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Abstract: Optical flow algorithms offer a way to estimate motion from a sequence of 

images. The computation of optical flow plays a key-role in several computer vision 

applications, including motion detection and segmentation, frame interpolation,  

three-dimensional scene reconstruction, robot navigation and video compression. In the 

case of gradient based optical flow implementation, the pre-filtering step plays a vital role, 

not only for accurate computation of optical flow, but also for the improvement of 

performance. Generally, in optical flow computation, filtering is used at the initial level on 

original input images and afterwards, the images are resized. In this paper, we propose an 

image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical 

flow algorithm. Based on a study of different types of filtering methods and applied on the 

Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the 

Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance 

estimation was introduced. Tested on the Middlebury image sequences, a correlation 

between the image intensity value and the standard deviation value of the Gaussian 

function was established. Finally, we have found that our selection method offers a better 

performance for the Lucas-Kanade optical flow algorithm. 
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1. Introduction 

Unlike the processing of static images, much broader information can be extracted from time 

varying image sequences, this being one of the primary functions of a computer vision system. 

Obtaining motion information is a challenging task for machines, however, several techniques have 

been developed in order to obtain the requested motion field. By definition, the optical flow is the 

pattern of apparent motion of objects, surfaces and edges in a visual scene, caused by the relative 

motion between the observer and the scene. 

In 1981, two differential-based optical flow algorithms were proposed, now considered as classics: 

one by Horn and Schunck [1] and the other by Lucas and Kanade [2]. Following Horn’s definition, the 

motion field is the 2D projection of the 3D motion of surfaces in the world, whereas the optical flow is 

the apparent motion of the brightness patterns in the image. On the other hand, the Lucas-Kanade 

approach assumes that the flow is essentially constant in a local neighborhood of the pixel under 

consideration, and solves the basic optical flow equations for all the pixels in that neighborhood, by the 

least squares criterion. Many different optical flow algorithms have been developed since 1981, 

including extensions and modifications of the Horn-Schunck and Lucas-Kanade approaches. Black and 

Anandan [3] presented a robust estimation framework to deal with such outliers, but did not attempt to 

model the true statistics of brightness constancy errors and flow derivatives. 

While introducing different optical flow methods, it was also necessary to evaluate the proposed 

methods. Barron, Fleet, and Beauchemin [4] provided a performance analysis of a number of optical 

flow techniques, which emphasizes on the accuracy and density of measurements. 

In 2000, Christmas [5] introduced a filtering requirement for the computation of gradient-based 

optical flow. Also, different authors recommended the use of a filtering method, such as Fleet and 

Langley [6] and Xiao et al. [7]. In most cases, the authors employed one filtering method in the 

evaluation  of optical flow. In [7] a multi-cue driven adaptive bilateral filter was proposed in order to 

regularize the flow computation, which was able to achieve a smooth optical flow field with highly 

desirable motion discontinuities. According to Fleet et al. [6], applying a simple recursive filter is 

necessary to achieve temporal smoothing and to compute the 2D flow from component velocity 

constraints using a spatio-temporal least square minimization. Nevertheless, the importance of filtering 

techniques in obtaining an accurate optical flow is emphasized in [8]. 

The design of optimal spatio-temporal filters, especially the ones proposed by Simoncelli [9] is 

extensively presented in [10], along with the use of 2D Gaussian as pre-processing. Only two values 

for the Gaussian standard deviation have been investigated, as the combination with other 3D filters 

provided an improvement of optical flow detection. The same approach of combining the  

spatio-temporal filters of Baron and Simoncelli and optimal in the aim of reducing the motion 

estimation error is presented by Elad et al. in [11]. In order to measure the concentration field of an 

injected gaseous fuel, Iffa et al. [12] employ a pyramidal Lucas-Kanade flow determination in 

conjunction with a 5 × 5 kernel Gaussian filter. 

In this paper, we focused on improving the accuracy of optical flow estimation by using the 

appropriate filtering method. As image filtering is essential in many applications, including smoothing, 

noise removal or edge detection, in the case of optical flow, we have investigated the filtering 

technique as a required preprocessing step. Also, in Section 3 we have analyzed different filtering 
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methods in order to select the most suitable one. Section 4 presents a novel method for the selection of 

the appropriate Gaussian filter parameter, as discussed and sumarized in Section 5. 

