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Abstract: In this paper, an adaptive, autocovariance-based event detection algorithm is
proposed, which can be used with micro-electro-mechanical systems (MEMS) accelerometer
sensors to build inexpensive and power efficient event detectors. The algorithm works well
with low signal-to-noise ratio input signals, and its computational complexity is very low,
allowing its utilization on inexpensive low-end embedded sensor devices. The proposed
algorithm decreases its energy consumption by lowering its duty cycle, as much as the event
to be detected allows it. The performance of the algorithm is tested and compared to the
conventional filter-based approach. The comparison was performed in an application where
illegal entering of vehicles into restricted areas was detected.
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1. Introduction

Accelerometers are successfully utilized in event detection systems, e.g., fall detection [1] and
movement detection and analysis [2,3]. Seismic vibrations, caused by various sources, can also be
detected by accelerometers, e.g., in footstep detection and vehicle detection [4]. In this paper, an
accelerometer-based sensor for event detection purposes is proposed. In our application, sensors are
used to detect unauthorized traffic in areas where normally no traffic is allowed. The protected area
is located in a remote forest, where the system must operate autonomously for a long time with high
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reliability. In such applications, detections are very rare, but the system must be accurate in the sense
that all trespassing vehicles must be detected, and the rate of false positive detections must be very low
(false detections cause unnecessary and expensive intervention).

In real-world applications, sensors are often deployed in remote, hostile environments, where sensors
must operate autonomously, using their limited power supply; thus, the lifetime of the sensors is often
of key importance. In such cases, the energy efficiency of the sensor is a key design factor.

Duty cycling is a general concept that is often used to decrease energy consumption; see e.g., [5]. A
similar approach is used in the proposed solution: sampling and signal processing is performed only in
short time intervals, followed by a low-power state of the sensor. The applicable duty cycle is constrained
by the properties of the detected event and the required quality of service.

The proposed solution builds on an enhanced version of the autocovariance-based detection
algorithm [6]. The enhanced signal processing algorithm has extremely low computational needs; thus,
it can be implemented on devices with scarce resources and, also, allows low-power operation for the
sensor device. The performance of the proposed algorithm will be evaluated using real measurements.

In Section II, related work is reviewed. Section III briefly reviews the algorithm in [6]. The proposed
solution will be introduced in Section IV and will be evaluated and compared to other solutions, using
real measurements, in Section V. Section VI concludes the paper.

2. Related Work

For vehicle detection, several sensory systems are in use. For traffic monitoring in urban
environments, two approaches exist: intrusive and non-intrusive sensors. Intrusive sensors require
stripping of roads, while this is unnecessary when non-intrusive sensors are used. Intrusive sensors
include inductive loops, magnetometers, microloop probes, pneumatic road tubes, piezoelectric cables
and weight-in-motion sensors, while non-intrusive sensors include video image processing, microwave
radar, laser radar, passive infrared, ultrasonic and passive acoustic arrays. However, most of these
solutions are energy demanding and expensive; the deployment is cumbersome, and only a few of them
can be used in a concealed application (see [7] for a comprehensive review).

Accelerometers are used in many application areas (e.g., structure monitoring [8], body movement
sensing [2,3,9] and event detection [10]) and are also used for vehicle detection and traffic monitoring
purposes. In [11], the arrival of trains in railway stations was detected using accelerometers, while
in [4], accelerometers were used to monitor traffic.

Micro-electro-mechanical systems (MEMS) are extensively used in a wide range of applications.
MEMS accelerometers are one of the most common types of MEMS sensors, due to their simplicity,
ease of fabrication, low price and good usability [12]. In MEMS accelerometers, the movement of
a seismic mass, attached to a cantilever beam, is detected using capacitive sensing. The damping is
provided by the sealed gas around the seismic mass, which also causes significant noise in these devices,
due to Brownian noise [13].

Energy efficiency is a key design factor in sensor networking applications where power supply
is limited. The research for power-efficient sensors resulted in several hardware solutions, new



Sensors 2013, 13 13980

medium-access protocols and routing methods. In the context of measurement and detection, the
Compressive Sensing Theory was invented.

