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Abstract: Curb detection is an important research topic in environment perception, which 

is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new 

curb detection method using a 2D laser range finder in a semi-structured environment is 

presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built 

using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment 

and a probabilistic moving object deletion approach is proposed to cope with the effect of 

moving objects. Secondly, the curb candidate points are extracted based on the moving 

direction of the vehicle in the local DEM. Finally, the straight and curved curbs are 

detected by the Hough transform and the multi-model RANSAC algorithm, respectively. 

The proposed method can detect the curbs robustly in both static and typical dynamic 

environments. The proposed method has been verified in real vehicle experiments. 

Keywords: curb detection; laser range finder; mapping; dynamic environment  

 

1. Introduction 

Environment perception is a key research direction in the area of UGV development. The UGV is 

expected to navigate autonomously in semi-structured environments such as campus sites, parks, and 

the urban environment. It is important for an UGV to be able to detect obstacles around it correctly in 
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order to avoid the risks of collision. The road curb is a special sub-category that can represent the 

boundary of the road so as to calculate the obstacle-free areas. 

According to the different features of the curb detection, the existing algorithms are divided into 

two categories: the first is based on detection of the geometrical features of the curb; the second 

category is based on image context derived from the monocular vision field. The main merit of the 

second method is that it contains rich information, such as color, texture, etc. Commercial lane 

departure warning systems based on monocular vision are available now [1,2]. However, the method 

belongs to the first category which has problems to cope with bad situations such as poor illumination, 

bad weather and insufficient road lanes. Compared with the second category, in general, the first 

category is not affected by the above factors, except stereo vision, and is adaptive and robust to the 

varied environment. Therefore, we will concentrate on the first category of algorithms in this research. 

The geometrical features of a curb are not clear in a real structural environment, as curb height 

varies only from 5 cm to 25 cm in general. Therefore, curb detection is a challenging task, because the 

geometrical features of a curb might be contaminated by random noise and measurement errors.  

In recent years, researchers have presented some curb detection algorithms using geometrical features 

which are obtained by laser range finder [3–8], stereo vision [9–11], TOF Camera [12,13] and 

structure light [14]. According to the idea of curb detection, such algorithms can be divided into two 

classes: one idea is that range data is processed individually per frame and the algorithm can obtain 

curb candidate points, then the curb points are tracked using the filter method, such as Kalman filter 

and Extend Kalman filter; the other idea is that the algorithm extracts ground surface or obstacle-free 

area in a local map to obtain local curb information. 

In [3,4], Kodagoda et al. used a tilted 2D laser range finder to detect road curbs. In this approach, 

the result of the measurement is predicted with the Kalman filter algorithm. If the measurement is far 

away from the prediction, it is considered as a curb candidate. Prior knowledge assumptions have to be 

made to find the right curbs. For example, the UGV needs to move in parallel to the curb, the street 

width is known, and the curbs are locally straight. Furthermore, Kodagoda et al. proposed an effective 

curb tracking and estimation method with camera and laser range finder data in [5]. Smadja et al. [6] 

also presented a curb detection approach using a 2D laser range finder. Firstly, the road surface points 

are extracted by the RANSAC algorithm and are projected onto a global map; secondly, the boundaries 

of the obstacle-free area are fitted by the RANSAC algorithm, and then the curb candidate points are 

picked out by a multi-frame accumulated map. In [7], the author detected road curbs using  

HDL64-E LIDAR which contains 64 scan lines, but the algorithm deals with the data to be one line as 

a unit. Zhang proposed a road boundary method which are extracted using the elevation information 

based on the single data frame from the 2D laser range finder in [8], and the method had been verified 

in the 2007 DARPA Urban Challenge. The ideas of the above curb algorithms belong to the first class 

algorithms based on geometrical features.  

