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Abstract: Hyperspectral images represent an important source of information to assess 

ecosystem biodiversity. In particular, plant species richness is a primary indicator of 

biodiversity. This paper uses spectral variance to predict vegetation richness, known as 

Spectral Variation Hypothesis. Hierarchical agglomerative clustering is our primary tool to 

retrieve clusters whose Shannon entropy should reflect species richness on a given zone. 

However, in a high spectral mixing scenario, an additional unmixing step, just before 

entropy computation, is required; cluster centroids are enough for the unmixing process. 

Entropies computed using the proposed method correlate well with the ones calculated 

directly from synthetic and field data. 
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1. Introduction 

Hyperspectral images represent an important tool to assess ecosystem biodiversity. Improvements 

in spectral and spatial sensors resolution allow more precise analysis of biodiversity indicators that 

should agree with indicators obtained using field data. The development of accurate analysis tools 
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would be advantageous to extend the analysis to larger zones by hyperspectral image processing; 

furthermore, for future scenarios, given that the actual data gathering is expensive in time and 

resources, a pre-analysis would give extra knowledge for planning a more effective campaign to 

collect field data. 

One of the most important indicators of biodiversity in ecosystems is plant species richness. This 

indicator can be measured in hyperspectral images considering the Spectral Variation Hypothesis (SVH) 

proposed in [1], SVH states that spectral heterogeneity is related to spatial heterogeneity and thus to 

species richness. Subsequent efforts to validate SVH can be found in [2,3]. This paper aims to capture 

spectral heterogeneity by means of hierarchical agglomerative clustering and then use the result for 

prediction of plant species richness. The information of heterogeneity can be used to compute 

entropies like Shannon, Gini-Simpson or Renyi among others [4]; in this study, Shannon entropy is 

chosen, given that it is commonly used in biodiversity. There are other studies that try to capture plant 

diversity starting from spectral heterogeneity as in [5,6], these studies estimate the spectral variability 

using the radius of hyperspectral clusters, this variability is related to the alpha diversity [4], a measure 

of the biological diversity of a particular community, habitat or sampling unit. 

The main contribution of this paper is the focus on proportional abundances that entropy indexes 

can capture which are more meaningful than species richness alone. It also evaluates the use of 

hierarchical clustering to assess biodiversity and the use of spectral unmixing to improve results. 

This paper is organized as follows: Section 2 gives a brief theoretical background. Section 3 

explains the methodology used to process hyperspectral imagery. Section 4 explains the details of 

experiments and gives the results. Section 5 discusses the experimental results. Section 6 presents  

the conclusions. 

2. Theoretical Background 

2.1. Hierarchical Clustering 

The goal of Hierarchical Clustering is to build a hierarchy of clusters, a cluster tree. There are two 

main approaches to build a hierarchy of clusters: Agglomerative and divisive. The former approach is 

used in this work. Hierarchical Agglomerative Clustering (HAC) is a “bottom up” approach in which, 

at first, each observation constitutes its own cluster; then, pairs of clusters are merged successively, 

generating the hierarchy, until there is just one cluster left. HAC needs two concepts to carry out the 

process: a metric (distance) and a linkage [7]. The metric measures the dissimilarity between pairs of 

observations. The linkage measures the dissimilarity between clusters as a function of the pairwise 

distances of observations in compared clusters. HAC can work directly with the dissimilarity matrix, a 

representation just in terms of dissimilarity between pairs of objects. The dissimilarity matrix is an nxn 

matrix D, where n is the number of observations. An entry dij in D represents the dissimilarity between 

the ith and jth observations. In subsequent sections the notation used considers x or y as individual 

observations, more specifically, pixels; and X or Y as groups (clusters) of pixels. 
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2.2. Metrics 

Metrics used to construct the dissimilarity matrix: 

Euclidean distance: 

( , )d x y y x   (1) 

Spectral angle distance (SAD): 

1 .
( , ) cos

x y
d x y

x y


 

   
 

 
(2) 

where x and y are pixels, ||∙|| is the Euclidean norm and the dot operation is the usual dot product 

between vectors. 

2.3. Linkage 

The linkage used in this work is known as complete-linkage [7]. This linkage returns compact 

clusters of similar size: 

,( , ) max ( , )x X y Yd X Y d x y   (3) 

where X and Y are clusters. 

2.4. Number of Clusters 

Every time HAC has to merge two clusters, it chooses clusters that have minimal distance. Merging n 

observations requires n−1 operations. This n−1 linkage valued sequence produce a characteristic 

“elbow” curve. Obtaining a number of clusters in a non-supervised fashion requires choosing a point in 

the “elbow” part of the curve. The Number of Clusters (NC) is determined using the method in [8], a 

critical point c* is chosen such that: 

* arg min ( )c cc RMSE  (4) 

( ) ( )c c c

c n c
RMSE RMSE L RMSE R

n n


 

 (5) 

where RMSE is the root mean squared error, and Lc and Rc are best-fit lines. Figure 1 shows an 

“elbow” curve, the Lc line covers intra-cluster linkages; the Rc line covers inter- cluster linkages. 

