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Abstract: In both military and civilian applications, the inertial navigation system (INS) 
and the global positioning system (GPS) are two complementary technologies that can be 
integrated to provide reliable positioning and navigation information for land vehicles. The 
accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects 
of widespread research. Wavelet de-noising of INS sensors has had limited success in 
removing the long-term (low-frequency) inertial sensor errors. The primary objective of 
this research is to develop a novel inertial sensor accuracy enhancement technique that  
can remove both short-term and long-term error components from inertial sensor 
measurements prior to INS mechanization and INS/GPS integration. A high resolution 
spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to 
accurately model the low frequency range of the spectrum, which includes the vehicle 
motion dynamics and inertial sensor errors. FOS models the spectral components with the 
most energy first and uses an adaptive threshold to stop adding frequency terms when 
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fitting a term does not reduce the mean squared error more than fitting white noise. The 
proposed method was developed, tested and validated through road test experiments 
involving both low-end tactical grade and low cost MEMS-based inertial systems. The 
results demonstrate that in most cases the position accuracy during GPS outages using FOS 
de-noised data is superior to the position accuracy using wavelet de-noising. 

Keywords: INS/GPS; spectral analysis; FOS; navigation system 
 

1. Introduction 

In numerous applications, inertial navigation system (INS) and global positioning system (GPS) are 
two complementary technologies that can be integrated to provide reliable positioning and navigation 
information for land vehicles. In the event of loss, denial of use, or degradation of the GPS signal (i.e., 
due to signal jamming in military electronic warfare operations, or due to signal blockage while 
driving through urban canyons), INS can be an invaluable source of redundancy [1]. INS is inherently 
immune to the signal jamming, spoofing, and blockage vulnerabilities of GPS, but the accuracy of INS 
is significantly affected by the error characteristics of the inertial sensors it employs [2]. Thus, the 
accuracy enhancement of inertial sensors is a subject of widespread research [3]. 

The process of inertial navigation computes position, velocity and attitude of a moving platform, 
with respect to an inertial frame of reference, by measuring its rotational motion (using gyroscopes) 
and translational motion (using accelerometers) and mathematically integrating the measurements 
through a procedure known as INS mechanization [2]. The inertial sensors employed in an INS have 
significantly complex short-term (high-frequency) and long-term (low frequency) noise characteristics 
that are produced by many different error sources. 

During the INS mechanization process, these errors are compounded, resulting in increasingly 
inaccurate position and attitude over time. Despite having an INS/GPS integration algorithm (like 
Kalman filtering) to correct for INS errors, it is advantageous to enhance the INS solution prior to the 
data fusion process [3]. This requires pre-filtering (or de-noising) each of the inertial sensor signals 
before they are used to compute position, velocity and attitude. Presently, optimal low-pass filtering 
and wavelet de-noising techniques are used to eliminate or minimize short-term errors from the inertial 
sensor signals, but these techniques have had limited success in removing the long-term errors that are 
mixed with the true motion dynamics of the moving platform [4]. Both bias and scale factor instabilities 
are stochastic in nature and exist in the low frequency part of the inertial sensor signal [3,4]. Thus they 
seriously impact the overall system performance since they may be mixed with motion dynamics. In 
low cost systems (e.g., low end tactical grade and MEMS-based inertial systems), besides the long 
design time, it may not be possible to come up with accurate stochastic models to be employed inside 
Kalman filtering in order to effectively compensate for the effect of such long-term sensor errors. 

The research reported herein aims at: (1) developing a novel inertial sensor accuracy enhancement 
technique that can remove some or all of the error components from inertial sensor measurements prior to 
INS mechanization and INS/GPS integration; (2) examining the effectiveness of the proposed method on 
real INS/GPS road test data; (3) comparing the results to other wavelet based pre-filtering techniques. 
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Wavelet de-noising is the current state of the art technique used in the accuracy enhancement of 
inertial sensors [3,4] and is therefore used as a standard of comparison in this research. The surveyed 
literature indicated that the Daubechies family of wavelets and soft thresholding employing the 
principles of Stein’s Unbiased Risk Estimate (SURE) are typically used in pre-filtering inertial sensors. 