In [9,11], the stereo vision is used for detecting curbs. A straight curb is detected by the Hough 

transform, and a curved curb is extracted by chains of segments in [9]. In [11], the author changed the 

curbs model to cubic polynomial curves, and then used the RANSAC algorithm to compute the 

parameters of the model. The authors built a DEM to detect curbs by Conditional Random Field (CRF) 

in [10]. The approach can detect and reconstruct different curvature and height curbs, but the algorithm 

assumes that the curb is visible in front of the vehicle. If the curb is occluded by another object on the 
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road, the performance of the algorithm will be decrease. Gallo et al. [12,13] proposed a modified 

RANSAC algorithm (dubbed CC-RANSAC) for detecting street surface and pavement surface using a 

Canesta TOF Camera. The algorithm can detect two nearby surfaces by the largest connected 

components of inliers. The above approaches [9–13] belong to the second class algorithms based on 

geometrical feature.  

In this paper, we propose a new curb detection method based on a local DEM which is built from 

2D sequential laser range finder data and vehicle state data. The algorithm can detect road curbs 

accurately and quickly in both static and typical dynamic environments where a few objects may move 

on the road or roadside, and it belongs to the second class based on geometrical feature algorithms. 

Compared with the first class algorithms, our method has three main merits. Firstly, our method can 

obtain robust curb detection results, because the historical and current sensor information is considered 

in the process of the curb detection. To be precise, our method uses the local DEM information which 

includes multiple laser data frames to detect the curb. The first class algorithms only use limited 

information, so these algorithms are sensitive to data noise. Secondly, we only select the suitable curb 

model in our method, and the curb tracking step is not available. The reason is that the curb model 

implies knowledge of the geometric information of the road. If we obtain the parameters of the curb 

model, we will not need to track the new curb. However, curb tracking is an important step after the 

curb detection in the first class algorithms, because it can check the validation of the new result based 

on the filter which includes the former curb information. In general, curb tracking is a difficult task 

using the traditional tracking methods such as the Kalman filter. The main reason is that the traditional 

tracking methods need to know the accurate process model and estimate the error model, which are 

hard to obtain in practice. Thirdly, our method can detect the curbs in a typical dynamic environment, 

which reduces the influence of moving objects in the process of the building the local DEM.  

The paper is structured as follows: in Section 2, the proposed method is described, and the curb 

detection algorithm will be presented; the experimental results are shown in Section 3 and conclusions 

in Section 4. 

2. Design of the New Curb Detection Method 

2.1. The Overview of the Method 

The basic idea of the proposed curb detection method based on the geometrical features are 

mentioned in Section 1. There are four steps in the proposed new method. The schematic of the new 

curb detection method is shown in Figure 1.  

First, a local DEM is built in real-time by a 2D laser range finder and vehicle state data which 

denotes the surrounding environment information of the vehicle. Second, curb candidate points are 

extracted in the local DEM and we accumulate the multiple results of curb candidate points. Third,  

the straight curbs are obtained by the Hough transform algorithm and some constraint conditions in the 

accumulated curb candidates. Then, the residual curb candidate points, except straight curbs, are 

processed by the multi-model RANSAC algorithm which uses the suitable model to represent the 

curved curb. Each step is discussed in detail in the following. 
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Figure 1. Flowchart of the new curb detection method. 
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2.2. Building a Local DEM 

2.2.1. Building the DEM in a Static Environment 

The construction of models of the environment is crucial in UGV operations. There are many 

environment models, such as elevation grids, point clouds, 3-D grids, and meshes [15]. In this 

research, the elevation grid model is chosen to represent the surrounding environment of a UGV.  

This has two main merits. First of all, though the representing environment functionality of the 

elevation grids is weaker than point clouds, 3-D grids, and meshes, the algorithm of building the 

environment model has a better real-time performance than other environment representation models. 

Secondly, the elevation grids can accumulate many data frames from the 2D laser range finder.  

In other words, it promotes the performance of the 2D laser range finder which obtains only one scan 

line per frame and offers more abundant environment information, so the curb detection algorithms 

based on elevation grids have better reliability and accuracy. We build the local DEM using 2D 

sequential laser rangefinder data and vehicle state data which contains global position and altitude 

information. Our algorithm detects the road curb based on the local DEM in the global coordinate system. 