The Theory of Compressive Sensing allows the creation of more efficient sensors by reducing
the amount of sampled, processed and transmitted data. Compressive Sensing performs sampling,
compression and reconstruction of sparse signals with a smaller number of samples than the Nyquist
rate [14]. The same theory has been applied for detection purposes, where the number of measurements
required for detection was reduced ([15,16]). Although the Theory of Compressive Sensing is appealing,
its application for our purposes is not practical, because of its high computational complexity and the
limitations in sampling of the physical sensor (e.g., most sensors can be programmed to perform periodic
sampling only).

Duty cycling is widely used in embedded systems: low duty cycle operation of sensors allows the
reduction of energy consumption. Duty cycling, however, has challenging aspects when the goal is
detection: if the duty cycle is not properly chosen, then the sensor may completely miss an event, and
the sleeping nodes may increase the reaction time.

In [17], a probabilistic scheduling of duty cycling was proposed; thus, a balance between the sensors’
lifetime and the quality of service was provided. In [18], the detection performance, as a function of
duty cycling, was examined, and a wakeup process was proposed. In [19], a control mechanism was
proposed, which changes the duty cycle, based on the detected event properties.

In [6], an accelerometer-based detector was proposed, which uses the autocovariance of the signal.
In this paper, this method will be enhanced, and a duty-cycle mechanism will be applied to the basic
detection scheme, to provide both low-energy consumption and low computational complexity.

3. Autocovariance-Based Event Detection

The solution proposed in [6] is based on the autocovariance of the signal. Let x∆ denote the shifted
version of x, such that x∆(k) = x(k −∆), and E[.] is the expected value operator. The autocovariance
of x is defined as follows:

Cx,x(∆) = E[(x− E[x])(x∆ − E[x∆]) (1)

The autocovariance Cx,x(∆) can be computed in the following way:

Cx,x(∆) = E[xx∆]− E[x]E[x∆] (2)

The computed Cx,x(∆) is low for ∀∆ 6= 0 in the case when x is white background noise. However,
an event in x results in a higher Cx,x(∆) for a wide range of ∆ values. Based on this assumption, a
detector was proposed in [6]. As Figure 1 shows, The final decision is based on the estimated o(x, k)

mean square of the autocovariance cov(k) of signal x(k): when o(x, k) is higher than a fixed threshold
level, the algorithm raises an alarm. The detailed operation is the following:

Let x be a vector and x[a : b] be a subvector containing (x(a), x(a+ 1), . . . , x(b)), where a < b. The
estimate of E[x] is computed from x[a : b] as follows:

Ê[x[a : b]] =
1

b− a+ 1

b∑
k=a

x(k) (3)
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E[xx∆] is approximated by Ê[x[a : b]Tx∆[a : b]] as follows:

Ê[x[a : b]Tx∆[a : b]] =

∑b
k=a x(k)x∆(k)

b− a+ 1
(4)

Based on Equations (3) and (4), the autocovariance in Equation (2) is approximated in the
following way:

Cx,x(∆, w, k) = Ê[xT
1 x2]− Ê[x1]Ê[x2] (5)

where w denotes the window size, x1 = x[k − w + 1 : k] and x2 = x∆[k − w + 1 : k].

Figure 1. Flow chart of the algorithm in [6].

cov(x, k) o(x, k)

The output o(x, k) of the algorithm is the mean square of the last M autocovariance values:

o(x, k) =
1

M

k∑
j=k−M+1

Cx,x(∆, w, j)2 (6)

In [6] w = M = 256, ∆ = 1 and sampling frequency fs = 300 Hz was used. The computational
need of the algorithm is extremely low: the algorithm performs six subtractions, eight additions, five
multiplications and four-bit shifts per sample.

