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Abstract: This paper deals with the problem of humanoid robot localization and proposes 

a new method for position estimation that has been developed for the RoboCup Standard 

Platform League environment. Firstly, a complete vision system has been implemented in 

the Nao robot platform that enables the detection of relevant field markers. The detection 

of field markers provides some estimation of distances for the current robot position. To 

reduce errors in these distance measurements, extrinsic and intrinsic camera calibration 

procedures have been developed and described. To validate the localization algorithm, 

experiments covering many of the typical situations that arise during RoboCup games have 

been developed: ranging from degradation in position estimation to total loss of position 

(due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is 

based on the classical particle filter algorithm. The main contribution of this work is a new 

particle selection strategy. Our approach reduces the CPU computing time required for 

each iteration and so eases the limited resource availability problem that is common in 

robot platforms such as Nao. The experimental results show the quality of the new 

algorithm in terms of localization and CPU time consumption.  
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1. Introduction 

The RoboCup SPL is a robotic competition that features soccer matches between two teams of five 

Nao humanoid robots. The Nao is a small humanoid robot manufactured by the French company 

Aldebaran Robotics (Paris, France). In this league, the localization system has become as important as 

any other basic task. Precise information about robots’ positions is essential for achieving fluid 

movements in the field and playing as a team to score goals and win matches. Recent changes in the 

rules have set the same color for both goals. Until now the two halves of the field could easily be 

differentiated by checking the color, but this option is no longer available and this task must be handled 

by the localization system. Thus making self-localization more important in this competition—as has 

occurred in other areas of robotics where a high degree of autonomy is needed. To obtain a reliable 

localization system, the kinematic system and sensorial information (inertial, visual, etc.) must  

be adjusted. 

In this paper, the implementation of a full localization system is described: ranging from data 

acquisition to localization itself. All the introduced developments are part of the improvements carried 

out by the Hidalgos Team that is actively involved in the SPL. Three main goals are achieved:  

 Firstly, the implementation of a vision-based measuring system to obtain information 

regarding robot surroundings. This goal requires a previous study of the camera settings and 

development of a new software tool for obtaining these settings and evaluating how to 

compensate for errors.  

 The second goal is the definition of a local model system for modeling the sensed 

surrounding. Auxiliary tools must be implemented that enable the robot to deal with the 

information provided by the vision system.  

 Finally, the main goal is the localization system and global modeling, which must manage 

the information from the local model to estimate the real position of the robot and its 

equivalent global model.  

This article is organized as follows: in Section 2 the problem of localization and some of the most 

common solutions are discussed. The following section discusses the architecture used by the Hidalgos 

Team, while Section 4 describes the main characteristics of its perception system. The developments 

of the previously referred goals are contained in Section 5 (distance estimation), Section 6 (local 

modeling) and Section 7 (localization system). In each section, the work performed and the results 

obtained are carefully described. Conclusions are presented in Section 8. 

2. The Localization Problem  

An increasing number of studies have focused on the localization problem and this has promoted a 

constant evolution of these systems. Therefore, new localization methods have been developed as 

existing techniques have been improved. 

Early location systems were purely based on odometric readings, but this approach can provide 

erratic values due to the effect of foot or wheel slippage, or unpredicted slack in the joints in the case 

of humanoid robots. Moreover, these errors cannot be corrected because of the absence of any 

feedback, which could help the robot detect its errors. Thus, most sophisticated localization systems 
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make use of sensors to provide such feedback. Sensorial information combined with an appropriate 

statistical procedure enables an estimation to be made of the robot position with a certain degree of 

accuracy. The robot soccer teams that participate in the SPL competition have adapted most of their 

localization systems. In [1] a compilation of the methods used by some of the participant teams can be 

found—as well their advantages.  

One popular method for localization in mobile robotics is the particle filter (PF) and its derivatives. 

Most implementations are based on the Monte Carlo particle filter (MCL), as described in [2,3]. The 

MCL method represents an approximation, based on a finite number of random samples (characterized 

as particles) in the workspace. Each of these particles has an assigned weight corresponding to its 

probability of matching the observation. Consequently, the belief of each state is determined by a set 

of tuples: 

  niii wxxBel ,...,1,)(   (1) 

This belief distribution is expressed as the output of a Bayes filter that estimates the robot position: 

Bel(xt ) 
p(ot | xt ,at1,...,o)p(xt | at1,...,o)

p(ot | at1,...,o)
 (2)

Normalizing with n as a constant: 

n  p(ot | at1,...,o)1 (3) 

Bel(xt )  n.p(ot | xt ) p(xt | xt1,at1)Bel(xt1) dxt1 (4) 

The evolution in time of this set of particles is conditioned by the actions performed by the robot in 

the specified period of time. The progression of these values in the PF is usually determined by a 

recursive update through three steps: 

(1) Particle distribution update and resampling: in this step each particle xi(t-1) on the set is 

updated according to the previous belief distribution and the weights on that iteration: 

 (5) 

(2) State update: the current set of positions xi(t) is computed by taking into account the 

performed action a(t-1), which usually correspond to a displacement of the robot and the 

previous distribution x(t-1): 

 (6) 

According to the sampling/importance resampling (SIR) method, described in [4], the 

proposed distribution for the current iteration can be expressed as: 

 (7) 

(3) Particle weighting: the proposed distribution qt expressed in Equation (7) is related with the 

distribution obtained in the Bayesian filtering procedure expressed in Equation (4), which 

takes into account the sensorial information (including the observations) in the Equation. As 

a result of this comparison, the weighting value of each particle involved in the filter can be 

obtained as follows: 

xi(t 1) ~ Bel(x(t 1))

xi(t) ~ p(x(t) | x(t 1),a(t 1))

qt : p(x | xt1,at1)Bel(xt1)
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(8) 

These weights must be scaled, as the sum never exceeds 1. Thus, the value of the importance 

characteristics of the ISR method is obtained in each new iteration.   

It has been demonstrated in [3] that successive iterations of this algorithm make the original set of 

particles converge on the distribution Bel(x), in which the number of particles is inversely proportional 

to the speed of convergence. 

This method can be adapted to work with information provided by several types of sensors. In [2,3] 

the experimental results are obtained using a robot equipped with a laser range sensor combined with a 

sonar device. Other studies apply this method by using other arrangements of sensors, such as that 

presented in [5].  

