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Abstract: As commonly used forced convection air cooling devices in electronics, cooling 
fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan 
assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, 
reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is 
necessary to conduct research on the health assessment of cooling fan bearings. This paper 
presents a vibration-based fan bearing health evaluation method using comblet filtering and 
exponentially weighted moving average. A new health condition indicator (HCI) for fan 
bearing degradation assessment is proposed. In order to collect the vibration data for 
validation of the proposed method, a cooling fan accelerated life test was conducted to 
simulate the lubricant starvation of fan bearings. A comparison between the proposed 
method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth 
parameter) was carried out to assess the performance of the HCI. The analysis results 
suggest that the HCI can identify incipient fan bearing failures and describe the bearing 
degradation process. Overall, the work presented in this paper provides a promising 
method for fan bearing health evaluation and prognosis.  

Keywords: cooling fan; health assessment; prognostics and health management; comblet 
filtering; exponentially weighted moving average; health condition indicator 
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1. Introduction 

The integration level and energy consumption of electronic circuits is increasing, resulting in 
increased heat flux densities and temperatures in electronic devices. In addition, the recent trend 
toward super-light and super-thin electronics has imposed further challenges on system thermal design. 
According to [1], temperature has a great impact on electronic component reliability, and the failure 
rate of a component increases exponentially as the temperature increases. Therefore, it is necessary to 
utilize thermal design techniques so as to reduce the internal temperature of electronic devices. The 
working principle of thermal design is to accomplish the following: (1) lessen heat dissipation by 
utilizing low energy consumption techniques and reducing the number of heat-generating components; 
and (2) move heat out through conduction, convection, or radiation. Cooling fans, as an active heat 
transfer device, have been used in many electronics systems to lower the system temperature and 
improve reliability.  

As a commonly used thermal solution for most electronic devices, cooling fans have simple 
structures with low cost. According to [2], cooling fan failure is a major problem for many electronic 
devices. It causes system instability, malfunctioning, and damage to electronic components by  
over-heating, and can finally lead to system failure [3]. This may result in severe economic, or even 
catastrophic, losses under certain applications, such as large-scale data servers in financial divisions, 
communication networks, avionics, medical devices, etc. Therefore, it is necessary to conduct research 
on cooling fan condition monitoring and health assessment to guarantee the normal operation of a fan.  

A cooling fan is composed of both electronic and mechanical parts. The mechanical parts include 
the bearings, shaft, fan blades, and fan housing; out of these, bearing failure is the top contributor to 
fan failure. The types of bearings used in cooling fans can be categorized as sleeve bearings, ball 
bearings, fluid bearings, and magnetic bearings. The selection of bearings should consider parameters 
such as performance, durability, cost, size, weight, and noise. Ball bearings have the advantage of a 
good balance between these factors, and so they are widely used in cooling fans. Specifically, ball 
bearings have a longer lifespan at higher temperatures (63,000 hours at 50 °C) than sleeve bearings 
(40,000 hours at 50 °C) [3]. 

As a typical rolling-element bearing, a ball bearing is the fundamental rotating part in a mechanical 
system, and numerous studies have been conducted on bearing fault diagnosis [4–12]. Regarding the 
current progress on machinery health assessment, Miao et al. developed gear health assessment 
methods using empirical mode decomposition [13] and wavelet decomposition [14]. Wang et al. [15] 
presented gearbox fault diagnosis and prognosis by the fusion of multiple health indicators through 
support vector data description. Yang and Makis [16] used an ARX model to evaluate gearbox health 
conditions under variable load conditions. Lin et al. [17] proposed an approach for gearbox condition-
based maintenance, and the fault growth parameter was defined using the residual error signal.  
Qiu et al. [18] proposed a self-organizing-map-based performance degradation method for assessing 
bearing health condition. Ocak et al. [19] developed a new scheme based on wavelet packet 
decomposition and the hidden Markov model for bearing prognostics. Pan et al. [20,21] used wavelet 
packet node energies as bearing fault features. Then, fuzzy c-means [20] and support vector data 
description [21] were respectively employed to evaluate how far the current bearing health condition 
was from normal bearing health condition. In their following up studies, Pan et al. [22] proposed a 
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hybrid model for bearing performance degradation utilizing support vector data description and fuzzy 
c-means. Jiang et al. [23] proposed a new approach combining the autoregressive model and fuzzy 
cluster analysis for bearing diagnosis and degradation assessment. Shen et al. [24] considered the 
cumulative characteristics of bearing performance deterioration and proposed a monotonic health 
index for evaluating bearing health condition. Lei et al. [25] proposed health indicators for monitoring 
planetary gearboxes health condition.  