The solution proposed in [6] requires the continuous operation of the sensor: sampling and processing
is performed with a fixed sampling frequency. In sensors with limited power supply, the energy efficiency
is often provided by the duty cycling of the operation, i.e., sleeping and operating states are periodically
alternated. In our proposed solution, a similar approach will be used: the method proposed in [6] will be
extended to handle periodic block-wise operation.

4. Proposed Solution

Instead of continuous sampling and processing, in the proposed solution, the sensor is switched on
periodically, with a period of T , for a short time interval τ1. While the sensor is on, a block of samples is
collected and processed. After sampling and processing of the block, the sensor returns to sleep mode,
as shown in Figure 2.

In this section, three variants of the algorithm will be proposed: the simple block-wise algorithm, a
block-wise algorithm with an additional evaluation phase and, finally, its adaptive version.
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Figure 2. Operation of the Block-wise Autocovariance-based Algorithm (BAC) algorithm.
Arrows represent acceleration data. Rectangles show segments where sampling and
processing is performed; red and green rectangles represent segments where the computed
autocovariance is higher and lower than the threshold, respectively.

4.1. Block-Wise Autocovariance-Based Algorithm (BAC)

The algorithm is illustrated in Figure 2. With a period of T , the sensor is switched on, and the output
of the accelerometer is collected for τ1 time. From the collected n1 = bτ1fsc samples in record x, the
autocovariance estimate Ĉx,x at ∆ = 1 is computed for the last active period as follows:

Ĉx,x(x) =
1

n− 1

n−1∑
j=1

x(j)x(j + 1)−

(
1

n− 1

n−1∑
j=1

x(j)

)2

(7)

Based on this (single) autocovariance value, the decision is made, using a threshold Θ:

alarmBAC =

{
on, if Ĉx,x(x) > Θ

off, otherwise
(8)

The pseudo code of the BAC algorithm is shown in Appendix A.
An application specific constraint on T is the length of the perturbation caused by the vehicles. If T

is set larger than the length of the detectable perturbation, then the vehicle may pass the sensor between
two measurements undetected.

To conserve energy, the length τ1 of active periods should be short. However, due to the short data
segments, the Ĉx,x estimates have large variance; thus, events occasionally may produce low Ĉx,x values
instead of the expected high values; similarly, background noise occasionally may produce unexpectedly
high Ĉx,x values. To avoid false negatives (i.e., missed events), threshold Θ should be low, and in order
to avoid false positives (ı.e., false alarms when no event is present), Θ should be set high. The next
variant of the algorithm eliminates this problem.
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4.2. Block-Wise Autocovariance-Based Algorithm With Validation (BACV)

The Block-wise Autocovariance-based Algorithm With Validation (BACV) switches on the sensor
with period T , when it collects samples for time interval of length τ1 and computes Ĉx,x by Equation (7),
similarly to BAC. A second round of validation is triggered if the autocovariance estimate Ĉx,x is larger
than a threshold ϑ:

trigger =

{
1, if Ĉx,x > ϑ

0, otherwise
(9)

Figure 3. Operation of the Block-wise Autocovariance-based Algorithm With Validation
(BACV). Narrow rectangles of width τ1 represent segments where preliminary sampling
and processing is performed; yellow and green rectangles represent segments where the
computed autocovariance is higher and lower than the preliminary threshold ϑ, respectively.
Wider rectangles of width τ2 represent validation phases, the output of which is compared to
threshold Θ to produce the detection signal.

If trigger = 1, a validation round is started, where a longer data record is used, with a length of
τ2 > τ1, as illustrated in Figure 3. If the autocovariance estimate computed in the validation phase is
larger than Θ, then an alarm is emitted. In the BACV algorithm threshold, ϑ can be set low enough
to avoid false negatives. The longer validation phase produces results with decreased variance; thus, Θ

can be set higher to avoid false negative detections. Note that in the preliminary checking phase, only
one autocovariance value is computed (see Equation (7)), while in the validation round, the algorithm
computes the mean square autocovariance estimates using a sliding window of a length of w:

c(k) =
1

w

k+w−1∑
j=k

(
Ĉx,x(j : j + w − 1)