The proposed technique employs the fast orthogonal search (FOS) algorithm [5,6] to estimate the 
low frequency spectrum, which contains the vehicle motion dynamics and long term noise, with a high 
frequency resolution and small number of frequency terms. The high-resolution spectral analysis 
capabilities of FOS will result in modeling the low frequencies with a small number of terms. The 
dynamic noise threshold of FOS should accept the vehicle motion dynamics while rejecting the long 
term noise since the motion dynamics will likely have higher power than the long term noise terms. 

2. Fast Orthogonal Search (FOS) 

The fast orthogonal search (FOS) algorithm [5–9] is a general purpose modeling technique, which 
can be applied to spectral estimation and time-frequency analysis. The algorithm uses an arbitrary set 
of non-orthogonal candidate functions pm(n) and finds a functional expansion of an input y(n) in order 
to minimize the mean squared error (MSE) between the input and the functional expansion. 

The functional expansion of the input y(n) in terms of the arbitrary candidate functions pm(n) is 
given by: 

 (1) 

where am are the weights of the functional expansion, and ε(n) is the modeling error. 
By choosing non-orthogonal candidate functions, there is no unique solution for Equation (1). 

However, FOS may model the input with fewer model terms than an orthogonal functional expansion [5]. 
For example, the fast Fourier transform (FFT) uses a basis set of complex sinusoidal functions that have 
an integral number of periods in the record length [10]. For the FFT to model a frequency that does not 
have an integral number of periods in the record length, energy is spread into all the other frequencies, 
which is a phenomena known as spectral leakage [5,9,11]. By using candidate functions that are  
non-orthogonal, FOS may be able to model this frequency between two FFT bins with a single term 
resulting in many fewer weighting terms in the model [5,9]. 

FOS begins by creating a functional expansion using orthogonal basis functions such that: 

 (2) 

where wm(n) is a set of orthogonal function derived from the candidate functions pm(n), gm is the 
weight, and e(n) is an error term. 

The orthogonal functions wm(n) are derived from the candidate functions pm(n) using the Gram 
Schmidt (GS) orthogonalization algorithm. The GS algorithm starts by setting the first orthogonal 
function w0(n) equal to the first candidate function p0(n): 

 (3) 
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The next orthogonal function w1(n) is found by subtracting a weighted value of w0(n) from the 
second candidate function p1(n) as given by: 

 (4) 

where α10 is the GS weight. Now w0(n) and w1(n) are orthogonal to each other, so the correlation of 
these function should equal zero as given by:  

 (5) 
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Solving Equation (5) results in: 

 (6) 

Subsequent orthogonal functions are found by subtracting weighted values of all the previously 
fitted orthogonal functions from the kth candidate function as given by: 

 (7) 

where the GS weights can be shown to be given by: 

 (8) 

The orthogonal functions wm(n) are implicitly defined by the Gram-Schmidt coefficients αmr and  
do not need to be computed point-by-point. Using the same procedure as in Equation (5), the  
Gram-Schmidt coefficients αmr can be found recursively using the equations [5,6]: 

 (9) 
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and 

 (11) 

Note, it can be shown that [5,6]: ,  (12) 

and this was used in simplifying Equation (11). 
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 (13) 

By taking the derivative with respect to gm and solving, it can be shown that the values of the gm 
that minimize the MSE are given by: 

 (14) 

The correlation between the input y(n) and the orthogonal functions wm(n) can be found recursively 
using the equations: 

 (15) 

and: 

 (16) 

Using Equation (12) and Equation (14), the weights gm that minimize the MSE of the orthogonal 
functional expansion can be found using: 

 (17) 

In its last stage, FOS calculates the weights of the original functional expansion am (Equation (1)), 
from the weights of the orthogonal series expansion, gm, and the weights αir. The value of am can be 
found recursively using: 

 (18) 

where 

 (19) 

From Equations (9), (10), (15) and (16) it can be noted that FOS requires the calculation of the 
correlation between the candidate functions, and the correlation between the input and the candidate 
functions. The correlation between the input and the candidate function ( ) ( )npny m  are typically 
calculated point-by-point once at the start of the algorithm and then stored for later quick retrieval. For 
regularly sampled data, the correlation between the candidate functions can be computed with closed 
form expressions, significantly reducing the number of computations required to compute these 
correlations [10,13]. 