However, for our purposes, the application of the MCL using on-board cameras is a preferable 

option. These on-board cameras can be used as the main perceptive sensors in addition to odometry. 

The most commonly used types of cameras are omnidirectional or pan and tilt cameras (the cameras in 

the Nao’s head can be rotated via the neck). Several examples are presented in [6], and in [7] up to 

seven methods are introduced in which the weight of the particles is obtained from visual information.  

Focusing on the RoboCup SPL, several participant teams have chosen to use an MCL-based 

localization system. Most of these implementations attempt to modify the original MCL in order to 

adapt its operation to this particular environment. One similarity among all these modifications is the 

definition of how the ‘sensor reset’ procedure is applied. When a ‘lost’ situation is detected by the 

system (usually produced by a kidnapped robot event or a fall of the robot itself) this procedure 

enables the filter to be recovered.   

The main issue to discuss about the sensor resetting is how to detect a ‘lost’ situation. Improper use 

of this method will produce an anomalous performance of the filter, leading to new lost situations or 

wrong estimations. New features were introduced in the filter to achieve sensor resetting only in those 

cases where no other solution could be applied. The German team B-Human encourages the use of PF 

localization and validates its application through their achievements in the RoboCup competitions.  

B-Human proposes an implementation known as the augmented-MCL filter, as described in [8]. In this 

approach, the resampling method computes the number of particles to be resampled by the inclusion of 

new parameters, which relate the weighting values with the main goal of increasing or decreasing the 

effect of the resampling step, as described in the following Equations:  

 (9)

 (10)

 
(11)

where Wavg is the average weight of the current iteration, and where αfast and αslow are constants that 

determine the dynamics of the filter. In the iteration, the resampled particles are obtained by a simple 

comparison between their probabilities and the resetting value obtained in Equation (11) and this 

approach enables the filter to perform as dynamically as needed. 

wi  p(o(t) | xi(t))

W fast (t) W fast (t 1)  fast (Wavg W fast )

W fast (t) W fast (t 1)  fast (Wavg W fast )

Wreset max(0,1
W fast

Wslow

)
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Other authors have started with the augmented-MCL or adapative-MCL filter and tried to improve 

the sensory information by adding a multi-observation system, as proposed in [9], to deal with 

ambiguous landmarks that can induce the assignation of significant weight to wrong particles and thus 

cause erroneous estimations. In the cited approach, when a sensor reset event turns on, the new 

particles generated for replacing the old particles will not, as is usually the case, be totally random. 

Instead, the multi-observation method is taken into account when spreading a new distribution of 

particles on those locations consistent with the current multi-observation. This enables a quicker 

convergence to the real position—as long as the information is correct.  

At the same level of relevance is the unscented Kalman filter (UKF) based localization system [10]. 

In the same way as other types of Kalman filters (KF) this technique offers low computational cost and 

is represented as a normal distribution and parameterized as a Gaussian function. UKF has 

demonstrated better prediction approximation than other KF modifications by using a deterministic 

sampling technique to select a minimal set of samples from the observations, as shown in [10]. 

Typically, the belief of the position is calculated by a 2-step update in which the first step must deal with 

‘time update’, while the second performs the ‘measurement update’. Both steps can be expressed as: 

(12)

 (23)

In the same way as MCL, Kalman filters can work with an on-board camera as the main perceptive 

sensor. Consequently, these filters can also be established as a functional localization system for 

general purposes, and specifically, RoboCup. Most approaches used in SPL are centered on  

multi-modal variations of the UKF and these demonstrate better results than the original 

implementation of UKF. Measurement functions must be previously linearized in order to obtain the 

Gaussian representation, and this usually leads to unsatisfactory results and a divergence between real 

and predicted positions.  

The Austin Villa team (The University of Texas at Austin, Austin, TX, USA) , winner of the 2012 

RoboCup competition hosted in Mexico, used ‘Multi-modal 7-state UKF’ localization to obtain 

reliable estimations. As reported in [11], in a normal UKF, belief in a 7-dimensional space state 

involves seven distinct Gaussian representations; but the multi-modal filter only takes into account a 

single representation defined as the weighted sum of all seven Gaussians. 

A general implementation for an N dimensional filter must be introduced as follows: given a 

concrete model x(t) with N Gaussian distributions, each representing the belief of an estimate estate xi 

with a covariance matrix Pi and a weight αi, the final distribution of the model is expressed as: 

 (14) 

 (15) 

The multi-modal approach was said to be in [12] a technique with a high computational cost 

because of the Gaussian distributions involved in the weighted sum. For this reason, a new method 

based on the general idea of the multi-modal filter was developed in an attempt to solve these issues. 

This new approach, introduced by Nao Devils in [12], is the ‘Multi-hypotheses UKF’. Deleting some 

bel(xt )  p(xt | ˆ x t ,xt1)bel(xt1)dxt1
bel(xt ) p(zt | xt )bel(xt )

bel(x(t))   i
1

(2 )n / 2 |Pi |1 / 2 
i1

n



  e(1/ 2(x( t ) ˆ x i )T Pi
1 (x( t ) ˆ x i ))
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of the terms in the Gaussian sum has been proposed to increase the efficiency of the filter. However, it 

must be pointed out that the discard method may lead to a loss of accuracy in estimation—as well as  

other problems. 

As a new feature, a resampling step similar to that applied in the MCL has been added. In that step, 

the weighting updates are adjusted to discard the outlier values. This approach also adds new terms 

based on sensor measurements, independently of previous measurements. Low-weighted models were 

introduced enabling the filter to achieve a ‘sensor resetting state’ that will be explained in more  

detail below. 

A comparison between UKF and MCL can be found in [13], which reviews the standard algorithms 

for both methods and discusses some simulation results. The main conclusion is that the MCL method 

is computationally worse than UKF. However, it must be pointed out that MCL still offers some 

relevant advantages: (a) MCL is more accurate in certain cases; and (b) MCL can deal efficiently with 

problems such as kidnapped robots. Moreover, some MCL implementations with a small number of 

particles can computationally perform in a similar way to the UKF, although performance may  

be compromised.  