According to environmental complexity, vehicle navigation requirement and computing power of 

the system, we build an 80 × 80 m local DEM, and the grid size is 20 × 20 cm. Figure 2 shows an 

example of the local DEM in the static environment. The gray level denotes the height of the terrain, 

and the larger gray level represents the higher height. The position of vehicle is denoted by a yellow 

point in Figure 2 which located in the center area of the map. The road region and roadside can be 

distinguished in Figure 2. We can find that the local DEM can represent the surrounding environment 

of a vehicle accurately in the static environment. Unfortunately, real world environments are dynamic 

rather than static. Moving objects which include vehicles, pedestrian, bicycles and so on usually appear 

in the environment, so we must consider the impact of moving objects in the process of building the 

local DEM. Next section we will describe the mapping process in a dynamic environment. 
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Figure 2. The local DEM in static environment. 

 

2.2.2. Building the DEM in a Dynamic Environment 

Building the DEM is a challenge task with 2D laser range finder in a dynamic environment. We not 

only have to determine the position of the vehicle and the map of the environment, but also identify 

and deal with possible moving objects in the environment. Compared with the static environment, 

there are some difficulties of building the DEM in a dynamic environment. The first one is that some 

spurious objects appear in the passing area of moving objects. The phenomenon is shown in the blue 

rectangle areas of this Section. The long white trace is a spurious object in blue rectangle areas which 

will have a serious influence on the curb detection. The second one is that the occlusion problem that 

happens more frequently in a dynamic environment than that in a static environment. This will cause 

missing data for some parts of the curb information in the DEM. The missing data cannot be obtained 

again by the 2D laser range finder, because of the scan principle and the way of installation of the 2D 

laser range finder which is shown in Figure 3. We can see that the laser range finder of the left vehicle 

cannot detect the curb point p1 
in position 1 in Figure 3, because it is occluded by the right vehicle.  

If the left car moves on the road from position 1 to position 2, the curb point p2 
cannot be detected 

because of the occlusion of the right vehicle. The curb point p1 
cannot be detected even during this 

moving process because the 2D laser range finder has only one scanning plane which is shown in 

Figure 3 where two triangles areas consist of the dash lines and the solid lines independently. In other 

words, if the laser range finder misses the curb point p1 
in position 1, it has no chance to scan p1 

again. 

The occlusion can bring about difficulties in the curb detection. The situation of the missing data 

appears in the red rectangle areas due to the occlusion of the moving object in Figure 4(a). 

Figure 3. The schematic of the laser scanning on the road. 

Moving direction

1p 2p

Position 1

Position 2
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A probabilistic moving objects deletion approach is proposed in this paper which can delete most of 

spurious objects caused by moving objects in the process of building the DEM. The purpose of the 

approach is to decrease the influence of moving objects in the DEM and to keep the geometric feature 

of the road areas which are the passing areas of moving objects at the same time. In other words,  

we want to build the static environment map in the dynamic environment. The main idea behind the 

proposed method is to use the time cue based on the probability approach to detect the data of the 

moving objects.  

We define the function which is called data permit mapping probability function (DPMPF). Firstly, 

the DPMPF of the each cell is initialized: Pi,j(∆t) = 1, where Pi,j(∆t) denotes the data permit mapping 

probability in each cell. Secondly, If a new measurement point appears in cell(i,j), the Pi,j(∆t) will be 

updated by the following formulation: 

,

,

,

( ) 0 0.015
( )

( ) 0.015

i j

i j

i j

P t t
P t

P t t t

   
  

   

 (1)  

where ∆t = tnew − tlast, ∆t denotes the time interval from the last laser measurement tlast to the new laser 

measurement tnew in cell (i,j). The threshold (0.015 s) is chosen by the scan frequency of the laser range 

finder. tlast is updated by the following formulation: 
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(2)  

where T1 is the threshold, and is defined by the prior knowledge. Here, we choose T1 = 0.5 s. If tlast 
is 

updated, the new measurement will be mapped in the DEM. Namely, the new measurement does not 

belong to the part of a moving object. Figure 4 shows an example of the local DEM in a dynamic 

environment. Figure 4(a) represents a bad DEM, which does not deal with the moving object in the 

process of building a DEM. The DEM built by our new method which deletes the spurious object is 

shown in Figure 4(b). We can see that most of the spurious object is deleted, and the remainder of the 

spurious object is small in Figure 4(b). Our approach can reduce the interference of a moving object 

and maintain the geometric information of the road area. This is very essential for the subsequent  

curb detection. 