2. The Lukas-Kanade Optical Flow and Coarse-to-Fine Approach  

We focused our investigation on the Lucas-Kanade optical flow determination. This gradient-based 

approach uses the constraint of pixel intensities constancy: 

),,(),,( dttdyydxxItyxI   (1)  

The optical flow constraint equation derived from the Taylor expansion of Equation (1) was 

introduced by Horn and Schunk in [1]. Having two unknown variables in one equation, it gives the 

aperture problem: 

0   tyyxx  I v Iv I  (2)  

where Ix, Iy and It denote the derivatives of the image function I(x, y) with respect to x, y and t  

(see Figure 1). The vector V = (vx, vy) defines the velocity vector in x and y direction. 

Figure 1. Optical flow constraint line. 

 

This problem cannot be solved as there are two unknowns in one equation, but if a small region is 

supposed to have the same velocity, the problem has a solution. Thus, V can be found at the 

intersection of the Horn-Schunk constraints for each pixel. If we consider only two pixels, we obtain 

one intersection point, as in Figure 2. According to Lucas-Kanade, usually, a region of several pixels is 

considered having the same velocity. The equations system is now over determined. Therefore, the 

least squared error solution is supposed to give a good estimation of the optic flow value for a pixel, as 

depicted in Figure 2(b). 

  

vx 

0 tyyxx IvIvI  

vy 
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Figure 2. Intersection of (a) two optical flow and (b) several optical flow constraint lines. 

 
(a)        (b) 

The optical flow equation is assumed to be used for all pixels within a window centered on pixel p. 

Explicitly, the local flow vector (vx, vy) must satisfy the optical flow constraint for a region of pixels 

with the same velocity, expressed by: 
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The equation system (3) can be rewritten using matrix-vector notation: 
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This system has more equations than unknowns and thus it is usually over-determined. The  

Lucas-Kanade method obtains a compromise solution using the least square technique. In 

consequence, it solves the 2 × 2 system: 

bAAAv

or

bAAvA
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TT
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

 (5)  

The Lucas-Kanade approach is a local optimization problem that cannot perform properly if the 

object movements are too large. As the gradient information is obtained by neighboring pixels, the real 

object motion cannot extend beyond the considered region. Also, the local neighborhood taken into 
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account for the least squares approach is finite and there are few chances to correctly determine large 

movements. Therefore, it is common to use a pyramidal implementation. The input images are resized 

to a lower resolution, first by filtering with a low pass filter and then subsampled by a factor of 2, 

technique called coarse-to-fine approach, as shown in Figure 3. The computation of the optical flow is 

started with the lowest resolution images, at the highest pyramidal level. The result is passed then to 

the higher resolution level as an initial estimate. Running the algorithm on higher resolutions will 

cause higher accuracy for the flow field. 

Figure 3. Coarse-to-fine optical flow estimation. 

 

Bouguet describes in [13] an iterative implementation of the Lucas-Kanade method using a 

Gaussian pyramid. The Iterative Lucas-Kanade algorithm requires an estimate of the velocity for every 

pixel using the classical algorithm. Then, by means of a warping technique, the estimated flow will be 

warped on the image and the process is repeated until convergence. 

3. An Empirical Method for Optimal Filter Selection  

In this section, we present and discuss the results of our investigation. We have examined the 

performance of iterative Lucas-Kanade pyramidal optical flow algorithm together with different filtering 

techniques using well-known image sequences, provided with ground truth optical flow. The experimental 

were performed on a MATLAB R2010 platform using the standard available toolbox functions. 

3.1. The Context of Evaluation 

In the aim of experimental evaluation, we have employed the Middlebury dataset [14] which 

provides the ground truth. The testing set presents a variety of sequences, including hidden texture, 

realistic and complex scenes and non-rigid motion. For fair comparisons, we have used gray-scale 

images, two frame sequence and the brightness constancy assumption. Three data sets, such as 

―Dimetrodon‖, ―RubberWhale‖ and ―Hydrangea‖ contains real world images with complex occlusions, 
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while synthetic computer generated graphics are contained in four sets named ―Grove2‖, ―Grove3‖, 

―Urban2‖ and ‖Urban 3‖ [15]. The last set called ―Venus‖ contains stereo images. 