Using the fact that the wm(n) are an orthogonal set of functions, the MSE of the orthogonal function 
expansion (Equation (13)) can be reduced to [5,6]: 
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It then follows that the MSE reduction given by the mth model addition is: 

 (21) 

FOS can fit a model with a small number of model terms by fitting terms, which reduce the mean 
squared error (MSE) in order of their significance. The FOS search algorithm is stopped in one of three 
cases. The first is when certain maximum number of terms is fitted. The second case is when the ratio 
of MSE to the mean squared value of the input signal is below a pre-defined threshold. The third case 
is when adding another term to the model reduces the MSE no more than if it were fitting white 
Gaussian noise. In the case where FOS first fits a constant term (p0(n) = 1), the threshold test for 
determining if a new term (term m + 1) is not reducing the MSE by more than if it were fitting white 
Gaussian noise (WGN) is [6]:  

 4 g  (22) 

where Qm+1 is the MSE reduction of the new term and N is the number of points in the input data.  
A threshold test that does not assume a zero frequency term is fitted first can be found in [8]. 

Spectral analysis with FOS is accomplished by selecting candidates pm(n) that are pairs of sine and 
cosine terms at each of the frequencies of interest. The candidate functions pm(n) are given by: 

 (23) 

where m = 1, …, P, ωm is the digital frequency of the candidate pair and P is the number of candidate 
frequencies. By fitting a sine and cosine pair at each candidate frequency, the magnitude and phase at 
the candidate frequency can be determined [7,8]. 

There are at least two significant differences between FOS and the discrete Fourier transform  
(DFT) [5,6,10]: (1) FOS yields a parsimonious sinusoidal series representation by selecting the most 
significant sinusoidal components first; and (2) the frequencies of the sinusoids selected need not be 
commensurate nor integral multiples of the fundamental frequency corresponding to the record length . 
This translates to better frequency resolution in the spectral model. 

FOS is appreciably better at rejecting coloured and white noise than the commonly used FFT 
techniques (example in [9]), which is significant since these types of errors are typically present in 
inertial sensor data. 

3. Application of FOS to Inertial Sensor Accuracy Enhancement 

In this research, FOS is used for inertial sensor accuracy enhancement. In general, signal de-noising 
typically involves: (1) transforming the data into a different domain (i.e., wavelet transform or DFT) so 
that it can be represented by a series of weighted terms; (2) applying a thresholding method against the 
weighted terms to select only the most significant components, thus permitting the rejection of noise; 
and (3) performing an inverse transform on the selected significant terms to synthesize a time-series 
representation of the data with reduced noise. Although FOS is computationally demanding, the 
authors’ research team was able to optimize it for real time realization [14–17]. The idea of utilizing 
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FOS to de-noise inertial sensors was explored originally by the authors [14] but at much limited scope 
and experimentation. 

FOS has been shown to be good at detecting the frequencies of interest buried in coloured and white 
noise even at signal to noise ratios (SNR) as low as −10 dB [9]. Coloured or correlated noise is 
consistent with the long term error characteristics present in inertial sensor outputs. The computation 
time required for FOS is considerably higher than that of the FFT or wavelet de-noising techniques, 
but with current-day personal computers the signals can still be processed in real-time. 

3.1. Design of a FOS-Based Inertial Sensor Accuracy Enhancer 

The basic principle behind the proposed FOS-based inertial sensor accuracy enhancer is to use FOS to 
model the motion dynamics measured by the inertial sensors, and reject as much of the inertial sensor 
error components as possible. As FOS models the noisy input data, it implicitly performs the 
aforementioned tasks of transforming and thresholding. FOS performs thresholding using Equation (22), 
when it evaluates whether the addition of a candidate function will reduce the MSE more than if it were 
fitting white noise. The inverse transform is a simple matter of using the model terms selected by FOS 
to synthesize a time-series using Equation (1).  

It should be noted that this process of de-noising is appropriate for stationary data (the frequency 
content of the data does not change with time), and that inertial sensor data is typically non-stationary 
since they are measurements of the vehicle motion dynamics and the sensor noise is also known to be 
non-stationary. The challenge of de-noising non-stationary inertial sensor data is addressed by taking 
segments of inertial sensor output and applying the FOS to each segment. Figure 1 shows a schematic 
of the FOS technique developed in this research. 