Figure 4. The local DEM in dynamic environment. (a) The bad result. (b) The result of our approach. 

  

(a) (b) 
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2.3. Curb Candidate Extraction 

In our method, it is assumed that the height of the ground surface varies continuously and slowly. 

The curb candidate point has a main feature: elevation gradient variation in the local DEM. We design 

a curb candidate point detection algorithm based on the vehicle’s direction of movement.  

The algorithm assumes that the vehicle is located on the road surface, and chooses the appropriate 

direction to detect the elevation gradient variation in the adjacent grids. The above detected directions 

of the grid depend on the vehicle moving direction, but not equal to the vehicle moving direction.  

The curb candidate point should meet the needs of the following conditions: 

(a) The slope between the curb candidate grid (point) and the adjacent grids is large enough.  

The formula for slope calculation is as follows: 

1 2

2 2

1 2 1 2

tan
( ) ( )

z z

x x y y





  
 (3)  

where (x1, y1) and (x2, y2) denote grid coordinates in the local DEM; z1 and z2 are the height of the grid. 

(b) The height difference which is denoted ∆h1 in a same curb candidate grid is larger than a given 

threshold T2. 

(c) The height variance ∆h2 between the curb candidate grid and the adjacent grid meet the 

following formula: 

min 2 maxh h h    (4)  

where hmin denotes the lower limit of height variance, hmax 
 denotes the upper limit of height variance. 

The results of the curb candidate detection are shown in Figure 5. Figure 5(a) represents a current 

local DEM around the vehicle. The result of curb candidates is shown in Figure 5(b), in which the 

white points denote curb candidate points. We can find that our algorithm can detect the straight and 

curved curb candidate points.  

Figure 5. The results of the curb candidate detection. (a) The local DEM. (b) The curb 

candidate points in the local DEM. 

  

(a) (b) 

However some false candidate points arise in the red rectangle area in Figure 5(b). There are two 

reasons for this error. Firstly, due to the obstacle occlusion on the road, the DEM does not reflect the 
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true geometry structure of road surface and curb. Secondly, the geometrical feature of a curb is not 

obvious, so the curb is easily contaminated by random noise and measurement errors. Because of the 

above reasons, the result of the single curb candidate detection is not reliable. We accumulate the 

multiple results of curb candidate points to improve the accuracy of the detection algorithm. In the 

local DEM, we set a counter in each grid. The counter will record the number of the curb candidate 

points which appear in the same grid. If the number is larger than a given threshold, the point will be 

used in the next step. The valid curb candidate point will be kept in the local DEM. Figure 6(a) 

represents a local DEM around the vehicle. The gray points denote the accumulated points of the curb 

candidate in Figure 6(b). The accumulated points record the historical curb information in the rear of 

the vehicle. 

Figure 6. The accumulated results of the curb candidates. (a) The local DEM.  

(b) The accumulated curb candidate points in the local DEM.  

  

(a) (b) 

Note that the results of the curb candidate detection only have the right part in Figure 5(b).  

The reason is that the detected area from our algorithm is influenced by the current vehicle position 

and direction of movement. The direction of movement of the vehicle is approximately towards the 

East, so the right parts of Figure 5(a) are detected. In the following section, the same problem will be 

encountered, and will not be explained again. 

2.4. Curb Detection 

In this section, the real road curbs are extracted from the result of the accumulated curb candidates. 

The curbs are divided into two classes: straight and curved curbs. According to the different 

characteristics of the straight and curved curbs, we use the Hough transform to extract the straight 

curbs and the multi-model RANSAC algorithm to extract the curved curbs. 

2.4.1. Extraction of Straight Curbs Based on the Hough Transform and Multiple Constraints 

Firstly, the candidate straight curb is detected by the Hough transform after the accumulated results 

of the curb candidates are handled by the isolated point filter algorithm to eliminate random noise. 