We have measured the performance of the estimated optical flow using both average angular error 

(AAE) and average endpoint error (AEE). The first error metric is the angle difference between the 

correct and estimated flow vectors defined by: 

 ecAAE ˆˆcos 1    (6)  

where ĉ  is the normalized correct motion vector and ê  is the normalized estimate optical flow vector. 

We have also evaluated the results by means of an absolute error, the flow endpoint error (EE) 

defined by: 

   22

GTGT vvuuAEE 
 

(7)  

where (u,v) is the estimated flow and (uGT, vGT) is the ground truth optical flow. 

At the very first stage of our evaluation, we have used the Pyramidal Iterative Lucas-Kanade 

algorithm with three pyramidal levels, combined with different filtering techniques on the eight data 

sets of the Middlebury benchmark. For the preprocessing step of the optical flow estimation, eight 

different filtering techniques were employed, namely the Gaussian, Median, Mean, High Boost, 

Laplacian, LOG, Bilateral and Adaptive Noise Removal filtering. Bilateral filtering is a nonlinear 

filtering method first proposed by Tomasi et al. [16]. Although there are various applications, as 

reported by Paris et al. [17] and Elad [18], our idea was to smooth images while preserving their edges. 

The effects of several smoothing filters, togheter with the process of optimal parameters selection were 

presented by Malik et al. in [19].  

In the case of the Gaussian filter, a standard deviation σ = 1 was used, the median filter had a  

3  3 kernel, the LOG filter had a size of 5  5 and standard deviation σ = 0.5. The Mean filter had a  

3  3 size, the Laplacian filter a value of alpha = 1 and for the case of Bilateral filter, a spatial-domain 

standard deviation of 0.1 and intensity-domain standard deviation of 0.1 were employed. We have also 

tested on all image sets, the ―High Boost Filter‖ with 5  5 mask window and all pass factor weight ≥1 

and the ―Adaptive Noise Removal‖ filter that use neighborhoods of 3  3 to estimate the local image 

mean and standard deviation. The previous mentioned parameters were obtained after a large set of 

tests in which the parameters of each filter were varied and selected based on the minimum error  

(AAE and AEE). Thus, we have divided our experimental research into three sections, as presented in 

the following subsections. 

3.2. Experimental Methodology 

At the earlier stage of our investigation, the goal was to find the appropriate method for filtering in 

Lucas-Kanade optical flow estimation. Consequently, we have divided our experiment into three parts 

(Figure 4): 

(1) Filtering applied on input images for pyramidal optical flow computation 

(2) Filtering applied on all resized input images for pyramidal optical flow computation 

(3) Comparison between case 1 and 2 
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Figure 4. Coarse-to-fine optical flow estimation, (a) initial filtering and (b) filtering at 

all levels. 

 

(a)     (b) 

3.2.1. Applying Filtering on Input Images at the Initial Level of Optical Flow Computation 

In this section, we present the experimental results for the pyramidal implementation of Lucas-Kanade, 

in the case where the filtering techniques have been applied before the optical flow estimation. We 

have concentrated our attention on the Average Angular Error and Average Endpoint Error estimated 

using eight different filtering techniques. We have found that AAE follows the same pattern as AEEs. 

Figure 5 shows a comparison between the AAEs (in degrees) computed on the Middlebury data sets, 

while the AEE variations are displayed in Figure 6. From the graphics depicted in Figure 6, one can 

observe the following: 

 Gaussian, Mean, Median, Adaptive Noise Removal and Bilateral filtering result are 

comparatively better than the other one tested 

 Smoothing filter increases significantly the accuracy of the detected flow field 

Figure 5. Average angular errors using different filters only on input images. 

 

Filtering 

applied on all 

resized images 

Initial 

filtering  
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Figure 6. Average endpoint errors using different filters only on input images. 