The purpose of this research is to investigate cooling fan bearing health assessment methods and 
develop a prognostics and health management (PHM) solution for fan degradation assessment. 
However, the literature on fan bearing health assessment is limited. The Center for Advanced Life 
Cycle Engineering (CALCE) at the University of Maryland, has conducted research on fan bearings, 
including fan bearing fault identification [3], a physics-of-failure approach for fan PHM [26], a 
precursor monitoring approach for cooling fans [27], and fan bearing degradation using acoustic 
emission [28]. This paper proposes a new health indicator for fan bearing degradation assessment. The 
comblet, which was initially proposed by Miller [29] for gearbox vibration analysis, is utilized for the 
extraction of fault-sensitive information from the frequency domain of the bearing vibration signal. 
The health indicator is defined by data taken from the bearing vibration spectrum, incorporating the 
idea of exponentially weighted moving average (EWMA). The proposed EWMA based health 
indicator can utilize historical information (current and previous data) about the test sample, and it 
does not require model training, as opposed to other related studies [18–22,24]. To validate the 
proposed method, a test rig for a cooling fan accelerated life test was established, and a set of fan 
bearing vibration data collected from the test rig was used.  

The rest of this paper is organized as follows: Section 2 introduces the fundamentals of the comblet 
filter. In Section 3, a new health indicator for fan bearing degradation assessment is proposed. In 
Section 4, the fan bearing accelerated life test rig is introduced, and then vibration data collected from 
this test rig are used for validation of the proposed method. Conclusions are presented in Section 5. 

2. Principle of Comblet Filtering 

2.1. Time-Domain Synchronous Averaging 

Time-domain synchronous averaging (TSA) is a useful technique for rotating machinery fault 
diagnosis. It can extract fault-related periodic information from complicated signals and eliminate 
extraneous periodic components and noise. In TSA, the measured signal is synchronously averaged 
over the rotational period of the target of interest. The nonsynchronous vibration from other sources 
and noise are averaged out by applying this procedure. After a large amount of averaging in the  
time-domain, the averaged signal gradually approximates the expected periodic signal, and the signal 
to noise ratio is improved.  

Given a piece of signal , the corresponding time-domain averaging  can be defined as: 

 (1) 

where  is the period of the target component, and  is the number of averages.  
Taking the Z-transform on Equation (1), the following can be obtained: 
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 (2) 

where  is the Z-transform of . 
Thus, the transfer function of the time-domain averaging is obtained as: 

 (3) 

The frequency response of Equation (3) can be calculated as: 

 (4) 

The corresponding amplitude response and phase responses are described as: 

 (5) 

 (6) 

Therefore, TSA can be seen as a comb impulse train filter which implements signal filtering in the 
frequency domain. It keeps the information around the main frequency and its harmonics and 
suppresses other unrelated frequency components. However, good performance of the TSA technique 
requires many averages and long signal lengths, and these may not be available due to cost and other 
technical restrictions in data collection. Furthermore, the underlying assumption of the constant 
rotation speed is not always met in rotating systems because the rotation speed fluctuates according to 
working conditions, such as load and electrical supply. If the rotation speed is fluctuating, synchronous 
sampling is necessary, which collects vibration at a rate related directly to the rotation speed of the 
target. Another solution is to record the vibration signal at an arbitrary sampling rate and do 
resampling through interpolation. However, the implementation of these techniques is difficult due to 
the higher cost of hardware and increased computational burden.  

2.2. Wavelet Filtering 

The wavelet transform provides a time-frequency representation of a signal through a set of wavelet 
basis functions [30]. It has been widely used in machinery fault diagnosis. Given a mother wavelet 
function, , a series of wavelet functions  can be defined as:  

 (7) 

where  is the scale parameter,  is the translation parameter, and  represents a set of real numbers.  
The wavelet function  should satisfy the following admissibility criterion:  
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 (8) 

where  denotes the Fourier transform of . The continuous wavelet transform of a signal  
can be described as: 

 (9) 

where  represents the complex conjugation of .  
The equivalent frequency-domain representation can be expressed as: 

 (10) 

where  and  are the Fourier transforms of  and , respectively, and  represents 
the inverse Fourier transform.  