Localization systems for humanoid robots usually follow the path created by simpler mobile robots, 

such as wheeled robots. It is usually easy to find studies centered on new techniques and alternative 

methods that have not yet been transferred to the SPL frame. In [14] a variation of the UKF is 

introduced that implements a fuzzy logic adaptative system. As has been shown, the main problem in 

using KF is the inability to deal with non-linear systems because of the process and measurement 

noises; and the fact that sensor fusion is required. To improve localization accuracy, a fuzzy inference 

system has been designed to determine the bounds of that noise. In [15], a visual self-location 

evolutionary algorithm is presented that estimates robot location. For that task, several sets of 

individual positions (similar to particles) are characterized with a certain ‘health’ value obtained after 

the image analysis. Each of these individual positions is placed in the space based on the perceived 

information. A fine-grain search among all these positions is performed. This algorithm is specially 

designed for dealing with symmetries that work with current visual information or visual memory as is 

defined in the study. To validate this last method, two experiments are shown that involve the Nao 

robot in an environment that is different to RoboCup.  

Finally, it must be emphasized that an efficient localization system must always include reliable and 

continuous information about the environment. Thus, the acquisition and processing of perceptual 

measurements is a key to success in the localization problem. In [16], several techniques and upgrades 

for producing faster game play and better localization in SPL are presented, and these include 

synchronized head movement, shared information between robots (similarly to the global ball model), 

and a path planning system. 

3. Hidalgos Team Control System Architecture 

The Hidalgos Team control system is based on several SW modules encapsulated into libraries that 

are organized according to their function. The main modules of the system can be seen in Figure 1 and 

are termed: 

 COMMS: Dedicated to communications between robots and game referee. 
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 PAM: Deals with the perceptual hardware for obtaining relevant environmental information.  

 CTRL: Responsible of the correct execution of state machines and behaviors involved.  

 GM: Intended for global modeling and position estimation. 

 CMD: Manages access to hardware and system resources.  

Figure 1. Hidalgos Team control system structure overview. 

 

Figure 2. Diagram with the SW routines involved in location and positioning. 

 

Obviously, to perform its tasks the CMD deals with the NAOqi middleware provided by Aldebaran 

Robotics and the OS (which in this case is an embedded Linux distribution). All the information that 

must be shared between distinct modules is exchanged through a shared blackboard structure. 

Also, a distributed management and calibration tool, known as H-Manager, has been developed to 

adapt the robot configuration before the football match. Moreover, this H-Manager enables a quick 

switch between the selected modes and behaviors. 
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The proposed goals of location and positioning will be achieved by the combination of many steps. 

Some improvements in the perception system are needed to obtain a reliable localization. Several 

modules of the Hidalgos architecture may be combined to encourage an optimal flux—from the 

acquisition of the information needed by the system to the previous data treatment involved and 

described in Figure 2. 

4. Perception System in the Hidalgos Team 

As previously discussed, every type of localization system must have sensorial information about 

robot surroundings to determine the current position. This information will affect the performance of 

the localization system. Features in the game field are the main sources of information. Each spotted 

feature is usually characterized by a distinctive color, shape, and position. The issues related to the 

recognition of these characteristics will be detailed in this section. The sensor adjustments required for 

guaranteeing a reliable distance estimation and the auxiliary tool for obtaining the camera settings will 

also be detailed. In each case, the related problems and the adopted solutions are described.   

4.1. The Nao Vision Sensor 

Nao robots have two cameras on the head as depicted in the Figure 3. The two cameras have CMOS 

sensors that provide VGA images at a maximum of 30 fps. Both cameras have the same field of view 

(FOV) angle, which may vary depending on the version, as well as the same offset between the centers 

of the visual beams.  

Figure 3. Camera placement in a Nao robot. Side views of the head camera layout. Note 

the field of view (FOV) of each camera: (a) Nao V3, (b) Nao V4. 

(a) (b) 

These differences can be appreciated by examining Figure 3. The robot head has been assembled on 

the body through a neck formed of two servomotors, which are responsible of the pitch and yaw 

movements respectively. These movements allow the robot to perform a visual scan to recognize 

objects in a large range defined as the frontal side of a sphere bounded by the configuration of the 

cameras and servos. These movements give Nao the capacity to perform visual servoing for tracking 

objects such as the soccer ball and to keep it in the FOV. A revision of the visual servoing procedures 

can be found in [17].  
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4.2. Image Capture 

To perform better localization and more efficient game playing, the capture method has been 

improved by adding a camera management system to the Hidalgos project. Its main function is to 

provide an optimal use of both cameras by enabling the correct camera for each instant. 

For this purpose, three operating modes are introduced: upper camera fixed; lower camera fixed; 

and camera alternation. The first mode (upper camera fixed) is usually the least used mode due to its 

activation conditions and its effective range limitations. This mode will only be used in those cases 

where the ball or other relevant object is situated several meters from the robot and it must be tracked. 

The second mode (lower camera fixed), in contrast with the previous mode, is the mode most often 

used during the match. This mode must be active when the robot tracks an object situated near the 

robot. The third mode (camera alternation) is activated when a scan of the environment must be made 

and the limits of the game field do not appear in the FOV of the lower camera, as illustrated in Figure 4. 

This third mode is also used when a shot-to-goal must be made and the ball cannot be framed with the 

goal in the same picture. By using this alternation, a considerable amount of unnecessary head 

movements are saved and more information is obtained per cycle.    

Figure 4. Different situations and camera modes: in the left picture, image information 

from both cameras is required, while in the right picture, only the lower camera is required. 

 

Figure 5. The camera management system offers support for camera activation and 

switching—depending on each robot version. 
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Although both versions (V4 and V3) of the Nao robot have two cameras, the hardware 

configurations vary. The newer V4 has two separate ports for each camera, but in the V3 all the 

cameras use a single port and a switch is used to enable each. Taking this into account, some relevant 

structures have been developed to independently perform image acquisition on both cameras. The 

grabber thread must apply the appropriate method according to the version of the robot that is running 

the code, as shown in Figure 5.  

4.3. Segmentation 

Once a frame is captured, the contained information must be extracted. The first step is to perform 

the segmentation process by colors. A look up table (LUT) is used for this purpose, which has 

previously been configured using the H-Manager application for the definition of the range of values 

that match each color. This process has a high computational cost, as it must examine each image pixel 

and determine its color. To lower these costs, a subsampling method known as scanlines was 

implemented as described in [18]. This technique avoids processing the whole image by skipping 

certain pixels, and so produces the same cost as would be obtained by processing a low-resolution 

version of the picture. Thus, the number of skipped pixels in this process is strictly related with the 

computational costs as shown in Figure 6. However, skipping pixels increases the difficulty of finding 

a feature in the image. If the number of ignored pixels is too high, some information may be missed. 