 

Therefore, selecting the five best performing filters, we have varied the filters parameters in order to 

obtain the smallest AEE, as listed in Table 1. 

Table 1 shows that the Gaussian Filter has the lowest error but for different standard deviations, 

depending on the input images. We have studied the correlation between the image statistics and the σ 

value in Section 4. 

Table 1. Lowest average endpoint error for best performing filters. 

Filter 
Hidden texture Synthetic Stereo 

Dimetrodon RubberWhale Hydrangea Grove3 Grove2 Urban2 Urban3 Venus 

Gaussian 

smoothing σ 

4.7025 

σ = 0.6 

8.7112 

σ = 0.3 

8.3686 

σ = 0.4 

8.5187 

σ = 1 

3.9922 

σ = 0.7 

14.7064 

σ = 4.8 

11.5392 

σ = 3.6 

10.7046 

σ = 0.3 

Mean 5.7210 10.143 9.3132 8.6578 4.2231 16.5652 13.1789 11.8439 

Median 7.8426 10.5369 9.1439 9.7582 5.8926 19.5492 22.5063 12.9823 

Adaptive 

Noise 

Removal 

5.8196 10.1214 9.169 9.169 4.3921 17.1897 14.5003 11.9682 

Bilateral  

σ = [0.1, 0.1] 
17.4394 10.5945 8.716 10.3823 8.3447 19.2384 22.1881 14.3764 

3.2.2. Applying Filtering on All Images for the Pyramidal Optical Flow Computation 

In the case of the pyramidal implementation of Lucas-Kanade, the input images are resized at each 

level to a lower resolution. Average angular error and average endpoint error are presented in Figures 7 

and 8, respectively. 
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Figure 7. Average angular errors obtained using different filters on all resized images. 

 

Figure 8. Average endpoint errors obtained using different filters on all resized images. 

 

From the presented results and graphics, we can conclude that:  

 Gaussian, Mean, Median, Adaptive Noise Removal and Bilateral filters result are 

comparatively better than the others 

 Smoothing filters performs better than sharpening filters 

 We recommended that for the Lucas-Kanade optical flow calculations it is better to use 

smoothing filters 

In order to decide which method performs better, we made a checklist and an average ranking of the 

different filtering techniques. As a general conclusion from the experiments presented in Sections 3.2.1 

and 3.2.2, in the case of pyramidal Lucas-Kanade optical flow, smoothing filters are recommended as 

the accuracy is improved. In order to decide which the best performing filter is and when it has to be 

applied, a comparison has been carried out, as shown in the following subsection. 
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3.2.3. Comparison of Filtering Methods 

As several filtering methods are considered, a checklist and an average ranking are presented in 

Tables 2 and 3 for selection of optimum filtering method. 

Table 2. Comparison between filtering methods at initial level and all levels on pyramidal 

Lucas-Kanade optical flow.  

Different filtering 

techniques 

Hidden Texture Synthetic Stereo 

Dimetrdon RubberWhale Hydrangea Grove3 Grove2 Urban2 Urban3 Venus 

Gaussian Smooth 

Filtering x X x - - - - - 

Median Filtering x X x - - - - x 

LOG filtering - X - - - - - x 

Mean Filtering x X x - - - - - 

High Boost 

Filtering - - - - - x X - 

Laplacian Filtering - X - - - - - x 

Adaptive Noise 

Removal filtering x X x - - - - x 

Bilateral Filtering - - - - - - - - 

Where x—recommended for initial filtering and X—recommended for all levels. 

Table 3. Comparison between filtering methods at initial level and  all pyramidal levels 

using average ranking. 