Accordingly, the continuous wavelet transform can be treated as a band-pass filter. The bandwidth 
and central frequency of the filter is determined by the scale parameter  of the wavelet function.  

2.3. Comblet Filter Design 

The wavelet coefficient  measures the correlation between the wavelet function and the 
signal of interest at different frequencies determined by the scaling parameter  and at different time 
locations determined by the translation parameter . A coefficient with a large value means that the 
correlation between the wavelet function and the signal is high; conversely, a small value indicates a 
low correlation. Thus, the wavelet function can be designed according to the characteristics of the 
signal.  

Due to its property of time-frequency localization, the Morlet wavelet has been widely used in 
signal processing. It is defined as: 

 (11) 

where  is the shape factor,  is the wavelet central frequency, and  is a positive parameter.  

The Fourier transform of the Morlet wavelet is: 

 (12) 

Figure 1 shows the time-domain and frequency-domain plots of a complex Morlet wavelet, given that 
=15 Hz, =5, and =1.  
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Figure 1. (a) Time-domain plot of the complex Morlet wavelet; (b) Frequency-domain 
plot of the complex Morlet wavelet.  

 
As seen in Section 2.1, TSA can be treated as a comb filter that extracts fault-related information 

from a complicated vibration signal. To overcome the aforementioned limitations of TSA, a new 
wavelet function is designed which possesses the properties of both the exponential decay of the 
Morlet wavelet and the flat passband of the harmonic wavelet. The new wavelet is called a comblet, 
and the mathematic definition of this wavelet is given by:  

 (13) 

where  is the comblet central frequency and  is the half central bandwidth. Typically,  is 

chosen as , and Equation (13) can be re-written as: 

 (14) 

The half central bandwidth is defined as: 

 (15) 

Here,  is the rotation variation parameter, which describes the percentage of rotation fluctuation.  
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In bearing fault diagnosis, the comblet central frequency, , is usually selected as the fault-related 
characteristic frequency . Figure 2 gives an example of this comblet function in the frequency 

domain with one comb tooth, where the central band has a magnitude of 1 (i.e., ), the rotation 

variation parameter  is 2%, and the sideband follows the Morlet wavelet function.  

Figure 2. Frequency-domain plot of a comblet with one tooth. 

 
From Equation (14), the comblet filter can be designed by constructing a comb filter where the 

comb teeth correspond to the fault-related characteristic frequency and its harmonics. According to the 
Nyquist-Shanon sampling theorem, the bandwidth limit  of a signal is determined by the sampling 
frequency . That is:  

 (16) 

Thus, the maximum number of comb teeth in a comblet filter is obtained by: 

 (17) 

where  is the fault-related characteristic frequency and  denotes the round-down operation. 

Therefore, a comblet filter with  comb teeth is written as: 

 (18) 

For example, a comblet filter with =6 comb teeth can be constructed based on the single tooth 
comblet shown in Figure 2. The new comblet filter is shown in Figure 3, and Figure 4 is the  
time-domain plot of this comblet filter.  

Figure 3. The frequency-domain plot of a comblet filter with =6 comb teeth. 
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Figure 4. The time-domain plot of a comblet filter with =6 comb teeth. 

 

3. Proposed Fan Bearing Health Assessment Method 

3.1. Fan Bearing Vibration Characteristics 

A vibration signal collected from a cooling fan involves the integration of several components, 
including shaft, bearing, motor, blade, and noise. If there is a local defect on a certain part of a bearing, 
an impulse is generated when a mating element encounters the local defect. Since the local defect 
iteratively contacts with other parts of the bearing, it generates low-frequency vibration components. 
The frequency of the vibration signal is related to the rotation speed and the geometrics of the bearing; 
it is called the bearing characteristic frequency (BCF). Typical failures of ball bearings include local 
defects on the rolling element, inner race, outer race, and cage. The corresponding bearing 
characteristic frequencies are defined as follows [3]: 

Ball spin frequency (BSF): 

 (19) 

Ball pass frequency, inner race (BPFI): 

 (20) 

Ball pass frequency, outer race (BPFO): 

 (21) 

Fundamental train frequency (FTF): 

 (22) 

where  is the bearing rotation speed (Hz),  is the number of rolling elements,  is the mean 
diameter of the rolling elements (mm),  is the pitch diameter of the bearing (mm), and  is the 
contact angle (°).  