Figure 1. Determining number of clusters using critical point “c*”. 
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2.5. Shannon Entropy 

The Shannon entropy is a popular biodiversity index that represents the weighted geometric mean 

of the proportional abundances of the species [4]. It is calculated as follows: 

1

ln
k

i i

i

h p p


   (6) 

where k is the number of species and pi is the proportion of abundance of the ith species. Applying 

Shannon entropy to spectral data requires grouping pixels under some criteria. Otherwise, it is very 

likely that every pixel is unique, rendering every pi to 1/k; which would produce a constant and also 

meaningless maximum entropy h = ln(k). 

2.6. Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient between two variables is defined as the covariance of the two 

variables divided by the product of their standard deviations [9]: 

,

cov( , )
U V

U V

U V


 
  (7) 

2.7. Spectral Unmixing 

In a hyperspectral image, the reflected or emitted radiation measured per pixel, rarely comes  

from the interaction with a single homogenous material. If the spatial resolution is higher than the  

size of an object in the image, it is very likely that the image have pure pixels, though this case is  

not frequent. 

There are two models to analyze the mixing problem, linear model and non-linear model. For 

simplicity, only the linear mixing model [10] is covered briefly. If spectral signatures of all pure 

materials in the image are known, then the linear mixing model assumes that every pixel in the 

image is the result of a linear combination of spectral signatures of each material, and some noise:  

( ) ( ) (p ) ( )b n b p n b nI S A M      (8) 

where I is the pixels matrix, S is the endmembers matrix, A is the abundances matrix and M is the noise 

matrix. There are n pixels, p endmembers and b bands. Abundances are normalized such that, for a 

given pixel j in I: 

1

1
p

ij

i

a


  (9) 

Frequently, there are spectral signature differences, even among pure pixels of the same material, 

attributable to shadows or different reflection angles that weaken measurements; the linear mixing 

model accounts these cases with abundances in Equation (9) strictly less than one. 

The Spectral Unmixing (SU) approach used in this study computes matrix S first, using a maximum 

distance (MaxD) algorithm [11]; then, computes matrix A using a non-negative least-squares (NNLS) 
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algorithm [10]. For this approach, the number of endmembers is required. In this work, the number of 

endmembers is obtained from field data. 

Since the proposed method is aimed at capturing the Shannon entropy for a set of pixels. The ideal 

case occurs when all pixels are pure ones; in this case, each cluster represents specific species clearly. 

The typical case is when a pixel represents not one, but a combination of different species; in this case, 

clusters are less useful to capture species diversity since several species can be grouped in the same 

cluster. The unmixing process decomposes the spectral combination of species into abundances for 

every pixel; these abundances can be used as in the ideal case to compute entropy. 

In the following sections, terms like high, mid or low spectral mixing are used. These terms refer to 

the proportion in spectral data between pixels that are a combination of endmembers versus pixels that 

are almost pure ones. In a high spectral mixing scenario, most pixels possess spectral mixing; in a low 

spectral mixing scenario, most pixels are almost pure. 

3. Methodology 

3.1. Image Preprocessing 

This stage prepares the hyperspectral image by removing duplicate pixels, and non-vegetation 

pixels. Duplicate pixels can result from the nearest-neighbor resampling of image pixels during some 

geo correcting procedures. Duplicates removal is efficiently achieved using a radix-sort based 

algorithm [12], where every pixel is treated as a number and bands are treated as digits; sorted pixels 

are scanned sequentially to remove, or mark, duplicates. Non-vegetation pixel removal is achieved 

through NDVI index computation and choosing a threshold to discard pixels with values below  

the threshold. 

3.2. Image Partition 

The hyperspectral image is partitioned in a set of rectangular parts. It is not mandatory that  

all rectangles have the same dimensions. However, it is advisable that the number of pixels 

contained in rectangular elements is as uniform as possible; this ensures that possible entropy values 

are in the same range, making comparisons between entropy values, in different rectangular 

elements, more meaningful. 

3.3. Algorithm 

This algorithm constitutes the core procedure of the proposed method. The algorithm deals 

successfully with a general spectral mixing scenario, under the requirement that the number of 

endmembers is provided.  

Input: L, an image partition, read as a list of sets of hyperspectral pixels. M, a list containing 

number of endmembers for elements in L. 

Output: H, a list of Shannon entropy values corresponding to elements in L. 
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For each partition element l in L: 

Step 1.  Apply HAC to l to produce a cluster tree T. 

Step 2.  Apply NC to T to establish critical point c*. 