)2

(10)
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where k = 1, 2, . . . , n2 − w and n2 = bτ2fsc is the length of the validation record. Note that c(k) can
be computed very efficiently using the method described in [6]. The decision is made by comparing the
maximal value of c(k) to the threshold Θ, as follows:

alarmBACV =

{
on, if maxk(c(k)) > Θ

off, otherwise
(11)

The pseudo code of BACV is listed in Appendix B.
The BACV algorithm uses constant thresholds, ϑ and Θ. However, when noise properties change, the

adaptation of the thresholds is necessary. The following extension of the algorithm sets the
thresholds automatically.

4.3. Adaptive BACV Algorithm (ABACV)

The Adaptive BACV Algorithm (ABACV) uses a similar mechanism to BACV, but adapts the
thresholds, ϑ and Θ, in each period, as illustrated in Figure 4. The strategy of the control of ϑ is the
following: set the threshold ϑ, so that the rate of triggering of the second validation round is around a
constant value, ζ . This strategy provides a constant (low) rate of unnecessary validation rounds when no
events are present, but at the same time, finely tunes ϑ, so that it follows the changes of the noise power.
The rate of triggering is computed using exponential averaging, forgetting factor α:

ratek+1 := αratek + (1− α)trigger (12)

where trigger is computed according to Equation (9).

Figure 4. The operation of the Adaptive BACV Algorithm (ABACV). Thresholds ϑ and Θ

are changed to follow changes over noise properties.

The control mechanism increases the value of ϑ, while the triggering rate is higher than ζ and
decreases ϑ otherwise, in small steps ε:
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ϑ = ϑ+ εsignum(rate− ζ) (13)

where the desired rate ζ is set in the range of 0.02 . . . 0.05.
To allow the adaptation of Θ, the average mean square of the noise autocovariance is estimated, using

the computed Ĉx,x values in each period, as follows:

d =

{
αd+ (1− α)Ĉ2

x,x, if Ĉ2
x,x < Σ

d, otherwise
(14)

Note that d should estimate the mean square autocovariance of the noise, but the high autocovariance
of events distort the estimated value. The conditional update in Equation (14) decreases the effect of
high Ĉx,x values caused by events, but does not affect the noise estimate. The threshold Σ is set to a
value significantly higher than the noise autocovariance and smaller than autocovariances measured in
the presence of events.

The threshold is adapted as Θ = λd, where λ provides a sufficiently large gap between the mean
square noise autocovariance and the detection level. In our experiments, the choice of λ = 7..10

produced a reliable operation.
The alarm is raised if the mean square autocovariance estimate is higher than Θ, i.e.:

alarmABACV =

{
on, if maxk(c(k)) > λd

off, otherwise
(15)

The pseudo code of the ABACV algorithm is shown in Appendix B.

5. Evaluation

In this section, the performance of the proposed methods will be analyzed. First, the sensor hardware
and the data used in the analysis will be introduced. A robustness metric will be defined, and the
algorithms will be analyzed with it. Tests will be introduced to compare the detection capabilities of the
algorithms, followed by analysis of the the energy efficiency of the algorithms. Finally, the computational
complexity of the proposed methods will be analyzed.

5.1. Test Hardware and Test Data

The test device includes the BMA-180 accelerometer and an eight-bit ATMega128RFA1 processor,
running at 16 MHz with 16 kB of RAM and 128 kB of flash memory. It also has an internal EEPROM
with a size of 4 kB to store configuration data. The internal radio of the ATMega128RFA1 chip is used
to send measurement/detection data in a wireless manner. The device was programmed in nesC under
TinyOS [20]. Figure 5 shows the deployed device.

For evaluation purposes, a recording of a length of 23 minutes was made, which contains the raw
measurement data obtained from one channel of the accelerometer, using a sampling frequency of
fs = 300 Hz. The sensor was placed 5.6 meters from the road, and during the recording, nine vehicles
of different sizes and types were passing by. The recording was annotated by hand, marking sections
where a vehicle was present (V1, V2, . . . , V9) and sections where only background noise was measured.
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Figure 5. The sensor node.