There are two reasons to adopt the Hough transform to detect the straight curbs. The first reason is that 

the Hough transform has a good adaption to a noisy environment. Compared with it, the traditional 
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method such as the least squares can be easily affected by gross errors, leading to wrong results.  

The second reason is that the Hough transform considers the entire distribution of the data set, so it can 

give more accurate result than the incremental line algorithms which use the local data distribution. 

Although the processing time of the Hough transform is longer than the least squares algorithm and 

incremental algorithms, it still satisfies the real-time operation requirement. The average and the worst 

computational time of our algorithm are about 2.45 ms and 4.91 ms, respectively. 

Secondly, the real straight curb is selected from the candidate straight curbs based on the results of 

the Hough transform. We have designed a two-stage scheme to choose the best straight curb:  

(1) the candidate straight curbs are divided into three categories: the left straight curbs, the right 

straight curbs and other curbs according to the position and direction of the vehicle; (2) we will use 

three constraints to choose the best straight curbs in the first two categories. Based on the above 

classification, we have designed the following constraint conditions: 

(a) The direction constraint:  

1 0c i i n       (5)  

where c denotes the current yaw angle; èi denotes the angle between the x axis and the candidate 

straight curbs; n denotes the number of candidate straight curbs; δ1 denotes an angle threshold. 

(b) The constraint of the historical straight curb information:  

2 0old i i n       (6)  

where èold denotes the historical angle between the x axis and the old candidate straight curbs;  

δ2 denotes an angle threshold. It is assumed that the straight curbs vary regularly and continuously.  

(c) The life cycle constraint: 

1new oldt t T   (7)  

where tnew denotes the time of the new detected straight curb; told denotes the time of the last 

(historical) detected straight curb; T1 denotes the life cycle. The constraint means that the validation of 

the historical straight curb information is restricted in our algorithm. In other words, the historical 

straight curb information has a life cycle. If tnew – told  T1, the historical straight curb information  

will be invalid. 

2.4.2. Extraction of the Curved Curb Based on the Multi-Model RANSAC Algorithm 

The curved curb detection is an important research area, because curved curbs usually appear in 

practice. In this part, the multi-model RANSAC algorithm is proposed to detect the curved curbs. 

RANSAC [16] was proposed by Fischler and Bolles in 1981. The merit of RANSAC is its ability to 

perform robust estimation of the model parameters, particularly when a significant percentage of data 

are outliers, but the RANSAC algorithm has two drawbacks. The first one is that it requires the user to 

choose the suitable model according to the demand of the specific problem. If the user chooses the 

unsuitable model, RANSAC algorithm will give a wrong result. The second one is that RANSAC can 

only estimate one model for a data set. When two (or more) model instances exist, the RANSAC may 

fail to find either one.  
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The ordinary RANSAC algorithm is unsuitable for extraction of the curved curb because of the 

above drawbacks. There are two reasons. The first one is that the number of the curved curbs is equal 

or greater than one when the curb exists. The second one is that the shape of the curved road is 

complex. Namely, with a one curved curb model it is hard to describe the entire curved road. In this 

paper, the multi-model RANSAC algorithm is proposed to deal with the above problems. The merit of 

our algorithm is that it can cope with multiple models at the same time and select a suitable curved 

curb model. The flowchart of our algorithm is shown in Figure 7. Firstly, the accumulated curb 

candidate points are clustered by a distance criterion. Secondly, some preliminary curved curb models 

are estimated and our adaptive model selection step is used to obtain the most suitable curved curb 

model in each cluster with a certain number of the points.  

Figure 7. The flowchart of the multi-model RANSAC algorithm. 
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There are two purposes of setting up a data cluster. The first purpose is that the multiple curved 

curb candidates are divided into different clusters before fitting the parameters of the model; the 

second purpose is to reduce the noise points in the data set.  

According to the complexity of curbs in the real road environment, we have selected the quadratic 

polynomial model and cubic polynomial model to represent the curved curb. The adaptive model 

selection step can choose the suitable curved curb model online from these models in our algorithm. 

