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Abstract: In the face recognition field, principal component analysis is essential to the 

reduction of the image dimension. In spite of frequent use of this analysis, it is commonly 

believed that the basis faces with large eigenvalues are chosen as the best subset in the 

nearest neighbor classifiers. We propose an alternative that can predict the classification 

error during the training steps and find the useful basis faces for the similarity metrics of 

the classical pattern algorithms. In addition, we also show the need for the eye-aligned 

dataset to have the pure face. The experiments using face images verify that our method 

reduces the negative effect on the misaligned face images and decreases the weights of the 

useful basis faces in order to improve the classification accuracy. 

Keywords: feature selection; similarity metrics; learning weights 

 

1. Introduction 

Pattern recognition algorithms usually use the Lambertian surface, which is covered with the 

brightness, as the training set. However, this surface cannot be directly applied to the algorithm’s 

classifier since its dimension is too large. Thus, the algorithms generally need compressed images or 

the use of the Dimension Reduction (DR) stage via image representations such as the Principal 
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Component Analysis (PCA) or Linear Discriminant Analysis (LDA). These techniques can reduce the 

dimension by leaving only the linearly independent column spaces. This can be shown in the following 

several methods. 

First, Turk’s Eigenface uses the face space via the eigenvectors like PCA [1]. This face space is the 

space projected by using the eigenvectors of the covariance matrix. These eigenvectors are the optimal 

solution for scattering the training set. That is, they are found via the linear combinations of  

the principal components that correspond to the directions of the maximal variance in the set. This 

Eigenface algorithm is of interest and has been researched in recent studies. For example, in 2011 

Sudha proposed a principal component neural network with generalized Hebbian learning in order to 

effectively extract these eigenfaces. In particular, his method can update these eigenfaces when face 

datasets are changed. As a result, his method improved the accuracy at various light intensities and for 

various facial expressions [2]. Also, choosing an optimal number of these eigenfaces, dimension of 

face space, is important in the DR stage. Thus, Liu determined it by considering a proposed relative 

magnitude of eigenvalues and Meytlis proposed its range via psychophysics experiments [3,4].  

Second, the reduction is also needed when classical LDA is applied, since this LDA frequently 

causes the singular problem of the total scatter matrix. Therefore, Belhumeur proposed the  

subspace–based LDA, including the DR stage, for this matrix to be the full rank. This can be possible 

by eliminating the null spaces of the within–class scatter matrix via the use of the DR stage before the 

classical LDA is applied [5,6]. This is because these null spaces occur when adjacent pixels are similar 

to each other and thus they are hard to correctly be classified. However, this approach has a significant 

problem, since Ye discovered that these eliminated null spaces of the within–scatter matrix have 

important discriminant information [7]. 

Thus, Yu proposed the direct LDA, which eliminates the null spaces of the between–class scatter 

matrix instead of those of the within–class scatter matrix [8]. However, this trial is also found to be 

inadequate because of the distinct differences from the classification constraints of the subspace  

LDA [9,10]. In addition, sometimes this cannot be applied since the direct LDA uses diagonalization, 

which requires a nonsingularity of the matrix. To reduce the dimension of a covariance matrix, in 2009 

the two-dimensional PCA which prevents singular problems was proposed. This is possible because 

this method does not need to transform the dimension of training images (N
2
 dimensions) into one 

dimension [11]. 

However, even now the classical PCA is used for obtaining a subspace and reducing a data  

noise because of its simple calculation and high performance. For example, Wang proposed a unified 

subspace using a 3-dimensional parameter space: the PCA, Bayes, and LDA [12]. He verified to 

improve a classification accuracy at least 10 percent when the Bayesian analysis in the reduced PCA 

subspace is used. Additionally, Farrell showed that principal components help covariance–based 

detectors to be robust against a noise [13]. These results show the classical PCA is currently a useful 

method for the DR stage. Especially, this PCA is essential to the methods which use a covariance 

matrix since they frequently cause the singular problem because of high dimensions and smoothed 

regions of training images. Consequently, this paper proposes a selection method of best principal 

components in order to improve these PCA and LDA algorithms. That is, this paper proposes an 

alternative, the best feature selection method, for the DR stage in the PCA and subspace LDA via the 

use of the proposed cost function, which is related to the classification error of the training set in order 
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to leave these useful null spaces. The proposed method can be thought to be similar to the following 

three algorithms. 

First, this can be thought of as a sub–sampling technique like partitioning, since the best basis 

features are partitions of the prototype. However, this partitioning method divides the human face into 

nine equal partitions, and then each partition has a different weight based on psychology and 

neuropathic psychology. As a result, the weights of the eyes, nose and mouth should be strengthened, 

while the weights of the cheeks and forehead should be weakened. The recognition rate is increased by 

giving different weights to the different parts of the face image [14]. However, there are no absolute 

standards with regard to the partitioning weights. On the other hand, our method is based on the above 

cost function. 

Second, our method is also similar to the approach of AdaBoost, the famous face detection 

algorithm, since the feature weights are basically calculated and applied [15–17]. For example, Lu and 

Wang apply the LDA features to AdaBoost in order to improve its accuracy [18]. This method uses the 

eigenvectors in the DR stage as the weak classifier in AdaBoost. However, this does not comply with 

the AdaBoost theory, which uses only the weak features for the weak classifiers, while these 

eigenvectors are too strong. [19,20]. Additionally, it is hard to correctly classify the outliers with 

AdaBoost since it focuses them by increasing their weights [21,22]. The number of training images for 

the pattern recognition is also limited. Thus, this pattern detection algorithm, AdaBoost, is not suitable 

for face recognition since it is based on large numbers of images. 