Figure 1. Block diagram of FOS-based inertial sensor accuracy enhancement technique 
(bullets denote operating parameters). 
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The FOS accuracy enhancement technique initially segments a noisy input time series, denoted y(n) 
representing one of the six inertial sensor outputs, into smaller analysis windows that can be treated as 
stationary data. Each segment is modelled using FOS to extract the components of the motion 
dynamics from the noisy measurements. The output of this stage is the FOS model terms, which 
provides information on frequency, magnitude and phase for that segment of data. The FOS model 
terms can then be used to synthesize an estimation of the true motion dynamics for that segment, thus 
creating an accuracy enhanced segment. This process repeats for all segments, and all of the enhanced 
segments are recombined to create the overall accuracy enhanced inertial sensor time series. 

3.2. FOS Accuracy Enhancement Parameters 

As FOS is generally known to be a data dependent algorithm [5–10], the accuracy of the model 
produced by FOS depends on the data record being modelled, the candidate functions used to compute 
correlations, and the stopping conditions (thresholds) in the algorithm.  

Sinusoidal candidate functions were selected in this research because they had been successfully 
applied to de-noising [5,6] and in non-stationary signal analysis [18]. Furthermore, the closed-form 
expressions for computing the cross-correlations between sinusoids [13] make the execution time of 
FOS with sinusoidal basis functions considerably faster than it would be with most other types of basis 
functions which require the correlations to be computed point by point [5]. 

The FOS candidate frequencies are chosen to have a higher resolution than the fast Fourier 
transform (FFT) to achieve better de-noising. The frequency resolution of an FFT can be given by: 

 (24) 

where fS is the sampling frequency and N is the number of points in the record. Subject to the SNR, it 
has been shown that FOS can achieve frequency resolutions up to 5 [10], 8 [6,12,18], or 10 [8] times 
the frequency resolution of the FFT.  

From Equation (24) it can be seen that a long record length gives good spectral resolution, which is 
needed to accurately model a time-series. However, as inertial sensor data is time-varying, a short 
record length is desired for good time resolution on the time varying parameters. For this research, the 
candidate function spacing was typically set in the order of 1/8 the FFT resolution for each segment. 

Candidate frequencies can be selected so that the candidate functions focus on a particular frequency 
range of interest. For example, the candidates can be spaced with a high resolution on a range of interest 
and outside the range of interest, the candidates can be spaced by FFT resolution intervals. 

It is desirable to have the minimum number of candidate frequencies in a model required to  
model the motion dynamics. Too few terms results in a model that does not accurately model the input 
signal. Too many terms will add noise terms into the motion dynamics model as well as increase the 
computation time. In this research, the maximum number of frequencies to add (MAXFTA) is 
typically set between 6 and 15, not including the initial zero frequency model term. 

FOS stops modelling when adding a new frequency pair does not reduce the MSE more than fitting 
WGN. It is known that INS data includes WGN and coloured noise, which may not be rejected by this 
threshold. Thus, a candidate acceptance threshold, requiring a frequency pair to fit a minimum 
percentage of the overall energy in the signal, is set [5]. Although there is no way of telling whether a 
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FOS term models noise or motion dynamics, FOS will fit a small number of frequency terms rejecting 
WGN and terms with a small percentage of the overall energy, hopefully selecting the motion dynamic 
terms and rejecting the long term noise terms. 

Finally, in synthesizing the noise free motion dynamics, FOS can synthesize the time-series 
estimates using only a certain range of frequencies detected by FOS. Since it is known that motion 
dynamics are typical low frequencies, (e.g., between 0 and 3 Hz for land vehicles in benign 
environments), FOS can model the motion dynamics with only model terms in this frequency range 
while rejecting the higher frequency terms as noise. This has the effect of low-pass filtering, thereby 
eliminating the short term error components of the inertial sensor measurements. Using FOS differs 
from using a low-pass filter (LPF) in that it has an adaptive noise rejection threshold and only fits a 
small number of frequency terms, whereas a LPF will pass all frequencies within its passband. 