Formally, the four models are split into two groups as follows: 

3 2

0 1 2 3

3 2

0 1 2 3

y a x a x a x a

x b y b y b y b

       


      

 (8)  

2

0 1 2

2

0 1 2

y c x c x c

x d y d y d

     


    

 (9)  
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where the parameters a0, a1, a1, a3 and b0, b1, b2, b3 denote the coefficients of cubic polynomial models 

individually; the parameters c0, c1, c2 and d0, d1, d2 denote the coefficients of quadratic polynomial 

models individually. Note that only one model is valid when we use it to a sample from the data set. 

In our algorithm, the adaptive model selection step includes two parts in Figure 7. The first part is 

that the good quadratic polynomial model and cubic polynomial model are selected individually in the 

same order model. The condition of the model selection is the percentage of the inliers in a cluster.  

The output model should have the maximum percentage of inliers. The second part is to select the best 

curved curb model in a different order model. The residual error of the model is used to select the best 

model. Here, the residual error of the model is defined as follows: 

2

1

( ( ))
m

k i k i

i

e y f x


   (10)  

where ( )f  denotes the estimated curved curb model; k denotes the order of the model; (xi, yi) denotes 

the data point of the cluster; m denotes the number of the data points. We define  which denotes 

the residual error of the inliers. There are three rules of model selection: 

(a) 2 3 2 3( )( ) 0inliers inliersif e e e e    

2 3

2 3

quadratic 0 
best model=

cubic 0

if e e

if e e

 


 
 (11)  

(b) 2 3 2 3( )( ) 0inliers inliersif e e e e    

2 3 2 3

2 3 2 3

quadratic 0 0 
best model=

cubic 0 0

inliers inliers

inliers inliers

if e e or e e

if e e or e e

    


   

 (12)  

(c) 2 3 2 3( )( ) 0inliers inliersif e e e e    

2 3 2 3

2 3 2 3

quadratic ( ) 0 
best model=

cubic ( ) 0

inliers inliers

inliers inliers

if e e e e

if e e e e

    


   

 (13)  

In order to increase the efficiency of our algorithm, we evaluate and modify the iterations which 

denotes k. The formula is shown as follows [17]: 

log(1 )

log(1 )n

p
k

w





 (14)  

where p denotes the probability that the algorithm produces a useful result. In other words,  

the algorithm selects n points of which all are inliers; w denotes the probability of choosing an inlier 

each time, and the formula as follows: 

inliers

all

n
w

n
  (15)  

where ninliers denotes the number of inliers in the data; nall denotes the number of points in the data. 

Assume that the n points which are selected independently are needed for estimating a model. w
n
 is the 

probability that all n points are inliers and 1 − w
n
 is the probability that at least one of the n points is an 

outlier, a case which implies that a bad model will be estimated from this point set. In general,  
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the parameters p and n are constant if the model and data sets have been selected. Here, we set p = 0.99,  

n = 3. But w is unknown in advance, so w is estimated in the iterative process of the algorithm. 

According to the above formula, k can be estimated and the algorithm can choose the appropriate 

number of iterations and enhance the efficiency. The estimated results of the parameter k are shown in 

Figure 8. Here, we choose the initial iterations k0 = 50. We can see that the majority of the iterations 

less than 20, and only a few iterations close to k0. According to our calculation, in comparison with the 

original algorithm, the efficiency of the multi-model RANSAC algorithm has been increased by 

47.64%. The average and the worst computational time of our algorithm are about 2.44 ms and  

24.89 ms, respectively. The details of the computer and software are introduced in Section 3. 

Figure 8. The iterative number of the RANSAC algorithm. 
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3. Experiments 

The experimental platform is a light off-road vehicle. A forward-looking laser range finder is 

mounted on the front top of the vehicle and tilts down a little, and it is shown in the red ellipse area in 

Figure 9. The LMS-291 SICK sensor and SPAN-CPT integrated navigation system produced by the 

NovAtel Company were used in the experiment. The LMS-291 scans 180° field-of-view with 1° 

resolution at a 75 Hz scan rate, and the work mode is the interlace mode [18]. It was installed at the 

height of 2 m to scan the road surface about 17 m ahead. The SPAN-CPT system used the DGPS mode 

in the experiment. The experiments were done on our campus. There are two experiments in this part. 