Third, the proposed method is somewhat similar to the WkNN algorithm, since the algorithm 

inserts the weight to the Nearest Neighbor (NN) classifier. However, these weights, w, are calculated 

according to the distance between the prototype and its NN. Thus, it uses an additional normalizing 

constant (w = 1) in the Lagrange multiplier. This is different from the proposed method, which is 

calculated based on the NN classification error. In other words, the proposed method improves the NN 

metrics of the Eigenface and Fisherface methods in the pattern recognition algorithm. That is, our 

metric learning method attempts to learn the distance metric via the use of the cost function from  

the two constraints, the positive and negative images. Therefore, the proposed method is robust  

with regard to outliers or misaligned data since it is based on the cost function, which reduces the 

classification error. After the weight is learned, our method finds the best subset features among the 

entire basis faces via these learned weights. Such a selection of the basis faces is the major issue since 

the needless basis vectors have a considerable effect on the classification error. 

This paper is organized as follows: Section 2 describes the state of the art in the field of classical 

pattern algorithms. Section 3 describes the efficiency and advantages of the best basis selection method 

using the learning metrics for face recognition. Section 4 presents the technical implementation of the 

proposed method and validates its efficiency through various experiments. We show the high accuracy 

of the proposed method by reducing the negative effect of the outliers. Finally, Section 5 provides our 

research conclusions, weighing the benefits and drawbacks of the proposed method. 
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2. Preliminaries 

2.1. Need for Pure Face for Classical Pattern Algorithm  

In pattern recognition, the image dataset has a dramatic effect on the classification result. Thus, the 

famous images were obtained in a limited environment with stationary light and backgrounds. 

Additionally, these images were measured in a limited region, which includes both the front and side 

of the face, shoulder, and hair. These limitations are because the researchers believe that the pattern 

recognition algorithm can find only the important features of a pure face, such as the eyes and nose. 

However, in 1998 Chen raised questions about this belief and changed the measured region and 

environment for his experiments [23]. As a result, he knew that these limited images are not suitable 

for human recognition, because he proved that the discriminant information of the hair and edge 

regions was more important than those of the pure face by his experiments using the classical pattern 

recognition algorithms [24]. In other words, these outline images are suitable for face detection rather 

than face recognition because of the high differential edge information. Figure 1 shows the face images 

for Chen's experiments. This experiment used these mixed images in which the man's hair is changed, 

and then Chen tested the problem to determine whether or not the classical pattern recognition 

algorithm can correctly classify these mixed images. This experiment result shows that the hair 

features are much stronger than those of the pure face. This means that we must use only the cropped 

pure face to correctly recognize the face. 

Figure 1. Face images for Chen’s experiments: (a) Normal faces; (b) Mixed faces. 

 

(a) 

 

(b) 

To meet this demand, Yale University published a set of cropped pure face images, CroppedYaleB, 

and these images were also measured in variant lights and expressions for use in various pattern 

classification experiments [25]. These face images were measured by keeping the eyes aligned to limit 

the pure face. This is also necessary because the classical pattern recognition algorithm generally uses 
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the mean and covariance of the faces [1,26,27]. That is, this algorithm assumes that these faces have a 

common mean. These efforts are essential for finding the correct patterns of the pure face except for 

the edge. 

However, we easily find recent studies using these outline facial images instead of pure  

faces [28,29]. This is because face images of typical benchmark face databases (FERET, CMU PIE 

datasets) include facial outlines [30,31]. Additionally, most researchers are busy trying to propose new 

high performance algorithms such as a pyramid decomposition [28]. Thus, we should be reminded of 

the important of these pure faces. 

2.2. Relationship between Eigenvector and Eigenvalue in Face Space  

The face recognition algorithm commonly uses the high resolution images for the training steps. 

This is because the algorithm needs clearly discriminant information for each person. Therefore, it is 

unfortunately inevitable that the small sample size problem occurs since the image resolution is larger 

than the number of the training images [32]. Especially, this problem happens frequently when the 

classical pattern algorithm scatters the training images. This is because that the scattering procedure 

requires the nonsingularity of the covariance matrix of the Eigenface or Fisherface algorithm (the 

Fisherface is also called as the subspace fisher linear discrimination because of the use of the PCA for 

reducing this matrix dimension). Thus, a dimensionality reduction stage is required in order to assure 

this nonsingularity of the face images via the projection by the finite eigenvectors. For example, Turk's 

DR stage is to convert from the image space to the face space as follows: 

, p x v  (1)  

where T = {x1, … , xN} is a set of training images, N is the number of training images, and v is the 

eigenvectors (basis) of the covariance matrix of x. Turk and Pentland call these eigenvectors the 

eigenfaces, since p is the position of x in the face space [1]. That is, f represents the images projected 

by using these basis faces. After calculating p, Turk's eigenface algorithm compares these projected 

faces to each other by using the similarity metrics. Consequently, the algorithm helps us to easily 

understand and calculate the high-resolution images by eliminating the multi-collinearity and by 

reducing the image resolution. Then these reduced images are used for the similarity metrics for the 

face comparison (e.g., Euclidean distance). 