Filter 

Filtering applied on input images at 

initial level (average ranking) 

Filtering applied on all resized images at 

pyramidal levels (average ranking) 

Average angular 

error (degrees) 

Average endpoint 

error 

Average angular 

error (degrees) 

Average endpoint 

error 

Gaussian smooth  9.809825 1.156813 8.9477 0.9484 

Median 12.2765 1.351225 11.96125 1.307188 

LOG 20.6046875 2.27355 17.29629 2.005838 

Mean 9.9558875 1.17025 9.028563 0.947563 

High Boost 16.1461625 1.893188 15.97896 1.903713 

Laplacian 20.8631375 2.688675 18.05495 2.084288 

Adaptive Noise Removal 10.29116 1.141913 9.64585 1.035 

Bilateral 13.909975 1.353625 13.90998 1.353625 

Examining the values obtained in the above investigation, we can conclude that: 

 filtering at all pyramidal levels is better than filtering only the initial images 

 among all filtering methods, the Gaussian filter is optimal for computing Lucas-Kanade 

optical flow, as error is decreasing 

As the Gaussian filter performs better then any other considered filter, we have focused our 

investigation on finding the standard deviation parameter optimum value and drawing its dependency 



Sensors 2012, 12 12704 

 

 

with error. Values presented in Figure 9 are for the case of a pyramidal Lucas-Kanade optical flow 

using Gaussian filter on all resized images. 

Figure 9. Average angular error for different σ values. 

 

4. A Novel Method for Estimating the Appropriate Gaussian Filtering Parameter 

From the graphs in Figure 9, it is clearly shown that the appropriate σ value varies from image to 

image, but shows some common characteristic for the six image sets (Dimetrodon, RubberWhale, 

Hydrange, Grove3 and Grove2, Venus). The AAE increases with the increase of standard deviation, as 

for Urban2 and Urban3 image sequences it has a reverse behavior. 

Therefore, we have tried to find the correlation between the image contents and the σ value, by 

computing a general measure, as the average intensity, for each image and for the entire dataset.  

Based on several empirical tests and observations, we are proposing an algorithm for the estimation 

of  the optimal filtering parameter: 

 compute the mean intensity from input images 

 find the reference point of Gaussian function  

 using the values collected  above, take a decision about the optimal parameter after a series 

of comparisons 

The mean intensity of the test sequences was estimated using the values computed for two of the 

images and averageing of it at the end. For instance, in the case of the Dimetrodon image set, frame1 

has an average image intensity of 0.3564, frame2 an average image intensity of 0.3567 and the average 

estimated intensity for the set was 0.3564. In Table 4, we have listed the estimated average intensity 

value of the Middlebury dataset. 

Examining the plots in Figure 9, we have noticed the variation of the Gaussian function value 

according to standard deviation. In our investigation, we have employed a Gaussian function with the 

kernel defined on (−ksize/2, ksize/2), with a step of 2-ksize, where ksize = 6 × σ and a standard 

deviation of 1. In this case, the highest value of the Gaussian function was 0.3521, as shown in Table 5. 
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Table 4. Average intensity value of Middlebury dataset. 

Image sets Mean intensity value 

Dimetrodon 0.3564 

RubberWhale 0.52125 

Hydrangea 0.4154 

Grove3 0.39945 

Grove2 0.3945 

Urban2 0.21684 

Urban3 0.2504 

Venus 0.39645 

Table 5. Large values of Gauss function. 

x −3 −1.83 −0.6667 0.5 1.667 2.8333 

G(x) 0.0044 0.0743 0.3194 0.3521 0.0995  0.0072  

After the estimation of above mentioned values we have compared for each image set the reference 

point collected from the Gaussian function and the average image intensity. The standard deviation 

value of the Gaussian filter according to the image characteristics, was established after performing 

two types of comparisons. In the first case, we have just checked which value is greater than the other: 

If (average image intensity ≥ Highest Gaussian function value) 

    Then choose standard deviation less than 1  

If (average image intensity < highest Gaussian function Value) 

    Then choose standard deviation higher than 1  

Once completing this step for all image sets, we have obtained the results in Table 6. The bolded 

values are for image intensities greater than the reference point. Therefore, we can affirm that, if the 

average intensity value is equal or higher than the highest Gaussian function value, it is recommended 

to employ a standard deviation value of 1 or less than 1, and vice versa. 

Table 6. Results of first comparison. 