5.2. Robustness Test

The proposed algorithms make their decision by comparing an autocovariance (or mean square
autocovariance) estimate to a threshold Θ. The robustness or sensitivity test evaluates how easy it is
to select a proper Θ, so that the noise effect remains below Θ, but the effect of the events is higher than
Θ. For this purpose, a robustness metric will be defined.

In each recorded section Vi, the maximum output of the tested algorithm (MAXVi) was computed,
along with the maximum output of the algorithm under the test in the noisy sections (MAXNOISE).
An important parameter characterizing the robustness of the algorithms is the distance between the
effects of the highest noise and the most quiet vehicle, i.e., δ = min9

i=1{MAXVi} −MAXNOISE

(see Figure 6 for an illustration). Obviously, if δ ≤ 0, no threshold exists for which the detector is able
to detect all the vehicles and does not provide false detections. When δ > 0 is small, then it is hard to
find a reliable threshold, while with high δ, a wide range of thresholds provides reliable operation.

Figure 6. The derivation of the robustness parameter, r. The sensor is switched on with
period T for time τ1.

r =
δ

MAXNOISE

In the tests, the effect of parameters T and τ1 was investigated. While the algorithm [6] is
shift-invariant, the proposed algorithm, due to its block-wise nature, may produce different results if the
input is shifted (since quite different sets of input samples may be used). To take into consideration the
shift-variant nature of the algorithm, several experiments were created by shifting the same input signal.
The full record was used for each (T, τ) pair, and the test was repeated bTfsc times, by shifting the record
by one sample in each test. Thus, for each (T, τ) pair bTfsc, experiments were performed, producing
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for each experiment values δj = min9
i=1{MAXVi(j)} −MAXNOISE(j) (j = 1, 2, . . . , bTfsc). The

average of δj values is computed as follows:

δ =
1

bTfsc

bTfsc∑
j=1

δj (16)

Note that the values, MAXVi, (MAXNOISE) and δ, are computed using all the experiments
produced by the record shifting.

The metric, r, to characterize robustness is defined as the ratio of δ and the maximum noise level,
as follows:

r =
δ

MAXNOISE
(17)

The result of the robustness tests can be seen in Figure 7, which shows the r values, calculated with
Equation (17). The colored areas of the figures show (T, τ ) pairs, where the r is positive; the highest
values are represented with red, the smallest values, with blue color. As intuitively expected, T must
remain small, otherwise r becomes negative (i.e., if the sampling intervals are far from each other, an
event may completely be lost, depending on the phase). Similarly, larger τ1 values give better results
(since larger records give better estimates). In Figure 7a–c, the results for algorithms BAC, BACV and
ABACV are shown, respectively. The parameters of the proposed algorithms during the test were the
following: w = 128, ζ = 0.03, n2 = 400. Clearly BACV and ABACV are more robust than BAC. The
robustness value of BAC does not exceed 1.5, while BACV and ABACV reaches r = 3 . . . 5 in a wide
range of T and τ1 parameters. Note that BACV has some extremely good values (greater than 10), but
only for a very small set of (τ1, T ) values. Both BACV and ABACV are very robust for τ1fs > 60 and
Tfs < 300.

In Figure 7d, a bandpass FIR (finite impulse response) filter-based solution is shown, and Figure 7e
shows an IIR (infinite impulse response) filter-based solution [4]. Both filter-based methods use bandpass
filters with a pass band of [40Hz–60Hz], where the majority of the event power was observed in our
measurements. The FIR filter was implemented as a 59-order equiripple filter, while the IIR filter-based
solution uses a 12-order elliptic bandpass filter G1. The IIR-based solution also utilizes a seven-order
elliptic low-pass post filter G2, where the input of the G2 filter is the square of the output of the G1

post-filter, as was proposed in [4]. According to Figure 7, the filter-based approaches show inferior
robustness properties (their robustness parameter hardly exceed one) and, thus, are more sensitive to the
proper choice of parameters T , τ1 and Θ.
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Figure 7. Robustness test of (a) BAC, (b) BACV, (c) ABACV algorithms, (d) a bandpass
FIR-based algorithm (e) and an IIR-based algorithm.