However, the researchers do not exactly know the relationship between the eigenvalues and 

eigenvectors in the similarity metrics. That is, it is absolutely normal that the basis faces that have the 

larger eigenvalues are chosen as the best feature subset [1,27,32] because the classical face recognition 

algorithms assume that large eigenvalues indicate strong features. However, this is a false belief since 

Chang’s experiments proved that sometimes the first three eigenvectors do not have the discriminant 

information. Figure 2 shows the eigenfaces in descending order of the eigenvalue size. As expected, 

the unimportant eigenfaces, including the edges, are shown in the leading group. This is because both 

the edges and illuminations have high differential values based on the image pixels.  

These false impressions unfortunately continue until now. For example, Huang proposed in 2012 an 

improved principal component regression classification algorithm [29]. This method includes the  

PCA procedure before a linear regression classification is applied. He used eigenvectors with large 
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eigenvalues as important features. However, first n principal components are excluded from the 

features in order to obtain the robustness against illumination changes. This means that he knew 

eigenvectors with large eigenvalues do not always be important. However, he used only this rough 

method (excluding only first n principal components) since he does not exactly know which 

eigenvectors are important. Additionally, most recent studies using the PCA and two-dimensional PCA 

also regard the eigenvectors with large eigenvalues as the strong features [33–38]. However, as 

mentioned before, from Chen’s experiments we know that the eigenfaces with large eigenvalues do not 

indicate strong features in face recognition [39]. Consequently, this paper proposes a new selection 

method of best eigenvectors, eigenfaces for face recognition which is independent to these eigenvalues. 

Figure 2. Eigenfaces in descending order of eigenvalue size: (a) Eigenfaces (Leftmost: 

highest eigenvalue); (b) Each eigenface–Mean face; (c) Mean face. 

 

(a) 

    

(b)        (c) 

3. Best Subset of Basis Faces Using Learning Metrics 

As mentioned in the previous section, the classical face recognition algorithms (PCA, LDA) 

absolutely depend on the basis faces. Thus, this paper proposes similarity metrics for obtaining the best 

basis subset by adjusting the weights of the basis faces and then selecting only the useful basis faces. 

For this reason, the proposed method is included in variable selection or feature selection [40–44]. To 

learn the similarity metrics, our method uses the cost function that minimizes the classification error 

and the selection criteria that excludes the needless features. It is based on Paredes’ distance metrics 

learning [45]. Thus, each basis face is evaluated differently according to the effects on the 

classification errors. As a result, it prevents dimensionality problems when the useful basis is not 

considered [46]. 

3.1. Cost Function Minimizing Classification Errors 

The basis faces are not only the features but also results of the eigenface algorithm. That is, the 

projected face images consist of these basis faces. Thus, it is proper to insert the weights into the 

projected face images such as t or pi in order to learn the weights of the basis faces. Suppose the 
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number of training images is N, and the number of basis faces is K. Then, a weighted distance is  

as follows: 

2 2 2( , ) ( )i ij j ijj
d w t p t p  (2)  

where wij (the i-th rows and j-th columns), 1 ≤ i ≤ N, 1 ≤ j ≤ K, indicate weights of the i-th prototype 

and j-th basis face. This similarity method is based on Paredes’ NN learning algorithm applied to both 

a projected prototype, pi, and projected test image, t [45]. If w = 1, all of the basis faces (or prototypes) 

have same influence on the classification accuracy like the Euclidean distance. If we need the different 

weights per class, then wj = 1/scj where s is the standard derivation and c is the class. These examples 

show that the weight, w, can be used to determine the importance factor of both the prototypes and 

basis faces. 

To learn the weights, w, we propose the cost function for minimizing the classification error of the 

leaving-one-out NN by using the 0–1 loss function as follows: 

1 ( , ) ( , )
( )

( , ) ( , )x T

d d
J step

N d d

 

 

 
  

 


x x x x
w

x x x x
 (3)  

where x
=
 and x

≠
 are the NNs that belong to the same class and different class as x, respectively. This 

cost function J(w) is defined as the summation of the classification errors of all NNs and is based on 

the following three techniques. The first technique is to define the two NNs as follows. Let x
=
 be the 

x’s NN, which is limited in the same class as x. Therefore, the distance between x and x
=
 can be 

indicated as d(x, x
=
). In the same way, let x

≠
 be the x’s NN that is included in the class of which is 

different from that of x. As a result, d(x, x
≠
) can be indicated as the distance between x and x

≠
. 

The second technique is to define the classification error as follows. As the definition of the 0–1 

loss function, the classification error (1 loss) occurs when the argument of the step function is larger 

than 0. On the other hand, when its argument is smaller than 1, the classification result is regarded as a 

0 loss. That is, the step function in Equation (3) can be used to determine whether or not a 

classification error happened. This is because the argument of the step function is determined as  

d(x, x
=
) – d(x, x

≠
). For example, d(x, x

=
) > d(x, x

≠
) means that the classification result is incorrect. 

Thus, the learning metrics try to reduce the weight of x
=
 in order to decrease the distance between x 

and x
=
. 