To preventing this problem arising, a system for managing the subsampling method was implemented.  

Figure 6. Segmentation times vs. different image resolutions. 

 

The vision system must select a suitable resolution every time. The current position of the head and 

active camera must be taken into account. Thus, when the robot is looking at its own feet the lowest 

resolution can be used, because all the spotted objects will fill a large part of the image and so enable a 

remarkably large amount of pixels in the image to be skipped. In other cases, such as when the top 

camera is being used, almost the whole image must be processed because some objects such as the ball 

will only represent a few pixels on the image and skipping some can induce it to overlook the ball. 

Nevertheless, in particular cases, such as when the robot is looking for big objects like the goal, the 

resolution can be slightly lower without changing the results. 
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4.4. Blob Forming and Object Recognition 

Starting from the segmented picture, all the contiguous regions of the same color must be 

assembled, forming a blob that will potentially represent a game feature. For this purpose, the seed 

region growing (SRG) technique [19] is used in our approach. Figure 7 shows the complete sequence 

followed in a real image. 

By providing the spotted blobs, the recognition system can determine which corresponds with a 

game object and (if it were the case) what type of object they represent. Blob classification is 

performed by analyzing characteristics of the blobs such as their size, position from the horizon, and 

other parameters that can be configured using the H-Manager application. 

Figure 7. Results from image acquisition and processing: (a) Original picture;  

(b) Segmented image; (c) Bounding boxes of the goal and ball. 

 
(a) (b) (c) 

4.5. Distance Estimation 

One of the most important measurements that can be extracted from the blob is the distance 

between the robot and the feature. Nevertheless, the process to obtain this value from the image is not 

trivial. Thus, a distance estimation procedure must be implemented. In this process, several camera 

factors that relate the real 3D world objects with the plain 2D figures found on the image are involved. 

Figure 8. A simple geometrical calculus can provide the distance estimation of the feature of interest. 

 

For computing the correct relations, a two-step adjustment process of the camera has been proposed 

in this paper. The first step deals with the intrinsic adjustment to compensate for lens distortion, while 

the second step performs an extrinsic adjustment based on the position of the camera. Finally, by a 
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simple triangulation involving the real angle between the camera and the vertical axis of the robot and 

its height, the real distance can be estimated as illustrated in Figure 8.  

Once the camera has been adjusted through this process, the distance between the robot and the 

object of interest can be obtained, expressed in its polar form, and starting from the visual information. 

The whole process is represented step by step in Figure 9. 

Figure 9. Diagram for object-to-robot distance estimation. 

 

5. Camera Settings and Error Compensations 

As discussed in the previous section, the camera settings are the key for success in vision-based 

distance estimation. For that reason, it is necessary to obtain the sensor model and the parameters that 

enable us to perform the camera adjustment. There are many studies focused on camera-based distance 

estimation and camera adjustments. A clear example can be found in [20].  

5.1. Intrinsic Adjustment 

Intrinsic parameters are required to compensate for the distortion effect on the captured image 

produced by the curvature of the camera lenses. Although there are several relevant methods such as 

those proposed by [21] or Tsai [22], we selected the method based on the Zhang [23] procedure, as 

suggested in [24]. By extrapolating the previous conclusions obtained in Section 4.5, we can assume 

that a relationship can be found between the number of pixels in the image, the angle of separation 

between them, and the real position of the camera in the 3D world.  

By using pixel-angle conversion it is possible to estimate the correct distance to non-centered 

features. The aperture of the lens, in both horizontal and vertical axis, and the image resolution, 

characterize this conversion. Unlike the intrinsic case, this correction must be applied separately from 

the top and bottom camera, as there are no two identical lenses. 

It must be also pointed out that lenses introduce additional non-linear distortion. There are several 

types of distortion, which can be defined as barrel or pin-cushion. The shape of the distortion in the 

image may vary as defined in [23]. After exhaustive analysis of the Nao camera, Figure 10 shows an 

example of the radial distortion of the lens.  
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The correction must be made along each axis if the lens does not have to be symmetrical. In this 

particular case, the ‘estimating radial distortion by alternation’ method was applied as described in [23] 

in the ‘dealing with distortion’ chapter. This method involves the use of three parameters ki for each 

axis obtained from the following Equation (16): 

(u  u0)(x 2  y 2) (u  u0)(x 2  y 2)2 (u  u0)(x 2  y 2)4

(v  v0)(x 2  y 2) (v  v0)(x 2  y 2)2 (v  v0)(x 2  y 2)4











k1

k2

k3



















u  u

v  v









 (16) 

New capability for dealing with the distortion has been implemented in the system—depending on 

the radius from the image center to the pixel of interest.  

Figure 10. Example of radial distortion of the Nao camera lens: the coefficients marked on 

each circle represent the factor of distortion induced in each pixel located in that area (units 

are in pixels). 

 

5.2. Extrinsic Adjust 

The extrinsic parameters of the camera describe the coordinate transformation between the robot 

and the object represented by a given point of reference in an undistorted image. These parameters are 

strictly dependent on camera position as seen in [20]. The distance measured is directly related to the 

head position that relays the configuration of the servo-motors at this time. A study of the 

characteristic profile of each servo involved on the camera movement must be made. The profile of the 

servo positions has been introduced as the main factor responsible for the equivalence between an 

image point and its corresponding point in the 3D world. In other words, this is the main reason why a 

full study of the behavior of the motors will lead to an accurate distance estimation. 

It must also be taken into account that when the camera plane and the ground plane form a near  

π/2 angle the resolution on the measurements decreases drastically. Thus, this situation must be 

avoided during operation of the robot, and the head pitch angle must be carefully adjusted. This 

adjustment will rely in the NAOqi’s kinematic system, which can provide a mostly reliable 

measurement of the camera height; while the value of its yaw angle can be modeled with a fixed offset. 
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By making an empirical test, the profile of the camera pitch movement can be obtained for every 

robot, associating the central point of the image with its corresponding distance in the real world. 

Figure 11 shows a polynomial function that can be used to adjust the shape of the empirical 

measurements, giving us the capability of making a straightforward conversion from angle to distance. 

This procedure can be applied for both cameras, taking into account that they use the same motor, and 

consequently, present the same adjustment, but with the offset between camera positions. 