4. Simulation 

A set of simulated inertial signals (gyroscopes and accelerometers in x, y, z axes) was generated  
at a 75 Hz data rate to correspond to a 120 s land vehicle trajectory. The true motion dynamics were 
generated using windowed sinusoidal functions, and the data was processed using an INS 
mechanization algorithm to produce an error-free reference trajectory [19,20]. Short- and long-term 
errors were then added to the reference signals to create a ‘noisy’ set of data, which would then be 
processed using wavelet de-noising and FOS de-noising. From here on, the abbreviations REF, NSY, 
WDN and FOS may be used when referring to the reference, noisy (or corrupted by short- and  
long-term errors), wavelet de-noised and FOS de-noised signals or trajectories. The NSY inertial 
sensor signals were processed with the INS mechanization algorithm to produce the NSY trajectory. 

The short-term error component is made up of white Gaussian noise with variance levels matching 
those observed from a low-end tactical grade IMU (TG-6000, KVH Industries Inc., Middletown, RI, 
USA). The long-term error component is created with a 1st order Gauss-Markov process with a 
standard deviation and correlation time similar to those observed from the TG-6000 IMU. The  
Gauss-Markov disturbance is representative of long term inertial sensor errors like the bias drift, and 
has a correlation time of 1 h. 

As mentioned, the results of the FOS de-noising are compared to results of the wavelet de-noising. 
The parameters of the wavelet de-noising function include the type of wavelet basis function, the 
number of levels of decomposition (LOD), and thresholding rules. The Daubechies family of wavelets 
with soft thresholding based on Stein’s Unbiased Risk Estimate (SURE) are used in this paper as these 
parameters are typically used in pre-filtering inertial sensors [3,4]. The number of levels of 
decomposition (LOD) for the Wavelet transform is selected based on the data rate of the inertial sensor 
outputs and the expected frequency range of the vehicle motion dynamics. Each level of decomposition 
limits the frequency bandwidth of the WDN output by a factor of 2. In the case of this simulation, the 
inertial sensor data sampled at 75 Hz has an effective bandwidth of 37.5 Hz, and n LOD will limit the 
frequency band of the WDN output to (37.5/2n) Hz. To ensure a fair comparison between the WDN 
and FOS accuracy enhanced results, the wavelet de-noising technique is applied separately to each 
segment of NSY data that are processed by FOS de-noising. 
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Both the FOS and Wavelet de-noising used 15 s segments. The wavelet de-noising parameters used 
are shown in Table 1. The band where most of the spectral energy of the true motion dynamics for the 
x-acc, y-acc and z-gyro is from 0 to approximately 0.6 Hz. Thus six LOD were chosen to limit the 
WDN output band to approximately 0.6 Hz (37.5/26 = 0.586 Hz). Since it is known in this simulation 
that there are no motion dynamics present for the x-gyro, y-gyro and z-acc, these signals should be de-
noised as much as possible by using the maximum LOD (10 in this case). 

The FOS de-noising parameters used for this data are summarized in Table 2. Note that an iterative 
FOS algorithm [8] was used to improve the FOS models. The FOS candidates had eight times the 
resolution of the FFT in the frequency band where motion dynamics were expected and used the FFT 
frequency resolution spacing outside this band. For the x-gyro, y-gyro and z-acc where no motion is 
expected, the high resolution band for FOS candidate frequencies is from 0 to 0.0366 Hz. 

Table 1. Wavelet de-noising parameters. 

Signal Wavelet LOD Threshold Parameters 
x-gyro, y-gyro Daubechies 1 (db1) 10 Soft, SURE, No Rescaling 

z-gyro Daubechies 3 (db3) 6 Soft, SURE, No Rescaling 
x-acc, y-acc Daubechies 3 (db3) 6 Soft, SURE, No Rescaling 

z-acc Daubechies 1 (db1) 10 Soft, SURE, No Rescaling 

Table 2. FOS de-noising parameters. 

Signal Candidate Functions (Hz) Threshold MAXFTA Synthesis Range 
x-gyro, y-gyro 0–0.0366 @ 1/8 FFT Res 4% var [NSY] 6 0–0.0366 

z-gyro 0–0.6 @ 1/8 FFT Res 4% var [NSY] 6 0–0.6 
x-acc, y-acc 0–0.6 @ 1/8 FFT Res 4% var [NSY] 6 0–0.6 