The third technique is to be independent of x. As mentioned before, the argument of the step 

function is the difference between two NN distances. Therefore, this argument significantly depends 

on the values of the NNs. To resolve this dependency, dividing by d(x, x
=
) + d(x, x

≠
) is necessary. This 

helps the output of the step function to keep a certain boundary even if x is varied. Additionally, the 

step function can be easily calculated by the effect of this boundary. This is particularly useful when 

the step function is replaced by the sigmoid function Sβ(z) = 1/(1 + e
–βz

) in order to make it a 

continuous equation. This is needed in order to exclude the outliers. This is possible because the output 

of the sigmoid function can be close to zero if arguments of the sigmoid function is just larger than 2. 
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3.2. Gradient Descent Algorithm for Learning Weights 

To minimize J, we need the partial derivative of wij. This is important because that we can 

determine which of the optimal algorithms is suitable for our approach. That is:  

2 2

2

4 ( ( )){( ) ( , ) ( ) ( , )}

{ ( , ) ( , )}

j j j j

ijx T
ij

S r x x d x x dJ
w

w d d



   

 

   


 


x x x x x

x x x x
 (4)  

where:  

( , ) ( , )
( )

( , ) ( , )

d d
r

d d

 

 






x x x x
x

x x x x
. (5)  

Then, by separating the two terms, Equation (4) can be reformulated as follows: 

2 2

: :

( ) ( )

( ) ( )
( ( )) ( ) ( ( )) ( )

( , ) ( , )

j j j j

ij ij

T T

index x i index x i

x x x x
S r Q w S r Q w

d d
 

 

 

 
   

 

 
  

x x

x x x x
x x x x

 
(6)  

where:  

2

4 ( , ) ( , )
( )

{ ( , ) ( , )}

d d
Q

d d

 

 




x x x x
x

x x x x
. (7)  

This reformulation is needed for the easy analysis by separating into the two term (x
=
, x

≠
). As 

shown in Equation (6), if we use ∂J / ∂wij = 0, then the only solution is 0 since all the terms in this 

equation depend on wij. The Lagrange multiplier is also not suitable for solving this equation since it 

needs the additional condition about x. Thus, we realize that the iterative methods (like the gradient 

descent) are more proper than the above deterministic methods for solving this cost function. As a 

result, the gradient descent algorithm is proper to apply for updating wij in the negative direction  

as follows: 

2 2

( 1) ( ) ( )

: :

( ) ( )

( ) ( )
( ( )) ( ) ( ( )) ( )

( , ) ( , )

j j j jk k k

ij ij ij

T T

index x i index x i

x x x x
w w uw S r Q S r Q

d d
 

 

 



 
   

 

 
     

 
  

 
x x

x x x x
x x x x

 (8)  

where k and u are the updating step and the amount (speed), respectively. When simulating  

Equation (8), if u is small or k is not big enough, then its optimal solution cannot be reached. This is 

because the gradient descent is terminated when the updating amount is smaller than epsilon, ε, or the 

learning step is exceeded. On the other hand, if u is large, then the local and global minima can be 

passed. Therefore, we suggest the alternative, which saves costs and weights at every step and then 

chooses the minimum cost and its weights from the storage. This guarantees that the classification 

error is smaller than the initial cost [45]. 
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3.3. Selection Criterion Excluding Needless Features 

As shown in Equation (8), the first term related to x
=
 reduces its weight, but the second term related 

to x
≠
 increases its weight. These terms directly affect the distances between x and its NNs. That is, the 

proposed method adjusts the weights of only two NNs (x
=
, x

≠
) per prototype. These learned weights 

can be also used to select the best basis subset. This selection criterion is as follows: 

:

( ) ,

( )

( , )1
( )

( , )

mj

j

x T ij
index x m

index x i

R
U step

N R







 





 
   

 


x x
x

x x
 

(9)  

where:  

2 2 2 2

2 2

( ) ( )
( , ) , ( , )

( , ) ( , )

mj j j ij j j

mj ij

w x x w x x
R R

d d

 

 

 

 
 x x x x

x x x x
 (10)  

Thus, Rmj and Rij are proportional to the distance between xj and its NNj. This means that they are 

applied by only the j-th basis face. Thus, the argument of the step function, Rmj(x, x
=
)/Rij(x, x

≠
), can 

indicate d(xj, xj
=
)/d(xj, xj

≠
). We call this method the Relationship of two Rs (RR-based distance). This 

argument means that U is the classification error (like the cost function J) that is related to the use of 

the j-th basis face. For example, if the value of U is large, then d(xj, xj
=
) > d(xj, xj

≠
). This means that the 

j-th basis face cannot be trusted and then if we apply this, the classification error is increased. Thus, we 

need to exclude the j-th basis faces from the best subset. 

4. Experiments and Results 

4.1. Implementation 

Our method was implemented by dividing it into three parts: the acquisition from the image dataset, 

the conversion into the images projected by the Eigenface, and the application of the learning weights 

using the gradient descent algorithm. 

First, the acquisition is implemented as follows: detailed dataset specifications for all the 

experiments are shown in Table 1. This part needs the accessing technique for loading the images in 

sequential order. PainCrop, the image dataset for the first experiment, was used in order to recognize 

human expressions [47]. As a result, since the number of this dataset is too small, we added additional 

horizontally symmetric images into the dataset. CroppedYaleB, the image dataset for the second 

experiment, was used in order to test the effect on the direction and intensity of the light [48]. Then all 

the images and classes were saved into x and c, respectively. For example, CroppedYaleB's resolution 

was 192 × 168. The number of classes and the number of images per class are 17 and 18, respectively. 