(a) (b)

(c) (d)

(e)

5.3. Performance Evaluation

In this section, the performance of the proposed algorithms will be evaluated by measuring the rates of
false detections as a function of parameter settings. In the test, we measure the false negative and positive
ratios, defined as follows: the false negative ratio is the number of missed events over the number of total
events present during the test; the false positive ratio is the number of false detections (alarms when no
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events were present) over the total number of possible non-overlapping events during the test. The latter
quantity was estimated as the length of the record divided by the average length of one event.

As in the case of the robustness test, new test cases were generated by shifting the original record:
for a period of T, bTfsc, new test records were generated by shifting the record by one sample at a time.
The parameter settings were the following: w = 128, ζ = 0.03, n2 = 400.

The results of algorithm BAC are shown in Figure 8, by changing parameters n1 = τfs andN = Tfs.
In Figure 8a, N = 230, and in Figure 8b, n1 = 55. Thin lines represent false negative (FN) decisions,
and thick lines represent false positives (FP). Both ratios improve (decrease) when τ1 is increased or T is
decreased. According to Figure 8, the cutoff points (where FP = FN) can be as low as 0.4%, for a narrow
range of Θ values.

Figure 8. Error rates of BAC, for (a) different n1 and (b)N values. Thin line: false negative;
thick line: false positive.
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The error rates for BACV are shown in Figure 9, withN = 230 in Figure 8a and n1 = 55 in Figure 8b.
The error rates can be reduced to zero with N ≤ 300 and n1 ≥ 40, for quite a wide range of Θ values;
thus, the BACV algorithm has better performance and is more robust than BAC.

The error rates for ABACV are shown in Figure 10, for different parameters N , n1 and ζ . Note that
in order to perform this test, the adaptation of Θ was switched off (but the adaptation of ϑ was on). The
results are quite similar to that of BACV. Zero error rate can be achieved for a wide range of parameter
settings, for a wide range of Θ; thus, the adaptation mechanism has a safe margin of error.

The error rates for the FIR band-pass filter-based algorithm are shown in Figure 11, and the
error rates of the IIR filter-based solution [4] can be seen in Figure 12 for the varying of parameter
n1. With the tested parameters, at the best cutoff point, the error rates are around 0.4% for these
filter-based algorithms.
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Figure 9. Error rates of BACV, for different (a) n1 and (b) N values.
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Figure 10. Error rates of ABACV, for different (a) n1, (b) N and (c) ζ values.
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Figure 11. Error rates of the FIR-based algorithm for different n1 values.
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Figure 12. Error rates of the IIR-based algorithm for different n1 values.

5.4. Power Efficiency

The power consumption of sensors in low energy (sleep) mode is negligible, compared to the power
consumption in the active state. Thus, the power consumption of the sensor is approximately proportional
to the time the sensor spends in the active state. The online algorithm [6] is awake 100% of the time
(this algorithm is used as the reference), while the proposed methods decrease their duty cycles. In this
section, the power efficiency of the algorithms will be analyzed, as a function of parameters T and τ1.

The power efficiency of the BAC algorithm and the filter-based solutions can be simply derived: the
sensor is active for time period τ1 and is asleep for time period T − τ ; thus, their power efficiency is
τ1/T . Algorithms BACV and ABACV, however, occasionally use validation rounds, when the sensor is
awake for a longer time. The frequency of the validation rounds depends on other parameters (e.g., ϑ,
ζ) and the input signal. The power efficiencies of BACV and ABACV were measured, using the same
recording as in the previous tests. The power consumption, relative to that of the on-line algorithm [6] is
shown in Figure 13, vs. T and τ1.