z-acc 0–0.0366 @ 1/8 FFT Res 4% var [NSY] 6 0–0.0366 

The resultant accuracy enhanced signals for the gyroscopes and accelerometers are shown in the 
Figures 2 and 3. Since the FOS de-noised outputs (especially z-gyro, x-acc and y-acc around the  
zero-mean portions) use so few frequency terms, these signals can be seen to have ripple (Giibs 
phenomena) in them. However, the FOS de-noising position domain solution is vastly superior to  
the WDN solution, as shown in Figure 4. The INS mechanization process, through the mathematical 
integrations, integrates out the errors introduced by the ripple effect. It appears that the FOS de-noising 
is only fitting frequency terms associated with the vehicle motion dynamics and that long term noise 
components are not being modeled. The separation of the true motion dynamics from the long-term 
inertial sensor error components is a very difficult task. The motion dynamics are mixed in with the 
errors, and in practice it is impossible to determine whether or not FOS is inadvertently modeling the 
correlated error terms. In the simulation presented the position estimates using FOS de-noising were 
substantially better than with Wavelet de-noising suggesting that in this case FOS was only modeling 
motion dynamics. The potential of FOS is quite significant when one considers that the positions are 
computed without any external aiding (i.e., no data fusion with GPS). The position errors from a  
low-end tactical grade INS may reach upwards of 30 m during a 30 s GPS outage. The resultant  
free-inertial trajectory from the simulated NSY data set reached a maximum horizontal position error 
of 204 m over 120 s, and accuracy enhancement from FOS reduces this error to 27.8 m (see Figure 4). 
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Levels of accuracy enhancement like this for real inertial data would represent a significant 
breakthrough in inertial navigation and redundancy during loss of GPS. The maximum and mean 
horizontal position errors for the NSY, WDN and FOS trajectories for this simulation are summarized 
in Table 3. 

Figure 2. Accuracy enhanced gyroscope signals. (a) Gyroscope signals. (b) Zoomed-in 
section of z-gyro illustrating transients. 
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Figure 3. Accuracy enhanced accelerometer signals. (a) Accelerometer signals.  
(b) Zoomed-in section of x-acc illustrating transients. 
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Figure 4. Trajectory plots. 

 

Table 3. Summary of position domain accuracy enhancement. 

 NSY WDN FOS 
Maximum Horizontal Position Error (m) 204.0 192.6 27.8 

Improvement over NSY (%) - 5.6% 86.4% 
Mean Horizontal Position Error (m) 118.8 110.4 17.5 

Improvement over NSY (%) - 7.1% 85.2% 

Experimental Work 

The impact of the proposed FOS method as a high-resolution spectral de-noising technique for 
inertial sensors is examined on two different types of inertial systems during two different road tests 
performed within the city of Kingston (Ontario, Canada) [21,22]. The experimental data collected in 
this research was completed using a van carrying a suite of measurement equipment that included 
inertial sensors, GPS receivers and antennas, computers to control the instruments and acquire the data 
as well as the required power supplies and connectors. A photograph of the experimental set-up is 
provided in Figure 5. The photos in Figure 5 show more equipment than those used in the experimental 
work of this paper.  

The first experiment used a TG-6000 tactical grade IMU (KVH Industries, Inc.) and an 8-channel 
continuous-tracking GPS receiver with antenna (Lassen SQ GPS, Trimble Navigation Ltd., Sunnyvale, 
CA, USA). The inertial system used in the second road test is the Crossbow MEMS grade IMU 
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(Crossbow Technologies, San Jose, CA, USA). Some specifications of both IMUs and GPS module 
are provided in Table 4.  

Figure 5. Experimental setup including inertial systems, GPS and data acquisition modules 
mounted inside land vehicle. 

(a) (b) 

Table 4. Specifications for TG-6000 IMU and Lassen SQ GPS module. 

 TG-6000 IMU MEMS Crossbow IMU Lassen SQ GPS Module 

Manufacturer 
KVH Industries Inc., 

Middletown, RI 
Crossbow Technologies Trimble Navigation Ltd., 

Sunnyvale, CA 

Performance 

Gyroscopes 
Input Range: ±750°/s 

Bias drift: ±10°/h 
 

Accelerometers 
Input Range: ±7 g 

Bias drift: ±10 mg/h 

Gyroscopes 
Input Range: ±100°/s 

Bias drift: ±2°/s 
 

Accelerometers 
Input Range: ±2 g 

Bias drift: ±30 mg/h 

Operational limits: <18,000 m or 
velocity <515 m/s 

Accuracy 
Horizontal: <6 m (50%),  

<9 m (90%) 
Vertical (Altitude): <11 m (50%),  

<18 m (90%) 
Velocity: 0.06 m/s 

Acquisition 
Reacquisition: <2 s (90%) 