This is a part of the entire images because of the consideration of the computing capacity. For saving 

the CroppedYaleB dataset, x consists of 17 cells, where these cells are equivalent to the classes. Thus, 

the dimension of the cell was 192 × 168 × 18, since the number of images per class is 18. On the other 

hand, PainCrop had 12 cells and 14 images per class, so its cell dimension was 241 × 181 × 14. After 

saving, we converted these 3-dimensional matrixes (cells) into 2-dimensional matrixes since high 
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dimensional matrixes raise the computation load. This is possible because the image dimension was 

changed to a 1-dimensional matrix. As a result, the cell dimensions of CroppedYaleB and PainCrop 

were 32,256 × 18 and 43,621 × 14, respectively. Additionally, c contained the class of x. For example, 

these values of the first 18 images are all 1 for the first class. The next 18 values are all 2 for the 

second class. The dimensions of c are 1 × 306 and 1 × 168 for CroppedYaleB and PainCrop, 

respectively. These dimensions are determined by multiplying the number of classes and the number of 

images per class. After that, these images, x, were divided into 10 sets for the 10-fold cross validation, 

which consists of nine prototype sets and one test set. This is needed in order to improve the 

experiment's reliability. In addition, the index of these images was only used for reducing the loads 

that happen when the image data are moved. 

Second, the conversion part is implemented in order to obtain the images projected by Eigenface. 

Thus, we just applied these datasets to the Eigenface algorithm. By using Equation (1), we obtained 

projected images, where pi and t are the resulting images from the prototype set and the test set, 

respectively. Additionally, cp and ct, which include the true prototype and test classes, respectively, 

were also obtained in order to use for checking the classification result in the similarity metrics. 

Third, the gradient descent algorithm is implemented in order to learn the weights for both the basis 

faces and prototypes. First, 1 image set among the 10 sets from the 10-fold cross validation is loaded. 

Next, we needed to know the differences among x, x
=
 and index(x

=
) in order to correctly implement 

this part in Equation (6), because these variables are closely related to each other. Thus, we separate 

this equation into two individual terms that relate to x
= 

and x
≠ 

for easy implementation. 

Table 1. Dataset specifications for our experiments. 

Data Set Class 
Images per 

Class 

Total 

Images 

Train 

Images 

Test  

Images 

Dimension  

of Cell 

Yale Face 15 11 165 149 16 77,760 × 11 

CroppedYaleB 17 18 306 276 30 32,256 × 18 

CroppedYaleB + 

Misaligned 
17 28 476 429 47 32,256 × 28 

Pain Crop 

+ HSF images 
12 14 168 152 16 43,621 × 14 

Pain Inner 

+ HSF images 
12 14 168 152 16 21,463 × 14 

ORL face 

database  

+ HSF images 

40 20 800 720 80 10,304 × 20 

FERET 

+ HSF images 
100 10 1000 667 333 24,576 × 10 

4.2. Experiments for Face Datasets 

The following experimental parameters were commonly used for learning the gradient descent 

algorithm in our experiments. We set these tuning parameters via initial experiments. An updating 

amount, u, was set as a considerably small value (1.0e–7) since this affects J’s variation which predicts 

the classification error. That is, this parameter can adjust updating the quantity per step in Equation (8). 
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An epsilon, ε, was used for detection when J’s derived function is close to zero. That is, our weight 

updating procedure was finished when the difference between before and after J is smaller than this 

epsilon. Thus, the epsilon was set as a small value (1.0e–6) which is close to zero. The slope of the 

sigmoid function, β, was set to 10. If β is large, the sigmoid function is similar to the step function. 

However, it is impossible that the output of the sigmoid function is 0 or 1. In this paper, we used 

famous datasets that are published by reliable sources. The first experiment used the PainCrop dataset, 

which is similar to that used in Chen’s experiments [23,24].  

This dataset included not only the facial outlines, but also aligned the faces by the eyes. In addition, 

this had to be changed into gray images, since it contained red, green and blue images. Then, when 

using the 10-fold cross validation, we needed to consider whether or not the number of images in the 

dataset is enough for the validation. If not enough, one of the 10 sets is vacant. This experiment tested 

for the effect of the basis faces on the classification error. We called Paredes’ distance as the  

weight–based distance in our experiments. Figure 3a,d show the first (Or1) and second (Or2) basis 

faces that have large eigenvalues (1.0354e + 08, 4.9670e + 07), respectively.  

Figure 3. Comparison of eigenfaces chosen by U and eigenvalue: (a) First basis face with 

a large eigenvalue (Or1); (b) First basis face with a small U (RR1) ; (c) Pixel summations 

between inner and outer faces; (d) Second basis face with a large eigenvalue (Or2);  

(e) Second basis face with a small U (RR2); (f) Eigenface asymmetry between Or2 and RR2. 

 

(a)           (b)            (c) 

 

(d)           (e)            (f) 

Figure 3c shows that the Or1 face emphasized the facial outlines or edges as mentioned in Chen’s 

experiments. In this figure, the white pixels represent the important features (basis face) since they are 

close to 255. This is because these white pixels were emphasized when they were multiplied with the 
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images in Equation (1). On the other hand, Figure 3b,e show the first (RR1) and second (RR2) basis 

faces that have small values of U (0.264, 0.271) via the proposed method, respectively. Figure 3f 

shows that the important features are related not to the illumination but to the pure faces (RR2), since 

the eigenfaces (Or2) with high asymmetry values seem to be influenced by the light. This is possible 

because our method excluded the edge basis faces (outlines) by increasing their weights. 

The variations with regard to the weights when we used various basis faces (Or1, Or2, RR1, and 

RR2) are shown in Figures 4 and 5. As mentioned previously, our method (RR-based distance) 

chooses the basis faces (RR1, RR2) related to the pure face as the best subset by using these weights. 

On the contrary, both the original and weight–based distances used the eigenfaces with large 

eigenvalues such as Or1 and Or2. Figure 4a, b is d(x, x
=
) and d(x, x

=
)/d(x, x

≠
) − 1 when the number of 

basis faces used is H = 10 and the learning step is k = 5, respectively. On the other hand, Figure 5 

shows the results when H and k are increased to 20 and 200, respectively. This learning step, k, is the 

maximum repetitive number of the learning procedure. Thus, k has to be set as a large value if the 

updating amount is small value in order for cost function, J, to reach its minimum. 