The first experiment is to verify the effectiveness of our algorithm. The second experiment is to 

analyze the results of our algorithm quantitatively.  

The first experimental site is shown in Figure 10(a). The blue lines denote the route of the vehicle in 

Figure 10, which are recorded from the navigation system of our vehicle. The travelled distance of the 

vehicle is 1.6 km. We select four typical scenes from the whole data set, and the positions of these four 

scenes are shown in Figure 10(b). The red point denotes the start point of the vehicle, and the green 

point denotes the end point of the vehicle. The experimental results of six scenes will be introduced 

respectively in the following. 
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Figure 9. The position of the laser range finder. 

 

Figure 10. The running route of the vehicle in first experiment. (a) The experimental site 

in the Google map. (b) The position of four scenes. 
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(a) (b) 

Typical straight curbs exist in Scene 1, and the vehicle drove from the East to the West.  

Figure 11(a) presents the corresponding visual image in front of the vehicle and the two obvious 

straight curbs were seen in Figure 11(a). The line detection result using the Hough transform is shown 

in Figure 11(b). There are four lines in Figure 11(b), the two white lines are selected as the results 

according to the constraint condition in Section 3.2.1. Figure 11(c) shows the final straight curb result. 

The yellow points denote the position of the vehicle, the green points denote the detected left curb 

points and the pink points denote the detected right curb points. Our algorithm can detect the straight 

curb on the road accurately.  

In Scene 2, the right curved curb and the left straight curb were seen in Figure 12(a), and the vehicle 

drove from the West to the East. The data cluster result is shown in Figure 12(b). The different colored 

points represent the different classes which not include the whole cluster result and only useful classes 

except the gray points which are unclassified. Figure 12(c) shows the final curb detection result.  

The right curved curb is detected by our curved curb algorithm, and the left straight curb is detected by 

our straight curb algorithm. It has been verified that the proposed algorithm can detect curved  

curbs successfully. 



Sensors 2013, 13 1115 

 

 

Figure 11. The result of the straight curb detection. (a) Scene 1. (b) The results of Hough 

transform. (c) The final curb detection results in the local DEM. 

   

(a) (b) (c) 

Figure 12. The result of the curb detection. (a) Scene 2. (b) The data cluster results of the 

curb candidate points. (c) The final curb detection results in the local DEM. 

   

(a) (b) (c) 

Scene 3 is a typical dynamic environment, and vehicle can be seen on the road in Figure 13(a). 

Because the moving vehicle partly occluded the left road curb, missing data appeared in Figure 13(c). 

In Figure 13(b), the two red rectangles are some wrong results in the result of accumulated curb 

candidates. The left wrong result was caused by the missing data so the algorithm actually detected the 

roadside vegetation. The right wrong result was caused by the process of building the DEM due to the 

interference of the moving vehicle. In this situation, the difficulty of the curb detection increased,  

but the proposed algorithm can detect the left straight curb except for the region of the missing data.  

Figure 13. The curb detection in typical dynamic environment. (a) Scene 3.  

(b) The accumulated results of the curb candidates. (c) The final curb detection results in 

the local DEM. 

   

(a) (b) (c) 
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Scene 4 is a typical dynamic environment too, but it is more complex than Scene 3. Some dynamic 

objects which include the car and the bicycles appear in the local DEM in Figure 14(a). Because of 

this, a lot of spurious objects appeared in the local DEM in Figure 14(a), because the effect of the 

moving objects is not considered. We can find that the obvious error of curb detection appears in red 

rectangle area in Figure 14(a). The above error arises from the spurious objects. The local DEM was 

built by our approach in Figure 14(b), and the spurious objects are decreased, so we obtain a good curb 

detection result. All in all, our proposed algorithm can reduce the effect of moving objects and build a 

good quality DEM for use in detecting the curbs. 

Figure 14. The contrastive result of the curb detection. (a) The bad curb detection result. 