Figure 11. Example of polynomial adjustment (based on empirical measures) that 

establishes the relationship between head angles and distance-to-features centered in  

an image. 

 

5.3. Auto-Adjust Procedure 

After both extrinsic and intrinsic parameters have been obtained, a reliable estimation can be 

performed. However, it must be taken into consideration the fact of that each robot is likely to show 

some differences in the values of the configuration parameters. Moreover, these values may be 

modified over time due to mechanical damage (falls or knocks). This is the main reason we designed 

an auto-adjusting system—so that each robot can obtain its own parameters by executing an 

autonomous procedure.  

Focusing on this idea, an OpenCV based application has been developed to obtain these parameters 

and store them on an XML file located in the robot memory; enabling the configuration parameters to 

be loaded each time the robot is restarted. To adjust both (extrinsic and intrinsic) types of parameters, 

the robot must be placed in a known position and once there, it must recognize some characteristic 

features of the game field (such as corners or line crossings) using the OpenCV application. 

The auto-adjust system is designed as a new functionality offered by the previously mentioned  

H-Manager tool. The developed algorithms are not running in the robot hardware, instead of this the 

application applies for a picture from the robot and the subsequent image processing is carried out 

using the H-Manager. The application then calculates the new position for each head servo, and sends 

the information to the robot again. Thanks to this mechanism, the adjusting process can be supervised 

by the computer; working quickly in a distributed and supervised manner. 
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First of all, the extrinsic parameters will be obtained by making the servomotors of the camera 

move to locate the lines of the game field, whose distance to the robot is known because the robot’s 

position is known. The obtained (distance, pitch angle) pairs of values measured during the camera 

movement are used to obtain the parameters of the polynomial adjust, as shown in Figure 11. 

To find the robot position that offers the best calibration through the lines, an optimization method 

has been developed that provides the required location by evaluating all the potential positions. 

The described calibration procedure is applied on the head bottom camera, and taking into account 

that both head cameras move in common (always having a fixed offset between them) the adjusted 

polynomial can also be used for the upper camera by accounting for this offset between cameras. This 

offset between cameras can be measured for better performance by finding the same point with both 

cameras and computing the difference between the reached positions.  

The next step in the auto-adjust procedure is to obtain the intrinsic parameters to compensate for 

lens distortion. For this purpose we have chosen to use a game field feature that is easy to locate and 

has a well-defined point: the corner. Thus, the camera is moved to locate the corner point in the center 

of the image, which is supposed to be unaffected by any kind of radial distortion. Once this point is 

reached, the camera must be moved to find the same feature but from in a non-centered position. This 

operation is repeated several times, enabling several images to be captured that situate the same feature 

in new positions at different radii from the image center and covering all the value range. Equation (16) 

can then be applied to the experimental data, producing a distortion map similar to the one represented 

in Figure 10. During this intrinsic adjust, the image processing algorithm is charged with the task of 

finding the exact corner point from the L-shape of the image, as shown in the Figure 12. 

Figure 12. L-shape recognized on an image (a corner of the game field). This pattern helps 

us to obtain camera settings. 

 

5.4. Estimation Results 

To evaluate the above described auto adjust procedures; an experiment was conducted to compare 

the errors in distance estimation without auto adjust by taking the default parameter values with the 

errors produced under the same circumstances; but after applying the auto adjust procedures. As 

indicated; one of our goals was to achieve the capability of measuring distances between the robot 

position and a given feature.  

The experiments were designed as follows: firstly, the robot was manually placed at several 

distances from the same object, ranging between 0.5 m and 3.0 m, and the distance was estimated 
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using simple triangulation, as indicated in Figure 8. For each position, the distance was measured by 

moving the head to locate the feature of interest in three positions in the image: (a) A feature located in 

the center of the image (centered); (b) A feature located in the lower half of the image (under 

centered); and (c) A feature located in the upper half of the image (over centered). These three 

measuring approaches were chosen to deal with different coefficients of distortion. The errors obtained 

for the three centering approaches are shown in Figure 13.  

In a second phase of the experiments, the robot was re-positioned in the same locations as the 

previous experiment, but in this case, the distances using the same object were measured by taking into 

account the adjusted values of parameters, following the auto-adjust procedure above described. The 

new set of errors obtained in the distance estimation is shown in Figure 14. 

Figure 13. Errors in distance measurement when tested without adjustments.  

 

Figure 14. Errors in distance measurement when tested with adjusted parameters.  

 

In view of the results shown in Figures 13 and 14, it is clear that the set of results obtained using the 

auto-adjust procedure was far more accurate in distance estimation in all the cases: ranging from 2% 
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for short distances and 13% for distances of two meters (the worst case). Unadjusted results yield 

errors of 20% for distances of 0.5 m, increasing with distance values to 100% for 3 m. 

Obviously, unadjusted estimation is not a suitable method for distance estimation, because world 

modeling requires a more precise localization system. Fortunately, the accuracy obtained with adjusted 

parameters seems adequate for world modeling purposes using the proposed particle filter. 

6. Environment Data Processing and Local Modeling 

Once the robot can estimate the distance to objects detected in a captured image, relevant 

information about the main game field features can be obtained. This information will be useful to 

construct the surrounding environment. By processing this data we obtain a local model of the  

game space. 

6.1. Landmarks 

Some elements of the game field in the SPL can be used for information about the robot position. 

However, there is no single distinctive feature that can be used as a single solution. The model of the 

local surroundings can help to reduce the options. Landmarks are defined as the field features to be 

modeled. Currently, the main landmarks used are: the goals, the borderlines of the game field, and the 

information shared by others robots of the same team. Other landmarks have been discarded because 

the increase in computational cost was not compensated with a relevant improvement in position 

estimation. However, future developments based on newer Nao versions (equipped with more 

powerful CPUs) open new possibilities for improvement.  

The goal position usually generates sufficient information to determine the position of the robot in 

the field. This measure has been defined as the relative distance from the robot current position to the 

goal and the inclination angle between the robot orientation and the imaginary axis passing through the 

crossbar expressed in the global system. By considering this information there are only two possible 

situations on the field, as shown in Figure 15a, but usually the result of previous estimations helps to 

nullify one of the options and resolving any uncertainty about the robot position. 