Image sets Mean intensity value 

Dimetrodon 0.3564 

RubberWhale 0.52125 

Hydrangea 0.4154 

Grove3 0.39945 

Grove2 0.3945 

Urban2 0.21684 

Urban3 0.2504 

Venus 0.39645 

From Table 6, we have also noticed that the mean intensity value for the six image sets 

(Dimetrodon, RubberWhale, Hydrangea, Grove3, Grove2, and Venus) is greater than the reference 

value. Those are the sequences for which the AAE increase with the increase of σ value (see Figure 9). 
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Therefore, it has been shown that, if we use small sigma values, the optical flow method will provide 

smaller errors. On the other hand, for Urban2 and Urban3, the mean intensity value is less than the 

reference point and comparing the two values, we have observed that it is better to use large σ values. 

Based on several analyses, we have also suggested another method of choosing the standard 

deviation, as the ratio between the considered reference point and the image mean intensity value: 

ratio = highest Gaussian function value/mean intensity of input images (8)  

After computing the proposed ratio for all the benchmarks, the obtained values are presented in 

Table 7. For instance, in the case of Urban2 image set, the mean intensity was 0.21684, the reference 

point had a value of 0.3521, giving a ratio of 1.62.  

Table 7. Result for the second comparison step. 

Image sets  Ratio  

Dimetrodon  0.988  

RubberWhale  0.6755  

Hydrangea  0.8476  

Grove3  0.8815  

Grove2  0.8925  

Urban2  1.6238  

Urban3  1.4061  

Venus  0.8881  

Examining the obtained value, one can observe that its mean intensity is two times lower than the 

highest Gaussian value. Therefore, we have specified that the σ should be in the range of [1.62, 2]. 

As a generalization, the obtained ratio should be the lower bound for the optimal Gaussian filter 

parameter and the ceiling value of the ratio, the upper bound. 

To confirm the above statement, we have tested three synthetic sets of images 

(http://visual.cs.ucl.ac.uk/pubs/algorithmSuitability/). Table 8 shows the mean intensity values 

employed for the selection of σ and Figure 10 the AAE measures for the pyramidal L-K optical flow, 

using Gaussian filtering on all resized input images. 

Table 8. Average of image intensity values. 

Image sets Mean intensity value of each image sets 

Creats 0.4886 

Sponza_1 0.33605 

Sponaza_2 0.5741 
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Figure 10. Average angular error measures of iterative pyramidal L-K optical flow by 

using Gaussian Filtering on all resized input images. 

 

5. Discussion and Conclusions 

In this paper, we have presented an investigation on image filtering as a preprocessing level for the 

Lucas-Kanade optical flow computation framework. We have concluded not only on the fact that an 

optimal filtering must be performed at every pyramidal level, but also introduced a novel method for 

according the filter to the processed context. Also, from our study we have found that the Gaussian 

filter performs considerably better among different other filters. 

Generally, in pyramidal optical flow computation, the input images are filtered only at the 

beginning and at the following levels, the images are being resized from that base. Our first experiment 

concerned the proper use of filtering, not only at the initial level, but subsequently at each pyramidal 

level. As several test sequences, together with the reference ground truth were available, an 

improvement of the error was obtained.  

Since in our extensive research on the subject, we couldn’t find any specifications regarding the 

optimal type of filter, we have considered the most referenced 2D ones, as Gaussian, Mean, Median, 

Bilateral, Adaptive Noise Removal or the High Boost filter. From the experimental results we have 

concluded that the Gaussian filtering is the most suitable in this regard, on the basis of computed 

average angular error and average endpoint error. 

As the Gaussian filter was the most appropriate for pre-filtering the input images, we have 

investigated the relation between the standard deviation values of the Gaussian function and the image 

contents. From the plotted results, we have observed that there is no fixed σ value achieving the lowest 

error for any input sequence. Based on empirical observations, as the variation of error with standard 

deviation, we have established a correlation. Our novel method for selecting the σ value consists in 

observing the shape of the Gaussian function using a standard deviation of 1 and extracting the highest 

value. Comparing this reference point with the image average intensity can give an indication on the 

suitable value to be used. Also, we have found that the ratio between the image intensity and the 

highest Gaussian value can give an indication on the proper σ value. Finally, we concluded on the fact 

that computing the filter standard deviation from image characteristic offers a more accurate optical 

flow computation. 
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