(b) The result of our method.  

  

(a) (b) 

In [10], the authors used a cubic polynomial model to represent the curved curb. In some cases, the 

cubic polynomial curve is unsuitable, that is to say the model cannot fit the curved curb well. 

Compared with the above methods, we select the quadratic polynomial model and cubic polynomial 

model to represent the curved curb in the multi-model RANSAC algorithm. The contrastive results of 

the curved curb detection are shown in Figure 15, and results of the first row and the second row are 

detected in Scene 5 and Scene 6 respectively.  

Figure 15. The contrastive result of the curved curb detection. (a) Data cluster result in 

Scene 5. (b) The bad curb detection result. (c) The result of our method. (d) Data cluster 

result in Scene 6. (e) The bad curb detection result. (f) The result of our method.  

   

(a) (b) (c) 
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Figure 15. Cont. 

   

(d) (e) (f) 

The results of the data cluster, bad detection and our algorithm are shown in the first, second and 

third column respectively. The red rectangle region denotes the same cluster in the same row. We use 

the quadratic polynomial model to obtain the result in Figure 15(b). Compared with Figure 15(a),  

the result lost the bottom data in red rectangle region in Figure 15(b). In Figure 15(e), the cubic 

polynomial model which is used in [10] obtains a bad result which missed the upper data in red 

rectangle region, but our algorithm can obtain the best curved curb in Figure 15(c,f). In short,  

our algorithm can select a better curved curb model than the algorithm in [10], and obtain good results. 

In the second experiment, the travelled distance of the vehicle is 3.2 km. The hardware and software 

specification in our system is shown in Table 1. The execution time of our algorithm in the second 

experiment is shown in Figure 16.  

Table 1. The hardware and software specification. 

CPU Intel(R) Core2 P8600 2.4 GHz 

Memory(RAM) 2 GB 

Operating system Windows XP Professional SP2 

Programming language C++ 

Figure 16. The execution time of our algorithm. 
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The average and the worst computational time of our algorithm are about 58.5 ms and 81.9 ms, 

respectively. In Figure 17, the curb detection results and the route of the vehicle is shown in the global 

coordinate system. Figure 17(a) is the entire curb detection results in the second experiment. The top 

and bottom black rectangle areas are enlarged in Figure 17(b,c), respectively. The blue lines denote the 

route of the vehicle, which are recorded from the navigation system of our vehicle, and the green 

points denote the detected curb points. The red rectangles and the purple ellipses denote the lost curb 

areas and the no curb areas which usually are the intersections on the road in Figure 17(b,c).  

The confusion matrix of the second experiment is shown in Table 2, and the data of the ground truth 

are labeled manually. Base on it, the true positive ratio and the true negative ratio are 86.8% and 

93.4%. The accuracy of our algorithm is 87.8%. There are two reasons to the lost and wrong curb 

detection results. Firstly, the road structure is complex in our campus. There are many small 

intersections. Secondly, the curb candidate detection will lost some curb points, because the height of 

the curb changes a lot in different place. Thirdly, the laser data will miss in the water hole area on the road.  

Figure 17. The curb detection results in the second experiment. (a) The entire curb 

detection results in the global coordinate system. (b) The enlarged result in the top 

rectangle in Figure 17(a). (c) The enlarged result in the bottom rectangle in Figure 17(a). 

   

(a) (b) (c) 

Table 2. The confusion matrix. 

 Predicted curb Predicted no curb 

Actual curb 23248 3574 

Actual no curb 341 4837 

4. Conclusions 

In this paper, a new curb detection method has been developed based on a local DEM which can be 

established with 2D sequential laser data and vehicle state data. The robustness and efficiency of the 



Sensors 2013, 13 1119 

 

 

method have been demonstrated through various experiments. According to the experimental results of 

the four scenes, the proposed algorithm can not only detect road curbs in a static environment, but also 

in a typical dynamic environment. 

Future research will focus on the fusion of camera and laser range finder data to extract the road 

surface, and on extending the curb information with recognized and classified obstacles and  

obstacle-free areas on the road. 
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