Figure 4. Variation of weights using Euclidean, weighted–based and RR-based distance  

(u = 1.0e−7, ε = 1.0e−6, β = 10, H = 10, k = 5): (a) d(x, x
=
); (b) d(x, x

=
)/ d(x, x

≠
) − 1. 

 

(a)       (b) 

Figure 4b shows that the y values of both the 5th and 8th test images are larger than 0 in the  

RR-based distance. This means that these two test images are incorrectly classified since  

d(x, x
=
) > d(x, x

≠
). On the contrary, Figure 5b shows that the 5th test image’s y value is smaller than 0 

in only the RR–based distance, since the weight of its x
=
 is decreased and the added basis faces have a 

positive effect on it. Additionally, this indicates that the 8th test image needs to apply more basis faces 

or its weight needs to be updated more. In other words, this shows different results than the other 

distances since the two other distances applied the eigenfaces with large eigenvalues (Or1, Or2). These 

differences directly affected the classification error. 
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Figure 5. Variation of weights using Euclidean, weighted-based and RR-based distance  

(u = 1.0e−7, ε = 1.0e−6, β = 10, H = 20, k = 200): (a) d(x, x
=
); (b) d(x, x

=
) / d(x, x

≠
) − 1. 

 

(a)     (b) 

The second experiment was based on the CroppedYaleB dataset, which was introduced in  

Section 2. We also added the additional misaligned face images in Figure 6 into this dataset in order to 

test the robustness to the misalignment. The first misaligned dataset was rotated clockwise and 

counterclockwise at 5 and 25 degree angles from the aligned dataset. The second misaligned dataset 

was shifted to the top and bottom 20 pixels from the aligned dataset. Then we needed to crop these 

moved images to retrieve the original size, 192 × 168, since their sizes were changed by the 

modifications. Figure 7a,b shows the prototypes per class that are projected by the first two eigenfaces 

that have large eigenvalues and small Us, respectively. That is, these prototypes are scattered by the 

selected basis faces. In spite of that, the misaligned prototypes were close to the aligned prototypes 

when the basis subsets with the small Us were applied, as shown in Figure 7b. This means that our 

method chose the basis faces that can correctly classify the misaligned prototypes. On the other hand, 

the prototypes are scattered in all directions when the other methods using the large eigenvalues were 

applied. These experiment results directly affect the classification error, as shown in Figure 8. That is, 

this figure shows that the classification error using the proposed method was close to zero in spite of 

the misaligned outliers when H > 30. In addition, this also shows that the classification error cannot be 

reduced when we apply the basis faces with large eigenvalues, even if H = 300.  

Figure 6. Face images of CroppedYaleB: (a) Eye-aligned images; (b) Misaligned images. 

 

(a) 
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Figure 6. Cont. 

 

(b) 

Figure 7. Prototypes projected by two basis faces (u = 1.0e−7, ε = 1.0e−6, β = 10, k = 100, 

H = 10) using CroppedYaleB + misaligned faces: (a) Basis faces having the large 

eigenvalues are applied; (b) Basis faces having the small U are applied. 

  

(a)      (b) 

Figure 8. Classification results of Euclidean distances, weight-based distance and  

RR-based distance (u = 1.0e−7, ε = 1.0e−6, β = 10, k = 100) using subset 2 of 

CroppedYaleB + misaligned faces. 
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These results occur because of the following reasons. First, the sigmoid function of the proposed 

method in Equation (8) can reduce the negative effects on these misaligned prototypes since its slope, 

S′(x), is close to 0 when its augment is too small or too large. Second, this method can predict the 

classification error during the training step by J in Equation (3). If the learning weight is correctly 

calculated, then J is a descending curve as shown in Figure 9. This curve shows that our method can 

choose the basis faces that are suitable for these outliers via the predicted classification error. 

Figure 9. Cost function according to the learning step (u = 1.0e–7, ε = 1.0e–6, β = 10,  

H = 10). 

 

The third experiment tested to know differences between the Paredes method and proposed method 

in Table 2. Thus, both methods used same basis faces for same experimental environment. In addition, 

same parameters were also used except a learning rate, u. Learning rates for the Paredes method and 

our method are 0.01 and 0.001, respectively. These different values are needed because ranges of two 

cost functions are different each other. 

The fourth experiment shows the classification results using the various datasets, as shown in  

Table 3. This experiment was tested in order to determine which dataset is proper for use with the 

proposed method and to compare other distance metrics. For example, the classification result was 

poor when we tested the Yale Face dataset [49]. This is because this dataset is not aligned with the 

eyes and includes the face outline, as shown in Figure 2. This is also confirmed by the results of the 

PainCrop and PainInner datasets (PainInner is the dataset in which the face outline is cropped from 

PainCrop). That is, our method is more proper for the eye-aligned face images, since the classification 

error of PainInner is smaller than that of PainCrop. In addition, the experiments were more effective 

when the additional Horizontally Symmetric Face images (HSF) were inserted into the dataset. For 

example, we added these HSF images into the Olivetti Research Laboratory (ORL) face database [50], 

FacE REcognition Technology (FERET) database [51] PainCrop, and PainInner.  
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Table 2. Comparison of Paredes method and proposed RR-based method (ε = 1.0e−6,  

β = 10, k = 100). 