White borderlines also give information that help locate the robot position in a point situated on the 

parallel line separated from the border at the measured distance, with an orientation based on line 

inclination. Figure 15b shows how this information only provides a rough approximation of the real 

position, but offers good information if the robot cannot see the goal and so prevents the particles from 

being scattered around the field. 

Although landmark detection offers an acceptable localization, this is not enough to solve the 

problems caused by the game field symmetry, given that without previous information there is no way 

to discern which midfield the robot playing in—no matter how good the sensed information. By 

inputting the shared information (using communication between players) from robots with a reliable 

position, the robot can reinforce its own information and more quickly converge to a single position by 

discarding an incoherent symmetric position. 
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Figure 15. Possible robot positions (d, θ, φ) deduced by a given landmark detection:  

(a) goal information; (b) borderline information. 

 
(a) (b) 

6.2. Landmark Modeling Filter 

Distance information from each detected landmark is used to model the local surroundings as 

discussed before. As indicated previously, using the auto-adjust procedure already described can 

drastically reduce the errors in distance estimation, but it must be taken into consideration that the 

distance measurement tests have been made with a motionless robot. In real game situations, it is 

highly desirable that the robot be able to make dynamic distance measurements while walking.  

Locomotion vibrations and bounces while walking will affect the quality of the estimation by 

adding noise—which prevents a stable local model being obtained. A filter is proposed to reduce noise 

and enhance the dynamic distance estimations. 

Induced noise appears as a high frequency signal added to the real values. Using a simple mean 

filter could mitigate this problem. After analysis of the usual noise characteristics, we have designed a 

simple moving average filter that obtains the mean of the last 50 distance samples. This type of filter is 

optimal for removing the noise and can be implemented using a fast recursive approach [25]. The 

designed filter will take the last 50 samples to obtain the filtered value, assuming a quasi-constant 

acquisition rate of 55 samples/s. The time window is about 0.9 s. The filter size has been chosen as a 

result of numerous tests showing that the best cost/performance ratio was 50 samples per window. 

However, if the robot loses sight of a certain feature, the filter stops and resets all the previous values 

to avoid using invalid results.   

One of the main problems associated with this kind of filter is the delay produced in the resultant 

value. To cancel the effect of this delay, a prediction step has been added to the filter. In this step, the 

trend of the previous filtered values is analyzed, making an estimation based on the current trend to 

predict the real value instead of the delayed value. Although the predicted result improves the time 

response, it may produce some added noise. Bearing this in mind, another study has been made to 

determine the level of prediction that offers the best balance between temporal and noise  

reduction performance. 
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6.3. Data Integration and Local Modeling Results 

Once each feature detected in the game field has been analyzed, the system fuses all the information 

to establish a local model. This model represents the position of the features detected at a given time, 

deleting all the information relative to previously detected elements that have been lost from sight. 

This action avoids the actualization of local data with the odometrical information and prevents the 

system working with false values.  

Figure 16. Measured distance from robot to right goal. Lower plot: robot trajectory during 

walk. Upper plot: obtained errors in distance estimation during this walk. 

 

Figure 16 shows a simple experiment in which the robot is approaching the goal. During this test 

the real trajectory described by the robot is stored (obtained from a zenithal camera system) and the 

distance measured to the goal. This last value will be used for local modeling and will describe the 

information of the featured position relative to the situation of the robot. The lower 2D plot in Figure 16 

shows the real trajectory of the robot during its displacement from left to right.   

The upper part of the Figure 16 shows the distance errors (in millimeters) obtained during this 

displacement as a function of the real distance to the right goal. In this plot, three different sets of data 

have been represented: (a) measured raw data (blue, very noisy); (b) data after filtering (red); and  

(c) predicted data from filtered values (black). 

Figure 16 illustrates how the quality of the measured distance has been notably enhanced by means 

of the simple filtering procedure described. In the non-filtered data (in blue), the effect of the walking 

bounces on the readings is evident. Also, the filtered set (in red) presents a very reduced amount of 
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noise, but a biased response can be also appreciated, giving a positive mean error of about 250 mm 

(the distance is over-estimated due to the time delay introduced by the filter).   

Finally, the predicted data set (in black) shows a balanced behavior, as the mean error is near to 

zero, while the amount of noise is also very reduced—with a maximum value during the robot walk of 

600 mm for distances above 4 m. As a conclusion, the proposed filter for the distance measurements 

enables us to obtain errors in distance estimations within tolerable margins for local modeling purposes. 

7. Localization System: Algorithm Description and Results 

7.1. Auto-Localization System and Global Modeling 

This section describes the algorithm that has been developed for robot self-localization. As 

previously indicated, we have used a modified version of the particle filter, taking into account some 

features of the augmented filters and techniques inspired by the UKF already used by other RoboCup 

teams. Our implementation corresponds with the following description. 

Given a distribution of a set of X particles where each element is defined as: 

For every filter iteration, the values of the distribution are updated according the translation and 

rotation movements carried out by the robot, which are expressed as an increment in the odometrical 

values given by NAOqi. This action will be represented as action ak; and a noise vk will be added to 

model the odometrical error affected by the reliability coefficient R which will be introduced below:  

A new distribution Z is defined as the probability of making a correct estimation of all the features 

in the field, in this case the goal and the ball. Therefore, each value of probability zi is associated with 

the probability of having a successful estimation S using the particle xi included in the distribution.  

(19)

zi  p(S | xi) (20)

The values of Zk are obtained as a function of the elements in Xk, the previous estimation Ek-1, the 

perceptual observations at time k, and the well-known model of the game field M: 

This procedure belongs to a ‘coherence system’ that tries to find the common elements from the 

global information perceived by the robot. 

Once the Zk distribution is available, the quality of the estimation can be obtained by computing the 

probability of having a successful estimation using each sample on the Xk distribution: 

ZK  [z1..n ] 
pGoal1..n

pLines1..n











 
(17) 

 (18) 

 (21) 

Xk  x1..n  
(x,y)1..n

1..n











Xk  f (Xk1,ak )  vkR

Zk  f (Xk,Ek1,k,M)
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Consequently:  

The set of probabilities of success will determine the value of the reliability R as shown below:  

This coefficient will determine the accuracy of the estimation of the distribution Xk. It may also 

affect the amplitude of the odometrical noise by adding more dispersion to the actualization of the 

particle positions when required. 