The algorithms are more economic when T is large and τ1 is small, which contradicts the requirements
of robustness, as shown in Figure 7. Fortunately, there is a parameter space around Tfs = [200..300]

and τ1fs = [40..50], where the algorithm satisfies both requirements. With these parameters, both safe
operation with a very low error rate and a good power efficiency (power consumption decreased to 20%)
can be provided.
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Figure 13. Relative energy consumption of (a) BACV and (b) ABACV, the energy
consumption of the sensor that is awake all the time being 100%.
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5.5. Comparison Tests

The proposed algorithm family and the bandpass filter-based methods were compared, using the same
data record as in the previous tests. In this test, all the adaptation mechanisms of the ABACV algorithm
were enabled. The results are listed in Table 1. The table shows the relative power consumption of the
algorithms (RPC), the false positive (FP) and false negative (FN) rates for various parameter settings. The
parameters of the algorithms were varied in the range where relatively good performance was provided.

Table 1. Performance comparison of the algorithms. RPC, relative power consumption; FP,
false positive; FN, false negative.

Parameter Values
RPC FP FN
[%] [%] [%]

On-line algorithm [6] 100 0 0

BAC N , n1, Θ

200, 50, 200 25 2.36 0
300, 50, 200 16.67 1.58 0
200, 70, 270 35 0.02 0.19
300, 70, 270 23.33 0.01 1.3
300, 60, 270 20 0.04 2.38

BACV N , n1,n2, Θ

200, 50, 400, 50,000 37.33 0 0
200, 50, 400, 80,000 37.33 0 0.63
300, 50, 400, 70,000 26.54 0 0
300, 55, 300, 70,000 25.56 0 1.25
300, 50, 400, 35,000 26.54 0 0
300, 50, 400, 30,000 26.54 0.04 0
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Table 1. Cont.

Parameter Values
RPC FP FN
[%] [%] [%]

ABACV N , n1, n2, ζ , λ

200, 55, 400, 0.02, 8, 30.63 0.88 0
200, 60, 400, 0.02, 8, 33.02 0 0
300, 55, 400, 0.02, 8 20.86 0 0
300, 55, 400, 0.02, 9, 20.86 0 0

300, 55, 400, 0.02, 10, 20.86 0 0.84
300, 55, 400, 0.03, 8, 21.82 0 0
300, 55, 400, 0.02, 8 20.86 0 0
300, 55, 400, 0.01, 8 19.86 0 1.25
300, 45, 400, 0.03, 8 18.65 0 0.42

FIR N , n1, O, Θ

200, 70, 59, 20,000 35 0.48 0.63
200, 90, 59, 30,000 45 0.05 0
300, 70, 59, 10,000 23.4 43.35 0.42
300, 70, 59, 18,000 23.4 0.93 2.08
300, 90, 59, 25,000 30 0.25 0.42
300, 90, 30, 25,000 30 2.55 0
300, 90, 30, 30,000 30 0.85 0.42
300, 90, 15, 30,000 30 0.04 0.83

IIR N , n1, Θ

200, 50, 40 25 0.13 31.25
200,70, 190 35 0.16 15

200, 100, 350 50 0.27 0.63
200, 100, 300 50 0.73 0
200, 100, 380 50 0.14 1.25
200, 60, 90 30 0.38 18.75
200, 60, 95 30 0.20 21.25
200, 60, 85 30 0.73 15.63

The performance of the algorithm suggested in [6] was excellent (no false detections), since it uses
all the available input data, unlike the proposed algorithms. However, its relative power consumption
is 100%.

In the case of BAC, parameters N , n1 and Θ were changed. The algorithm was able to decrease its
power consumption rate below 20% and to keep the error rate between 0.19% and 2.38%. In the case
of the BACV algorithm, parameters N , n1, n2 and Θ were varied. The power consumption rate was
around 26–37%, and the error rates were close to zero. In the case of ABACV N, n1, n2, ζ and λ were
varied. The power consumption ratio was around 20%, and the error rate was again close to zero. Note
the decrease in power consumption, with respect to BACV; this is due to the successful adaptation of
threshold ϑ.
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For the FIR filter-based algorithm, parametersN , n1, O (the order of the FIR filter) and Θ were varied.
Finally, N , n1 and Θ were varied for the IIR filter-based algorithm. The error rates of these methods are
higher, and the power consumption ratio is also higher. Note that the nature of events used in the test
determine the possible parameter space and the achievable reduction of power consumption: the length
of the signal perturbation caused by a passing by car was around 1–2 s, which is an upper bound for T .