Data Set 

 

 

 

 

H 

Eigenfaces with  

Large Eigenvalues 

Eigenfaces with  

Small Us 

Paredes’s Cost 

Function 

Our Cost 

Function 

Paredes’s Cost 

Function 

Our Cost 

Function 

CroppedYaleB + 

Misaligned 

1 

10 0.6596 0.6383 0.1277 0.1064 

20 0.4681 0.4468 0.0426 0.0426 

30 0.3191 0.3191 0.0213 0.0213 

40 0.2340 0.1915 0.0213 0.0000 

2 

10 0.6042 0.5833 0.0625 0.1250 

20 0.4167 0.3750 0.0208 0.0000 

30 0.2708 0.2083 0.0000 0.0000 

40 0.1875 0.1667 0.0000 0.0000 

Yale Face 

4 

10 0.3529 0.3529 0.2941 0.2353 

30 0.2941 0.3529 0.2941 0.2941 

40 0.2941 0.2353 0.2353 0.2353 

8 

10 0.1875 0.1875 0.1250 0.1875 

20 0.1875 0.1250 0.1250 0.0625 

30 0.1250 0.0625 0.1250 0.0625 

40 0.0625 0.0625 0.0625 0.0625 

Table 3. Classification results using various distance metrics (u = 1.0e−7, ε = 1.0e−6,  

β = 10, k = 100). 

Data Set 

Error when H = 10 Error when H = 30 

Euclidean 

Distance 

Weight-Based 

Distance 

RR-Based 

Distance 

Euclidean 

Distance 

Weight-Based 

Distance 

RR-Based 

Distance 

Yale Face Subset 1 0.1875 0.2500 0.2500 0.1250 0.1250 0.1250 

Subset 2 0.2941 0.2941 0.2353 0.2941 0.2353 0.2353 

Subset 3 0.2353 0.2353 0.2353 0.2941 0.2941 0.2353 

CroppedYaleB Subset 1 0.7234 0.7021 0.1489 0.3830 0.3404 0.0638 

Subset 2 0.6458 0.5833 0.0833 0.2917 0.2292 0.0208 

Subset 3 0.5417 0.5625 0.1250 0.2708 0.2292 0.0417 

CroppedYaleB + 

Misaligned 

Subset 1 0.6596 0.6596 0.1277 0.3830 0.3191 0.0638 

Subset 2 0.5833 0.5208 0.0625 0.2500 0.1458 0.0417 

Subset 3 0.6042 0.6250 0.1875 0.3542 0.3333 0.0625 

Pain Crop 

+ HSF images 

Subset 1 0.1875 0.1875 0.0625 0.1250 0.1250 0.0625 

Subset 2 0.1765 0.2353 0.0588 0.0000 0.0000 0.0000 

Subset 3 0.1176 0.1176 0.0000 0.0588 0.0588 0.0000 

Pain Inner 

+ HSF images 

Subset 1 0.3750 0.3125 0.0000 0.1250 0.0625 0.0000 

Subset 2 0.1765 0.1765 0.0000 0.0000 0.0000 0.0000 

Subset 3 0.2353 0.1176 0.0000 0.1176 0.0000 0.0000 

ORL face 

database  

+ HSF images 

Subset 1 0.0500 0.0500 0.0125 0.0125 0.0125 0.0000 

Subset 2 0.0125 0.0125 0.0000 0.0000 0.0000 0.0000 

Subset 3 0.0250 0.0250 0.0125 0.0375 0.0375 0.0125 
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Table 3. Cont. 

Data Set 

Error when H = 10 Error when H = 30 

Euclidean 

Distance 

Weight-Based 

Distance 

RR-Based 

Distance 

Euclidean 

Distance 

Weight-Based 

Distance 

RR-Based 

Distance 

FERET database 

+ HSF images 

Subset 1 0.3874 0.3874 0.0811 0.3874 0.3724 0.2192 

Subset 2 0.3743 0.3743 0.1018 0.4102 0.4042 0.1347 

Subset 3 0.3964 0.3964 0.1321 0.4264 0.4144 0.1982 

Table 4. Accuracy comparison of Information Gain, Sequential Forward Selection,  

RR-based distance, Non-Negative Least Squares classification, and Linear Regression 

Classification. 

Data Set IG SFS NNLS LRC RR 

Yale Face Subset 1 0.2500 0.1875 × 0.1250 0.1250 

Subset 3 0.1765 0.3529 × 0.2352 0.1176 

Subset 10 0.1176 0.1176 × 0.1176 0.0588 

CroppedYaleB + Misaligned Subset 1 0.2128 0.2979 0.0425 0.0000 0.0851 

Subset 4 0.1458 0.1042 0.0833 0.0625 0.0625 

Subset 5 0.1042 0.2292 0.0625 0.0208 0.0625 

Pain Crop + HSF images Subset 1 0.2500 0.0000 0.0000 0.1250 0.0000 

Subset 2 0.1176 0.0588 0.0000 0.0000 0.0000 

 Subset 7 0.0000 0.0588 0.0588 0.0588 0.0588 

Pain Inner + HSF images Subset 4 0.0000 0.0000 0.1176 0.1176 0.0000 

 Subset 5 0.1176 0.1176 0.1176 0.1764 0.1176 

 Subset 10 0.0000 0.0000 0.1250 0.1875 0.0000 

ORL face database + HSF 

images 

Subset 2 0.0000 0.0000 0.0125 0.0125 0.0000 

 Subset 6 0.0000 0.0125 0.0375 0.0250 0.0125 

 Subset 9 0.0000 0.0250 0.0250 0.0125 0.0125 

FERET database + HSF 

images 

Subset 1 0.2312 × 0.4264 0.4234 0.0901 

 Subset 2 0.1138 × 0.3682 0.3562 0.1138 

 Subset 3 0.2132 × 0.4084 0.4024 0.1351 

The last experiment is the classification results which are compared with two classification 

algorithms and two principal component selection algorithms, as shown in Table 4. Non-Negative 

Least Squares classification (NNLS) and Linear Regression Classification (LRC) were used for this 

classification test [52–54]. In addition, Information Gain (IG) and Sequential Forward Selection (SFS) 

were also used for this best principal component selection test [55,56]. These algorithms were suitable 

for our experiment since the performances of these algorithms were recognized by many researchers. 