Step 3.  From T, and using c*, extract group of clusters G. 

Step 4.  From G, obtain group of centroids G’; every cluster g in G has a corresponding 

centroid g’ in G’. Using corresponding number of endmembers m in M, apply SU to G’ 

to produce abundances matrix A. 

Step 5.  Compute Shannon entropy h of l; add h to H. h is computed using Equation (6) making 

k = m. pi represents the probability of the ith endmember, computed using Equation (10): 

1

1
G

i ij j

j

p a g
n 

   (10) 

where n is the number of pixels, |G| is the number of clusters, aij is the ith endmember 

abundance in jth cluster centroid, |gj| is the number of pixels in the jth cluster. All of 

these values are taken from the current l in L. 

There is a variant to this algorithm that could be used in particular cases, when data exhibits low or 

mid spectral mixing. The benefit of the variant is that spectral unmixing is completely avoided; 

resorting only to cluster information to compute entropy and doing so in a truly automatic fashion. 

Unfortunately, deciding when to use this variant is very circumstantial requiring expert human judgment to 

apply it. Following is the variant, which reuses most of the notation of the previous algorithm. 

Input: L. 

Output: H. 

For each partition element l in L: 

Step 1.  Apply HAC to l to produce a cluster tree T. 

Step 2.  Apply NC to T to establish critical point c*. 

Step 3.  From T, and using c*, extract group of clusters G. 

Step 4.  Compute Shannon entropy h of l; add h to H. h is computed using Equation (6) making 

k = |G|. pi represents the probability of the ith cluster, computed using Equation (11), 

i

i

g
p

n
  (11) 

where |gi| is the number of pixels in the ith cluster, n is the number of pixels. All of 

these values are taken from the current l in L. 

3.4. Image Reconstruction 

Every part in the original partition is replaced with its respective Shannon entropy index; the value 

is replicated to match the original size of the partition element, then the new image is reassembled as 

shown in Figure 2. 

 



Sensors 2013, 13 13955 

 

 

Figure 2. (Left) A portion of the Guanica forest, size 200 × 200 pixels; (Right) Computed 

Shannon entropies using the proposed method, zone size 10 × 10 pixels. Higher entropy 

means more proportional spectral heterogeneity. 

 

4. Experimental Results 

The experiments tried to verify that the proposed method computes a biodiversity index, which 

reflects to a certain degree the species richness in the hyperspectral image. Two kinds of experiments 

are conducted; the first experiment uses synthetic hyperspectral data to assess the influence of spectral 

mixing, to verify proper operation and to identify limitations of the proposed method. The spectral 

mixing degree refers to the portion of non-pure pixels in the dataset. The second experiment uses real 

hyperspectral data along with field data to assess the index of correlation between the two datasets. 

4.1. Synthetic Hyperspectral Data 

Data is generated assuming a linear mixing model. Endmembers spectra come from an independent 

unmixing process. All endmembers represent vegetation. Considering the notation introduced in 

Section 2.7, Equations (12) and (13) depict the specifics of the model used: 

( ) ( ) (p )b n b p nI S A    (12) 

1

0.9 1
p

ij

i

a


   
(13) 

where n = 1000 pixels, p = 5 endmembers chosen randomly from a set of 10 endmembers on every 

trial, b = 989 bands. Abundances matrix A is randomly generated on every trial; generation of A obeys 

three criteria: Equation (13), a fraction r of pixels with spectral mixing, and using at most 3 endmembers 

for spectral mixing. r is the truly changing parameter along the trials that substantially affects the 

results. Changes in p or the number of endmembers to mix didn’t have much influence. 

Real entropy index of synthetic pixels is computed using matrix A. Matrix I is passed as input to the 

algorithm in Section 3.3, which returns the proposed entropy index. After 20 trials, for every set of 

parameters, correlation between results is computed. Results consider an only-clustering case and 

clustering-unmixing case. Table 1 shows these results. 
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Table 1. Entropy correlation using p = 5 endmembers and increasing fraction r of data with 

spectral mixing. 

Spectral  

Mixing (r) 

Euclidean SAD 

HAC HAC&SU HAC HAC&SU 

0.1 0.64 0.98 0.95 0.99 

0.2 0.54 0.99 0.92 0.73 

0.3 0.75 0.87 0.83 0.55 

0.4 0.43 0.95 0.39 0.40 

0.5 0.48 0.98 0.67 0.55 

0.6 0.59 0.98 0.58 0.87 

0.7 0.43 0.61 0.50 0.56 

0.8 0.43 0.99 0.07 0.64 

0.9 0.11 0.72 0.31 0.37 

4.2. Real Hyperspectral Data and Field Data 

The data is from the Guanica dry forest in Puerto Rico, the field data is from 25 circular plots, each 

plot has a radius of 10 m. The sampling was conducted between 2006 and 2009; sample locations were 

chosen at random and stratified by history of land use and topographic position. Field data considered 

vegetation, specifically plants with stem radius larger than 5 cm. The corresponding hyperspectral 

images are from AISA airborne imagery acquired in 2007, the images have 128 bands, wavelengths 

from 400–1000 nm, and spatial resolution of 1 m. The data is divided in four groups, because there are  

four separate hyperspectral images taken at different times producing differences in reflectance. 