It should be noted that the bearing characteristic frequencies are non-integer multiples of the 
rotation speed. In practice, since the rolling motions are accompanied by a degree of sliding which 
occurs in the contact areas [7], the derived bearing characteristic frequencies (Equations (19)–(22)) are 
approximate. The resulting variation in bearing frequency is typically around 1–2% [7], which 
provides a criterion for the choice of rotation variation parameter c.  
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3.2. Implementation of Comblet Filtering 

As previously mentioned, vibrations produced by a cooling fan can be complex and can result from 
many different sources including the shaft, bearing, motor, blade, and noise. These different vibration 
sources interact with each other, which makes it almost impossible to identify the frequency of interest 
from the vibration spectrum without any data manipulation methods. In particular, vibration generated 
by a local defect in a bearing is usually very weak at the initial failure stage, and fault-related 
information, such as BCFs, is masked by other vibrations. It is therefore advantageous to remove the 
irrelevant information before proceeding with bearing health assessment.  

A wavelet transform can be seen as a kind of bandpass filtering operation on a signal. The central 
frequency and bandwidth of the wavelet are tuned by the scale parameter . In the design of the 
comblet filter, the central frequency and bandwidth are determined by  and , and these parameters 

can be changed according to the practical scenario. Therefore, the comblet filtering technique provides 
a flexible solution for the extraction of bearing-fault-related information.  

As stated in Section 2.3, the comblet is a new wavelet defined on the basis of some classical 
wavelet functions. Thus, the comblet transform can be described as the filtering operation on the signal 

 under consideration with a comblet filter. Mathematically, it is defined as: 

 (23) 

where  is the comblet coefficient in which  is the translation parameter,  represents the 
convolution operation,  is the complex conjugation operation,  is the constructed comblet 
function, and  is the inverse Fourier transform of the comblet. After comblet filtering, a  
time-domain filtered signal  is obtained, and further analysis can proceed. 

3.3. Fan Bearing Degradation Assessment 

Before discussing methods for fan bearing degradation assessment, it is important to have an 
understanding of how the vibration signal changes as bearing failures develop. In general, bearing 
failure progresses through pre-failure, early failure, near failure, and near catastrophic failure  
stages [31]. In this process, the size of a local defect in a bearing becomes larger, and the impulses 
excited by the local defect are intensified. Therefore, the energy of the vibration signal tends to 
enhance around the BCFs and their harmonics, and the health indicator can be constructed to describe 
the fan bearing health condition.  

Given the filtered signal , the spectrum analysis is performed by: 

 (24) 

where  denotes the absolute value of the Fourier transform amplitude of the filtered signal 

. 
Assume the spectrum energy of the filtered signal is . The definition of  is given by: 
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where  is the length of . 
In order to detect the occurrence of fan bearing incipient failures, an exponentially weighted 

moving average (EWMA) is utilized to define the health indicator. The exponentially weighted 
moving average is very effective in detecting small shifts in the process [32], and it is suitable for 
bearing incipient failure detection since a failure symptom is very weak initially.  

We chose the spectrum energy  as the observation at time  in the process. The first  
observations are used to estimate the initial health condition indicator: 

 (26) 

After that, the remaining observations are used to evaluate the fan bearing health condition. The 
length of the observation sequence for evaluation is . The proposed health condition indicator (HCI) 
is calculated as: 

 (27) 

where  is the weight given to the historical data. A large  gives more weight to recent data 
and less weight to older data. The value of  is usually set between 0.2 and 0.3 [32], and in this paper 
it is selected as =0.3. 

Figure 5. Flow chart of the proposed cooling fan bearing health assessment method. 

 

Figure 5 presents a flow chart of the cooling fan bearing health assessment method presented in this 
paper. Given the original signal collected from the cooling fan, pre-processing is conducted to 
normalize the data. The comblet filters are designed using the bearing characteristic frequencies, 
including BSF, BPFI, BPFO, and FTF. After performing comblet filtering, the frequency spectrum is 
obtained. The health indicator HCI can be calculated to assess the fan bearing health condition.  