The next step is to obtain xref, which is defined as the ideal member for the distribution Xk based on 

the perceptual observations n, the model a priori X, and the previous estimation. In this way, xref 

represents the theoretical position that makes the measured observations adjust to the known model of 

the game field:  

This new element will take part in a new distribution X’ defined as:  

The proposed estimation xref must always guarantee that:  

The obtained reference particle is the most adequate location according to the sensorial information, 

and is obtained through the application of the ‘coherence system’. 

Before proceeding with the resampling phase of the filter it is necessary to assign respective 

weights to each particle. These weights are represented by the distribution W:  

The value of each weight is obtained as the normalization of every probability of success between 

the minimum and the maximum value in the estimation, which corresponds to the xref  probability.  

 
(22) 

 

(23) 

 
(24) 

 (25) 

 (26) 

 
(27) 

 (28) 

 
(29) 

p(xi | S) 
p(xi) p(S | xi)

( p(xx )p(S | xx ))
x1

xn



p(xi | S) 
nzi

zx
x1

xn



R 
p(xi | S)

ni1

in



xref  f (Ek1,k,M)

Xk
'  Xk  xref

Wk  w1..n 

wi 
p(xi | S) min( p(xx | S)xx  X)

p(xref | S) min(p(xx | S)xx  X)
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For this implementation, the number of resampled particles is dynamically modified according to 

the Wthreshold value, which determines the minimum particle weight to remain for the next iteration of 

the filter; otherwise it will be surrogated with a copy of xref. This Wthreshold is obtained as a function of 

the reliability coefficient R and the weight variance s.  

The variance s defined as: 

Finally, the estimation of the pose Ek is obtained by performing a weighted mean of the components 

of the distribution X’k that offers the maximum weight and the reference particle xref.  

This procedure is reflected in Algorithm 1 as follows: 

Algorithm 1: Modified particle filter 

for i=1 to N do 

 x(i) <- prediction(x(i), a,R) 

 z(i) <- probabilityCoherence(x(i),n,M, E) 

end 

for i=1 to N do 

 pS(i) <- calcProbability(x, z) 

 R <- actualizeReliabity(probS(i)) 

 minP <- isMin(probS(i), minP) 

 maxP <- isMax(probS(i), maxP) 

end 

(x_ref, p_ref)<- referenceCoherence(E,n,M) 

W<- scaleWeights(pS, p_ref , minP, maxP) 

s <-calcVariance(W)  

(_x,_w)<-addAndSort(x,xref,w) 

w_thresshold <- findThreshold(W,s) 

while _w(i) < wThreshold do 

 x(i)<- resample(x_ref)  

 i++;   

end  

E<-fuseBestParticles(_x) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 (30) 

 
(31) 

Ek 
xref  X 'W

W  (32) 

Wthresshold  f (s,R)
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The main difference between the presented implementation of the particle filter and others is that 

the weights being assigned are not based on the probability of each particle being in the supposed 

location, but rather on the closeness of each particle to the calculated reference particle. The sensor 

reset is dependent on the size of the best error. If the error value is low, most of the particle values 

must gradually reach the real position by updating their position to locations near the reference 

position—which produces the best error situation. If the best particle shows incoherence between 

sensorial measurements, the threshold value will be increased. This will force the filter to generate new 

random particles and enable convergence to the real position. 

All these new contributions produce a filter characterized by a fast response to each potential 

situation. After several empirical tests, this solution has been shown to perform with a small number of 

particles in comparison with other implementations. As will be discussed in the results section, the 

designed filter can perform satisfactorily when starting from only 20 particles. 

7.2. Positioning System 

Once the position has been estimated, the implementation of a position control is trivial. 

Nevertheless, the challenge is to decide which position needs to be reached by every robot. This 

control only takes part in the game at kick-off, the start of the second half, or after a goal. The 

positions are assigned according to the designated player positions. Each robot has a position, which 

determines its role in the team, and it is considered satisfactory when the robot approximately reaches 

the indicated position, without invading forbidden areas (such as the opposite half or the goalkeeper 

area). The position system structures can be used as the core of future works, for example, in the 

implementation of complex trajectories. 

7.3. Results 

7.3.1. Validating the System 

For a validation it is necessary to acquire both the estimated and real positions. In the first case, the 

robot has the task of writing the estimated position in a file at the same time that it actualizes its global 

position on the GM module. In the second case, the complexity increases because there is no direct 

way to determine the real position. For this reason, an auxiliary platform has been developed to acquire 

this value. 

This platform consists of four webcams on the ceiling of the stadium (the number of cameras 

conditioned by physical restrictions—such as the low height of the ceiling or field of view). Each 

webcam detects each robot that enters its corresponding zone of the game field, as shown in Figure 17.  

Obviously, this camera arrangement will produce perspective distortion due of camera positions, 

but a homography procedure shown in Figure 18 is performed to obtain a zenithal perspective. 

A computer vision algorithm has been developed that can detect each robot by searching on the 

image for a well-defined circular shape—as seen in Figure 19a. Once detected, the disk will determine 

the robot position and its orientation, after a correction of the viewing angle of the head of the robot 

(which produces a false projection on the ground). This adjustment is described in Figure 19b.  
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Figure 17. Graphical overview of the auxiliary platform for measuring the real position of 

robots. Note the four cameras distributed on the ceiling of the game field. 

 

Figure 18. Perspective correction of the captured images. Left: original image,  

Right: image after homography. 

 

Figure 19. (a) Circular disk placed on the head of the robot for ceiling camera detection. 

(b) Correction of the perspective effect. 

 
(a) (b) 

The heights of both the ceiling camera and the robot head are used to compute the over-measure 

produced (as shown in Figure 19b) and the distance correction is obtained. 
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One example of a real situation is introduced in Figure 20. In that image, a robot position is 

detected by the recognition of the disk (red box). The corrected real position of the robot has been 

marked with a black box (corresponding with the feet positions). 

Figure 20. Recognized (red square) and corrected (black square) position of a robot in the image. 

 

The ceiling camera system works with four QVGA images due of limited bandwidth restrictions in 

the installation. These four images detect the robot on the game field. Because of low resolution and 

the limited configurable parameters of the cameras, the results suffer a positioning error that can vary 

from ±10 mm to ±100 mm and an orientation error from ± 5° ± 15° depending on the area. 

7.3.2. Localization and Positioning Results 

To appreciate the improvements obtained with the proposed localization system a set of tests was 

carried out after selecting the number of particles to be used. As previously indicated, the reduced 

number of particles needed for the filter performance is one of the benefits of our proposed method. 