Under these specifications, every hyperspectral zone had 324 pixels, where every pixel is a vector 

of 128 components. Figure 3 shows three instances of “elbow” curves and corresponding critical points 

c* (markers “o”, “+” and “×”) used by HAC to compute clusters; after duplicate and non-vegetation 

pixels discarding, curves show: marker “o” coordinates (272, 2883) produced 16 clusters in a zone of 

288 pixels, marker “+” coordinates (300, 2970) produced 14 clusters in a zone of 314 pixels and 

marker “×” coordinates (306, 2079) produced 14 clusters in a zone of 320 pixels. 

Figure 3. Three instances of “elbow” curves produced during HAC process using real 

hyperspectral data. Corresponding critical points c* in: “o” = (272, 2883) produced 16 clusters, 

“+” = (300, 2970) produced 14 clusters and “×” = (306, 2079) produced 14 clusters. 
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The number of endmembers for the unmixing stage is set up corresponding to the species richness 

of the plot, also collected with field data. The proposed method processes the whole data batch in 30 s 

approximately. The validation of the proposed index is done calculating the Pearson correlation 

coefficient between the Shannon entropy of actual field data and the Shannon entropy computed in the 

corresponding image using the algorithm in Section 3.3. Table 2 shows the results. 

Table 2. Entropy correlation between field data and proposed method. 

Spectral Data 
Euclidean SAD 

HAC HAC&SU HAC HAC&SU 

Group 1 −0.19 0.85 −0.12 0.51 

Group 2 0.59 0.78 0.65 0.87 

Group 3 0.50 0.82 −0.06 0.87 

Group 4 −0.56 0.30 −0.28 0.41 

5. Discussion 

The effect of spectral mixing over HAC can be better appreciated in a simplified hypothetical 

example, using only three endmembers, one hundred points, two bands and two degrees of spectral 

mixing, as depicted in Figure 4; where clusters are represented using points with same color. The left 

side of the figure shows a set of points with low spectral mixing; in this case, important clusters are 

around the endmembers. Thus, most of the entropy is directly captured by these clusters. The right side 

of the figure shows a set of points with high spectral mixing; in this case, important clusters do not 

represent specific endmembers but a mix of them. Thus, entropy cannot be captured from these 

clusters unless an unmixing process is applied. 

Figure 4. (Left) A set of points with low spectral mixing, most of the points are close to 

the endmembers; (Right) A set of points with high spectral mixing, most of the points are 

not close to the endmembers. In both cases, colors represent how the clustering process 

group the points. 

 

First experiment confirmed how degree of spectral mixing of data affects the proposed method. 

HAC gives results that are acceptable or even good with a medium mixing degree or less. The worst 

case appears in a high spectral mixing scenario, where important clusters are composed by non-pure 

pixels, and less populated clusters are those related to pure pixels. This limitation cannot be avoided 
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even with more sophisticated hierarchical clustering methods. SAD has advantage over Euclidean 

distance if HAC alone is used. Using HAC and SU in most cases improve the results; in this case, 

Euclidean distance has advantage over SAD. The downside of using spectral unmixing is that, at least, 

the number of endmembers is needed, or even endmembers data themselves; this information is not 

necessarily known and its computation is not straightforward [13]. As a heuristic, one could expect 

medium or low spectral mixing if spatial resolution is higher than the size of same-material objects in 

the hyperspectral image. 

Second experiment shows positive correlation between field data entropy and computed entropy 

almost exclusively using HAC and SU. Given that spectral data comes from vegetation in a forest, 

high spectral mixing is the most likely scenario; followed by mid spectral mixing in zones having 

plants with big (greater than spatial resolution) crown surface or dense population. Negative 

correlations for HAC can be explained as being due to few important clusters containing information 

of several endmembers, species with very similar spectral signatures or uniform compounds of 

vegetation. Low correlation in Group 4 can be explained by presence of vegetation with stem radius 

below the 5 cm. threshold. 

6. Conclusions 

A method based on hierarchical agglomerative clustering and spectral unmixing is presented, this 

method captures spectral variability of vegetation in hyperspectral images; the captured information 

could be used to assess plant species richness. The method works well even in scenarios with high 

spectral mixing, but requires a way to determine the number of endmembers or endmembers 

themselves. Experimental results show positive correlation between the Shannon entropy of the field 

data and the one computed using the proposed method. 
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