5.6. Computational Complexity

In this section, the the computational complexities of the algorithms are derived. The BAC algorithm
requires n1 multiplications, 2n1 additions and two-bit shifts in each T time period. For the same
amount of data, BACV requires n1 + 5p(n2 − n1) multiplications, 2n1 + 8p(n2 − n1) additions
and 2 + 4p(n2 − n1)-bit shifts, where p is the probability of triggering a validation round. The
ABACV algorithm requires n1 + 5ζ(n2 − n1) + 4 multiplications, 2n1 + 8ζ(n2 − n1) + 2 additions
and 2 + 4ζ(n2 − n1)-bit shift operations. The FIR filter-based solution needs n1O multiplications
and additions. The IIR-based solution introduced in [4] uses 12- and seven-order IIR elliptical filters
(implemented in Transposed-Direct-Form-II), so it needs 60n1 multiplications and 27n1 additions in
each T time period.

The memory requirement is n1 words for the BAC,w+M+n2 for the BACV and ABACV algorithms,
only 59 for the FIR-based solution and 19 for the IIR-based algorithm.

In typical settings of the ABACV (n1 = 60, n2 = 400, w = 128, M = 128 and ζ = 0.02),
the FIR-based ( n1 = 90, and O = 59 ) and the IIR-based (n1 = 100) solutions require 274,
10,620 and 8,700 arithmetic operations (multiplications and additions) in each T time period, while
the memory requirements are 656, 118 and 19 words for ABACV, the FIR-based and the IIR-based
algorithm, respectively.

6. Summary

In this paper, a novel method was proposed to provide energy-efficient accelerometer-based event
detection. An autocovariance-based signal processing algorithm was utilized to allow robust event
detection, even in the case of a poor signal-to-noise ratio. The proposed solution allows a highly efficient
implementation with very low computational needs; thus, the proposed algorithm can be implemented
on low-end devices. The power consumption of the proposed method, used in a vehicle detection
application, was reduced by a factor of five, with respect to the on-line version of the algorithm, while
the error rate is very low. The proposed method outperformed the filter-based conventional solution in
almost every respect: the proposed method has superior performance, lower power consumption and
lower computational needs. The memory requirements, however, are higher than that of the filter-based
solution, but still acceptable, even in low-end devices.
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Appendix

A. The Pseudo Code of the BAC Algorithm

remark fs = sampling frequency
n1 = bτ1fsc

procedure BAC
while ( true )

collect n1 samples into buffer x
compute Ĉx,x using Equation (7)
if Ĉx,x > Θ then

alarm on
end
sleep( T − τ1 )

end
end

B. The Pseudo Code of the BACV and ABACV Algorithms

remark fs = sampling frequency
n1 = bτ1fsc
n2 = bτ2fsc

procedure BACV/ABACV
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repeat
sleepTime := T − τ1

collect n1 samples into buffer x
compute Ĉx,x using Equation (7)
compute trigger using Equation (9)
if trigger = 1 then

collect and append n2 − n1 samples to buffer x
compute c(k), (k = 1 . . . n2 − w) using Equation (10)
if maxk(c(k)) > Θ then

alarm on
end
sleepTime := max {T − τ2, 0 }

end
ADAPTATION (ABACV only)
rate := αrate+ (1− α)trigger

ϑ = ϑ+ εsignum(rate− ζ)

if ˆCx,x < Σ then
d =: d+ (1− α)Ĉ2

x,x

end
Θ = λd

end of ADAPTATION
sleep( sleepTime )

end
end
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distributed under the terms and conditions of the Creative Commons Attribution license
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