L )( fSc

tE t k

∑
=

=
k

i
iE

k 1
0

1HCI

l

ltE ttt ,...,3,2,1,HCI)1(HCI 1 =−+= −λλ

10 ≤< λ λ

λ

λ



Sensors 2013, 13 284 
 

 

4. Case Study with Fan Bearing 

4.1. Description of Experimental Setup 

Generally, the lifespan of a cooling fan can be several years, and it is uneconomical to conduct a life 
test under nominal working conditions. For a cooling fan working under its nominal load, lubrication 
degradation leads to wear in the bearing and shortens the lifespan of the cooling fan. Therefore, it is 
reasonable to choose the lubrication level to simulate lubrication degradation and accelerate the fan 
bearing life test. Fan bearing lubrication usually includes grease and oil from the manufacturing 
process. Assuming that the nominal amount of grease is at the 100% level, a certain lubrication level 
p% represents the percentage of grease being added to the bearing. 

The cooling fan used in this research was an axial type brushless direct current (BLDC) fan with 
dimensions of 92 × 92 × 38 mm. The fan has two ball bearings to support the shaft, whose overall 
diameter is 8 mm. Figure 6 shows the cooling fan tested in this experiment. The geometric 
specifications of the fan bearing used in this experiment are given in Table 1. 

Figure 6. The BLDC cooling fan tested in this experiment. 

 

Table 1. The geometric specifications of the fan bearing in this experiment. 

Number of rolling elements, n  6 
Mean diameter of rolling element, d  1.59 mm 
Pitch diameter of bearing, D  5.5 mm 
Contact angle, γ  10.4° 

 
In the experiment, a cooling fan with bearings containing only residual oil and no added grease (0% 

lubrication level) was used in the life test. To measure the vibration data, an in-situ monitoring system 
was established with a PCB 352C42 accelerometer attached to the fan housing near the bearing. Since 
a higher temperature reduces the film thickness between mating surfaces, thus accelerating localized 
deformation and friction on the bearing mating components, the fan was stressed in a chamber at a 
temperature of 70 °C. The rotation speed of the fan was 4800 rpm, corresponding to a frequency, , 
of 80 Hz. A condenser microphone was set up 50 cm away from the cooling fan to record the acoustic 
noise from the fan. Data collection was conducted using the National Instruments LabVIEW program. 

 

rf
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The test was stopped when the acoustic noise increased 3dB from the initial value, which is one of fan 
failure criteria defined in the IPC-9591 standard [33]. Given the fan rotation speed, the bearing 
characteristic frequencies were calculated, as listed in Table 2. 

Table 2. The bearing characteristic frequencies. 

Ball spin frequency (BSF) 127.178 Hz 
Ball pass frequency, inner race (BPFI) 308.242 Hz 
Ball pass frequency, outer race (BPFO) 171.758 Hz 
Fundamental train frequency (FTF) 28.626 Hz 

 
The cooling fan was in a good health condition before the experiment. The accelerated life test started 

at 09/09/2010 10:14 and ended at 09/22/2010 0:47, when the acoustic noise measured by the microphone 
increased 3dB from its initial value. In this period, the experiment paused occasionally. The vibration 
signal was collected in blocks of 10 seconds every 15 minutes, and the sampling frequency, fs, was  
25.6 kHz. The vibration signal was saved as a data file and numbered sequentially. There were a total of 
388 data files. Since the first data file was a measurement during oven stabilization, it was excluded from 
the data analysis. Thus, the data set used in this paper included 387 data files. 

4.2. Evaluation of the Proposed Health Indicator 

To validate the proposed fan bearing health assessment method, the comblet filters were designed 
first. The central frequency  of each BCF filter is the corresponding bearing characteristic frequency. 

The rotation variation parameter  is selected as 2%. The half central bandwidth  and the number 
of comb teeth in each comblet filter are calculated using Equations (15) to (17). The calculation results 
are listed in Table 3.  

Table 3. The parameters of each comblet filter with =25.6 kHz. 