However, face images having a lot of vacant space such as the Yale Face and FERET dataset could not 

be trained several times since the singular problem occurs in calculation. This is because these 

algorithms do not include the DR stage. That is, this means the classification result was considerably 

affected by the DR stage. In addition, we knew that the improved DR stage can reduce the possibility 

of the singular problem.  
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4.3. Discussion 

The proposed method is based on Paredes’ NN learning algorithm. The main difference with 

Paredes’ algorithm is the application field. That is, Paredes tried to improve the NN classification, but 

we applied it to find the best subset for the face recognition. This can be confirmed by Equation (1), 

because the applied pi and t are the face images projected by the basis faces. This proposed method 

learns the NN's weights via the cost function in the DR stage. In Equation (3), the cost function J, the 

summation of the output of the sigmoid function about all x, is always smaller than 1 since it is divided 

by the total number of x. This means that all of the outputs of the sigmoid function affect this cost J. 

Each output indicates that the wrong classification is when J is larger than 1, and the correct result is 

when it is smaller than 1. In this procedure, the weights of the NNs are updated in reparative steps. As 

a result, the augment of the sigmoid function is very important. This augment can also identify the 

outliers by checking whether its value is larger than 2. A large augment value means that the sigmoid 

function's slope is close to 0. In Equation (8), this indicates that the outliers have little effect on the 

weights. This advantage was validated in the second experiment. 

Various variables were used in this proposed method. It is particularly important that we need to 

know the exact meanings of x, x
=
 and index(x

=
), since these variables are closely related to each other. 

Both x and x
=
 are the prototypes. x

=
 indicates the x's NN. index(x

=
) is the index of x

=
. This is also 

needed in order to know which weights are updated. As mentioned in Section 3, this method does not 

update all of the weights of the prototypes, but those of the NNs, which are chosen by the similarity 

metrics in Equation (8). As a result, the weights of some prototypes having the initial weight value of 1 

can exist, since the method does not update it. In addition, this method also updates the prototypes that 

are in the same class with these NNs. For example, if the class of the selected NN is 2, then all of the 

prototypes including class 2 are updated. This increases the possibility of the correct classification. 

Additionally, this improves the algorithm speed, since the number of learning weights is reduced by  

N/ the number of images per class.  

Updating the weights has to be repeated until the method reaches the minimum of the cost function 

in Equation (3), as shown in Figure 9. This must be done carefully, since its tight minimum can cause 

an overfitting problem. This is because this cost function is calculated using the training set rather than 

the test set. The proposed method provides the learning stop criterion, which consists of k and ε for 

finding the cost minimum. Additionally, such gradient descent algorithms have an important problem 

of choosing the initial condition of the cost function. This is necessary because of the existence of the 

local minimum. However, in our case it is impossible to change the initial condition, since it is 

determined by the cost when the learning is begun in Equation (3). Thus, we need to choose the proper 

training set, as mentioned in Section 2.1. 

In the DR stage, we have to decide how our method can reduce an image’s dimension. In other 

words, we decide the maximum number of the best subset, H. This is needed because too many 

features increase the classification errors. In this paper, to solve this problem, we note that each basis 

face (eigenvector) is independent and orthogonal. Thus, each image can be represented as  

(∑ basis × projected image). That is, we need to analyze the relationship between the number of 

combined basis faces and the classification error. This is convex downward, as shown in Figure 8. This 

is because of the following three reasons: first, in the early stage, the classification error is significantly 
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reduced when H < 30. Second, in the middle stage, this relationship function’s slope becomes lower 

since it reaches the limitation or minimum of the classification accuracy. Finally, in the last stage, this 

curve goes upward since all of the basis faces are included (the needless features are not excluded). 

Consequently, the maximum number of the best subset, H, is chosen when this relationship function is 

a minimum.  

5. Conclusions 

In this study, we have proposed a best basis selecting method for NN classifiers in the classical 

recognition algorithms. The primary contribution of the proposed method was to help face recognition 

algorithms to find correct faces by using only small numbers of basis faces. This improvement was 

possible because the proposed method provides a simple scheme for learning weights via the cost 

function related to the classification error and choosing the best subset among the basis faces via these 

weights. This is validated by our experimental results. That is, they reveal that basis faces with large 

eigenvalues do not include the high discriminant information in face recognition. This means that 

important basis faces are not related to the illumination or face outline. In addition, these results also 

show that face recognition algorithms need to learn proper training images, which are aligned with 

eyes and are related to the pure face. This is necessary because our method predicts the classification 

error using these training images via the proposed cost function, and checks whether prototypes are 

outliers via the sigmoid function of the cost function. However, this is not enough to detect all of the 

outliers among the training set. In further research efforts, it would be desirable to apply other outlier 

detecting algorithms to our method.  
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