reliable self-localization method has been

described, ranging from the perception system to the localization system itself. This localization

system has been applied to Nao robots used in the SPL League, but it could be generalized for other

humanoid robots.

Firstly, a sensor modeling method and the subsequent auto-adjust procedure to improve the

measuring system and the perception of the environment was described. As demonstrated by the

experimental results, this auto-adjust can help produce good distance estimations from features in the

game field.

A new implementation of the particle filter that operated by finding the best particle in every cycle

by evaluating coherence with each feature and then comparing the coherences was described. The best

particle determines the sensor resetting process in case of a bad location in the game field. This filter

requires a reduced number of particles in comparison with other methods, thus decreasing the

CPU load.

The performance of the proposed self-localization procedure was tested. For this purpose, an

auxiliary arrangement of ceiling cameras was used to obtain the real position of the robot. A study of

the execution times was made to decide the optimum number of particles.

The positioning results obtained during tests show an average deviation of 387 mm in position and

15° in orientation, which gives the robot the capability of playing a whole half without becoming lost,

differentiating clearly between both goals, and being aware in which side of the field it is located. The

experimental positioning results also show that the robot can obtain its position with a deviation of

250 mm—precise enough to enhance strategy and avoid entering forbidden areas of the field.

Sensors 2013, 13 14982

The performance of the proposed filter during ‘kidnapped robot’ situations was tested—and proved

to be faster than other methods. The situation was solved in only 30 s thanks to a dynamic re-sampling

step that improves the estimation when reliability in the estimation decreases. Therefore, this system

has proven to be an essential element for improving the game and providing a real challenge for

opposing teams.

Acknowledgements

This work has been supported by the Spanish Science and Innovation Ministry (MICINN) under the

CICYT project COBAMI: DPI2011-28507-C02-01/02. The responsibility for the content remains with

the authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Van der Molen, H. Self-Localization in the RoboCup Soccer Standard Platform League with the

Use of a Dynamic Tree. Bachelor Thesis, Faculty of Science, University of Amsterdam:

Amsterdam, The Netherlands, 2011.

2. Fox, D.; Burdgard, W.; Deallert, F.; Thrun, S. Monte Carlo Localization: Efficient Position

Estimation for Mobile Robots. In Proceedings of the National Conference on Artificial

Intelligence, Orlando, FL, USA, 18–22 July 1999; pp. 343–349.

3. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F. Robust Monte Carlo localization for mobile robots.

Artif. Intell. 2001, 128, 99–141.

4. Rubin, D.B. Using the SIR algorithm to simulate posterior distributions. Bayesian Stat. 1988, 3,

395–402.

5. Burguera, A.; González, Y.; Oliver, G. Sonar sensor models and their application to mobile robot

localization. Sensors 2009, 9, 10217–10243.

6. Pizarro, D.; Mazo, M.; Santiso, E.; Marron, M.: Jimenez, D.; Cobreces, S.; Losada, C.

Localization of mobile robots using odometry and an external vision sensor. Sensors 2010, 10,

3655–3680.

7. Payá, L.; Fernández, L.; Gil, A.; Reinoso, O. Map building and monte carlo localization using

global appearance of omnidirectional images. Sensors 2010, 10, 11468–11497.

8. Laue, T.; Röfer, T. Particle Filter-based State Estimation in a Competitive and Uncertain

Environment. In Proceedings of the 6th International Workshop on Ambient Intelligence

Embedded Systems, Vaasa, Finland, 6–7 September 2007; pp. 91–102.

9. Coltin, B.; Veloso, M. Multi-Observation Sensor Resetting Localization with Ambiguous

Landmarks. In Proceedings of the 25th AAAI Conference on Artificial Inteligence, San Francisco,

CA, USA, 7–11 August 2011; pp. 1462–1467.

10. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press; Cambridge, MA, USA, 2005;

pp. 69–70.

Sensors 2013, 13 14983

11. Barrett, S.; Genter, K.; Hester, T.; Khandelwal, P.; Quinlan, M.; Stone, P. Sharing is Caring:

Better Awareness through Information Sharing. Report, Department of Computer Science,

University of Texas: Austin, TX, USA, 2011.

12. Jochmann, G.; Kerner, S.; Tasse, S.; Utbann, O. Efficient Multi-Hypotheses Unscented Kalman

Filtering for Robust Location. In RoboCup 2011: Robot Soccer World Cup XV. Springer:

Berlin/Heidelberg, Germany, 2012; pp. 222–233.

13. Bais, A.; Deutsch, T.; Novak, G. Comparison of Self-Localization Methods for Soccer Robots. In

Proceedings of 5th IEEE International Conference on Industrial Informatics, Vienna, Austria,

23–27 June 2007; pp. 443–448.

14. Tseng, C.H.; Chang, C.W.; Jwo, D.J. Fuzzy adaptive interacting multiple model nonlinear filter

for integrated navigation sensor fusion. Sensors 2011, 11, 2090–2111.

15. Vega, J.; Perdices, E.; Cañas, J.M. Robot evolutionary localization based on attentive visual

short-term memory. Sensors 2013, 13, 1268–1299.

16. Laue, T.; Röfer, T.; Gillman, K.; Wenk, F.; Graf, C; Kastner, T. B-Human 2011—Eliminating

Game Delays. Report, German research center for artificial intelligence and safe cognitive

systems, University of Bremen: Bremen, Germany, 2011.

17. Echegoyen, Z.; Lopez-Guede, J.M.; Fernandez-Gauna, B.; Graña, M. Visual servoing of legged

robots. J. Math. Imaging Vis. 2012, 42, 196–211.

18. Khandelwal, P.; Hausknecht, M.; Lee, J.; Tian, A.; Stone, P. Vision Calibration and Processing on

Humanoid Soccer Robot. In Proceedings of the 5th Workshop on Humanoid Soccer Robots,

Nashville, TN, USA, 7 December 2010; pp. 71–76.

19. Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16,

641–647.

20. Laue, T.; Jeffry de Haas, T.; Burchardt, A.; Graf, C.; Röfer, T.; Härtl, A.; Rieskamp, A. Efficient

and Reliable Sensor Models for Humanoid Soccer Robot Self-Localization. In Proceedings of the

4th Workshop on Humanoid Soccer Robots, Paris, France, 7 December 2009; pp 22–29.

21. Heikkilä, J.; Silven, O. A Four-Step Camera Calibration Procedure with Implicit Image

Correction. In Proceedings of IEEE Computer Society Conference on Computer Vision and

Patern Recognition, San Juan, Puerto Rico, 17–19 June 1997; pp. 1106–1112.

22. Tsai, R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision

metrology using off-the-shelf TV cameras and lenses. IEEE Int. J. Robot. Autom. 1987, 3, 323–344.

23. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.

Intell. 2000, 22, 1330–1334.

24. Remondino, F.; Fraser, C. Digital camera calibration methods: Considerations and comparisons.

Ine. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 266–272.

25. Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed.; California

Technical Publishing: San Diego, CA, USA, 1999; pp. 277–284.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