Filter type 
Central 

Frequency,  
Rotation Variation 

Parameter,  
Half Central 

Bandwidth,  
Number of Comb 

Teeth,  
Comblet filter: BSF 127.178 Hz 2% 1.272 Hz 100 
Comblet filter: BPFI 308.242 Hz 2% 3.082 Hz 41 
Comblet filter: BPFO 171.758 Hz 2% 1.718 Hz 74 
Comblet filter: FTF 28.626 Hz 2% 0.286 Hz 447 

 
After the design of the comblet filters, the proposed health indicator is validated using the collected 

data set. The first 10 data files are used to calculate the initial health condition indicator, HCI0. The 
remaining 377 data files are used for the fan bearing health assessment and are numbered as 1 to 377. 
Figure 7 shows the assessment results with the four comblet filters. From Figures 7(a–d), it can be 
observed that the incipient failure should occur around file number 98–99, which corresponds to the time 
at 09/10/2010 20:36. The dashed line in Figure 7 represents the start of the fan bearing incipient failure.  
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Figure 7. Fan bearing health assessment using the proposed HCI with different BCFs:  
(a) BSF; (b) BPFI; (c) BPFO; (d) FTF.  

 

In order to verify that the fan bearing incipient failure started at file numbers 98–99, Fourier 
spectrum analysis was conducted on data files 97, 98, and 99 after filtering. Figure 8 shows the 
spectral analysis results. Figure 8(a) is the spectrum of data file 97, and only the 4th and 8th order 
harmonics of the rotation frequency, , can be identified. From Figures 8(b,c), the four BCFs (BSF, 
BPFI, BPFO, FTF) and their harmonics can be identified from the spectral analysis results. Based on 
the results in Figure 8, it can be concluded that the bearing incipient failures started at data files 98–99. 
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Figure 8. The spectral analysis of vibration data files: (a) the spectrum of data file 97;  
(b) the spectrum of data file 98; (c) the spectrum of data file 99. 

 

4.3. Comparison with Other Health Indicators 

In this section, a comparison study is conducted between the proposed HCI and other methods. In 
vibration analysis, the root mean square (RMS) and kurtosis are two popular statistics of the time-
domain signal  for fault diagnosis, and they are given by: 

 (28) 

 (29) 

where  is the sampling point of the signal,  is the number of sampling points,  is 
the mean of the signal , and  is the standard deviation of the signal.  
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Another health indicator is fault growth parameter 1 (FGP1) [14]. It is defined as the part 
(percentage of points) of the residual error signal that exceeds three standard deviations calculated 
from the baseline residual error signal: 

 (30) 

 (31) 

where the ’s are the current residual error signal points,  is the mean of the current residual signal, 
 is the “baseline” standard deviation,  is the indicator function, and  is the floor function. 

Figure 9. Comparison results of RMS, kurtosis, and FGP1 in fan bearing health 
assessment: (a) RMS; (b) kurtosis; (c) FGP1.  
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Figure 9 shows the health assessment results of RMS, kurtosis, and FGP1 using fan bearing 
vibration data. It is obvious that the performance of HCI (in Figure 8) is much better than these health 
indicators. For example, based on the results presented in Figure 9, incipient fan bearing failures may 
occur at file number 110. However, according to the spectrum analysis results presented in Figure 8, 
the time of incipient failure should be around file number 98. Furthermore, the trend in fan bearing 
degradation cannot be observed in Figure 9, and the health assessment methods using RMS, kurtosis, 
and FGP1 cannot be used for the further research on fan bearing prognosis. 

5. Conclusions 

Cooling fans are commonly used in microelectronics. In order to ensure high reliability in  
air-cooled electronic systems, it is necessary to conduct research on the life expectancy and health 
assessment of cooling fans. Fan bearing failure is a major failure mode that causes excessive vibration, 
noise, reduction in rotation speed, locked rotor, and failure to start, among other problems, which may 
result in an electronic system’s malfunction and lower the electronics reliability.  

This paper presents a coherent solution for the health assessment of cooling fan bearings. The 
method utilizes the comblet concept. A health indicator was proposed based on the techniques of 
comblet filtering and exponentially weighted moving average. An accelerated life test was conducted 
on a cooling fan to simulate fan bearing degradation. The recorded vibration data were used to validate 
the proposed method. To demonstrate the performance of the proposed method, a comparative study 
was conducted between the proposed HCI and the commonly used methods of RMS, kurtosis, and 
FGP1. Based on the analysis results, the HCI can detect incipient fan bearing failures, and the bearing 
degradation process can be captured by the proposed method.  

The work presented in this paper provides a promising method for cooling fan bearing health 
evaluation and prognosis. With this method, the critical failure of a cooling system can be avoided, and 
the reliability of electronic systems can be guaranteed. Furthermore, the proposed solution may also be 
used in generic bearing health evaluation and prognosis, which is currently the focus of prognostics 
and health management of mechanical systems. 
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