Therefore, we must determine the optimum number of particles. Several normal playing situations 

have been performed configuring the filter to work with different numbers of particles, storing in each 

case the computational cost of execution. Each execution was running for about five minutes, and the 

times were computed as the difference in time before and after the filter routine. The results obtained 

are shown in Table 1. For each selected number of particles it was determined if unstable situations 

due to the non-convergence of the algorithm occurred or not, and marking as stable or unstable the 

corresponding test.  

As expected, the results in Table 1 show that a lower number of particles leads to slower execution 

times in a quasi-linear behavior. However, we must also be taken into account that for 10 and  

15 particles, instability in execution was detected. Therefore, 20 particles is the minimum number of 

particles that guarantees stable behavior and a reduced execution time. For that reason, the following 

tests were performed using only 20 particles because it offers a good compromise between reduced 

execution time and stability.  
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Table 1. Table of execution times obtained by varying the number of particles used in the filter. 

# of particles Min. Time (ms) Average Time (ms) Max. Time (ms) Stability 

10 0.09 0.24 1.12 Unstable 
15 0.12 0.28 1.24 Unstable 
20 0.14 0.29 1.35 Stable 
50 0.32 0.89 2.98 Stable 

100 0.67 1.71 5.94 Stable 
150 0.94 2.76 7.03 Stable 
200 1.29 3.73 9.29 Stable 

After this preliminary decision was taken, several tests with and without the proposed localisation 

procedure were performed to compare the results. The first experiment was intended to evaluate the 

accuracy of the position estimation using only odometry during a real game. During this test, the robot 

played in the same way it would in a regular match. The position and orientation errors corresponding 

to a real situation that occurred just two minutes after the game started are plotted in Figure 21a. As 

can be seen in these plots, the deviation obtained between the real and the estimated orientation grows 

to 180º, producing a mistaken identification of each half of the field. The estimated position also 

shows large errors of up to five meters prevent the robot from entering into useful play.  

The same test was then executed using the proposed localization method. The results of this second 

test are plotted in Figure 21b. The plotted data corresponds to 10 min, the length of a half during an 

SPL match. In this case, the robot estimated its position with a mean error of 387 mm and orientation 

with a mean error of 15°. 

Figure 21. Localization tests result using: (a) Odometry-based system. (b) Modified 

particle filter localization system.  

(a) (b) 

Although the presented results may not be as accurate as those obtained by other approaches 

presented in Section 2, it must be taken into account that localization results do not depend exclusively 

on the localization method. Thus, the quality of perceptual information (such as distance estimation 
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and the odometry system), or the number of features used for position estimation, may be improved to 

produce better location results. Furthermore, the provided results must also be affected by the errors 

produced by the arrangement of the cameras used for validation.  

Another experiment was also conducted to evaluate the accuracy of the positioning system. The 

robot was situated on the edge of the game field and was instructed to go to the center of the game 

field. In the first test, the robot used its own odometry to do the walk, but in the second test, it used the 

modified particle filter. The results are plotted in Figure 22, respectively. In these figures the estimated 

trajectories followed by the robot (in blue) and the real trajectories (in red) are plotted on the game 

field, showing again major differences between the results of both tests.   

In Figure 22a, the robot estimates a straight trajectory to the center, but in the real world the 

position reached is two meters and 50° from the estimation. Figure 22b shows that during the entire 

walk the real and estimated positions are similar (position error: 250 mm and orientation error: 17°).  

Figure 22. Positioning accuracy tests results using: (a) Path followed using  

odometry-based system; (b) Path followed using the localization system. 

(a) (b) 

Figure 23. Results of the ‘kidnapped robot’ test using the proposed resampling PF (time is 

relative to kidnapping). 

 

Once demonstrated the performance of the proposed localization system on the real game situation, 

it seems appropriate to check the performance of the filter when a ‘kidnapped robot’ situation is 

produced. In a new experiment, during a normal play situation, the robot was manually displaced to 

another position in the field that was about 3m away from the previous position. The robot used the 
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proposed resampling PF step based on the reliability of the estimation to validate the proposed filter. 

Figure 23 shows that about 30 s after the kidnap, the robot had corrected its position and showed the 

same performance as before the kidnapping. 

The kidnapped robot situation was also repeated using a classical resampling PF step, instead of the 

proposed step. Figure 24 shows that the robot can recover its correct estimation, but in this case, 

recovery time was around one minute. The differences between these two tests can be explained by a 

better adaptation to the dynamic requirements of the filter shown by the proposed method in 

comparison with the classical approach. 

Figure 24. Results of the ‘kidnapped robot’ test using the classical resampling method. 

 

8. Conclusions 

In this article a complete procedure to implement a reliable self-localization method has been 

described, ranging from the perception system to the localization system itself. This localization 

system has been applied to Nao robots used in the SPL League, but it could be generalized for other 

humanoid robots.  

Firstly, a sensor modeling method and the subsequent auto-adjust procedure to improve the 

measuring system and the perception of the environment was described. As demonstrated by the 

experimental results, this auto-adjust can help produce good distance estimations from features in the 

game field.  

A new implementation of the particle filter that operated by finding the best particle in every cycle 

by evaluating coherence with each feature and then comparing the coherences was described. The best 

particle determines the sensor resetting process in case of a bad location in the game field. This filter 

requires a reduced number of particles in comparison with other methods, thus decreasing the  

CPU load.  

The performance of the proposed self-localization procedure was tested. For this purpose, an 

auxiliary arrangement of ceiling cameras was used to obtain the real position of the robot. A study of 

the execution times was made to decide the optimum number of particles.  

The positioning results obtained during tests show an average deviation of 387 mm in position and 

15° in orientation, which gives the robot the capability of playing a whole half without becoming lost, 

differentiating clearly between both goals, and being aware in which side of the field it is located. The 

experimental positioning results also show that the robot can obtain its position with a deviation of  

250 mm—precise enough to enhance strategy and avoid entering forbidden areas of the field.  
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The performance of the proposed filter during ‘kidnapped robot’ situations was tested—and proved 

to be faster than other methods. The situation was solved in only 30 s thanks to a dynamic re-sampling 

step that improves the estimation when reliability in the estimation decreases. Therefore, this system 

has proven to be an essential element for improving the game and providing a real challenge for 

opposing teams. 
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