Cold Start: <90 s (50%), <170 s (90%) 

Interface 
(Digital) 

Data Rate: up to 150 Hz 
RS-422 serial 
115,200 baud 

Data Rate: up to 200 Hz 
RS-232 serial 

9,600 baud 

Update Rate: 1 Hz 
RS-232 serial  

9,600 baud 

Power 
Input Voltage: 14 to 30 VDC, 

12 Watts max. 
Input Voltage: 9 to 30 VDC, 

3 Watts max. 
Input Voltage: 3.0 to 3.6 VDC,  

0.5 Watts max. 

Miscellaneous 
75 Hz sampling rate during 

data acquisition 
20 Hz sampling rate during 

data acquisition 
Uses 3 V active micropatch antenna 

with magnetic mount 

In this study, for both the tactical grade and MEMS based inertial systems, the raw noisy inertial 
sensor measurements (denoted as NSY data) is processed by both the wavelet de-nosing procedure [4] 
and the FOS [5]. The inertial sensor measurements de-noised using wavelet analysis and FOS are 
denoted as WDN data and FOS data, respectively. The de-noising is followed by INS mechanization 
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and a de-centralized fusion with GPS. The INS/GPS integration was accomplished through a KF-based 
data fusion software known as Aided Inertial Navigation System (AINS; Mobile Multi-Sensor 
Research Group, Department of Geomatics Engineering, University of Calgary, Alberta, Canada). The 
AINS software performs the following tasks: INS mechanization of the inertial sensor data; optimal 
estimation of navigation solution errors and sensor errors using a 15-state KF; and simulation of GPS 
outages. The data acquired from the Lassen SQ GPS module was applied to AINS as the GPS external 
aiding measurements while the NSY, WDN, and FOS data were applied as the IMU measurements. 

One of the objectives of this experimental work is to assess the position domain accuracy 
enhancement of FOS during a GPS outage. Although there were no GPS outages during each of the 
above road tests, several 30 s GPS outages were intentionally introduced within each trajectory. The 
raw inertial sensor data and the GPS measurements were processed without applying any GPS outages 
to create a baseline AINS position domain solution and may be denoted REF from hereon. The AINS 
position solutions for the NSY, WDN, and FOS inertial sensor data sets during the outages are 
compared against the REF trajectory. The corresponding position errors during the outages can be used 
to assess FOS as an accuracy enhancement technique for a real INS/GPS integrated system. 

5. Results and Discussion 

5.1. Tactical Grade IMU 

The trajectory of the first road test is shown in Figure 6. The TG6000 inertial sensors measurements 
were acquired at 75 Hz data rate. A segment size of 150 data points together with 75 Hz sampling rate 
corresponds to a 2 s record length. 

Figure 6. The first road test trajectory (for the TG6000 IMU) with the location of some 
intentionally introduced GPS outages indicated. 
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The WDN and FOS signals followed the trends of the NSY signals, but the WDN and FOS results 
had noticeably less short-term error components (i.e., high-frequency components, white noise). 
Analysis in time-domain showed that the FOS data (although less noisy) follows the trends of the NSY 
and WDN data, thus demonstrating that FOS can operate on real inertial sensor data. Figure 7 
compares the power spectral density (PSD) of the raw measurements before and after de-nosing 
utilizing both WDN and FOS. Figure 7(a,b) compare, respectively, the PSD of the NSY to FOS and 
the NSY to WDN for the entire trajectory for the forward axis accelerometer data while Figure 7(c,d) 
show the PSDs for the vertical gyroscope data. It can be depicted that after processing the raw 
measurements by FOS, they are noticeably less noisy than the NSY signals for both sensors. From 
Figure 7, it can be also determined that FOS can provide better attenuation of noise starting for the low 
frequency part of the signal (between 1 and 2 Hz) and also for the higher frequency band than WDN. 
WDN was not able to provide any noise suppression in the low frequency part where correlated  
long-term errors were mixed with part of the motion dynamics. Since examining the PSD plots alone 
cannot verify that FOS was more capable than WDN in removing long-term errors between 1 and  
2 Hz, we decided to examine the impact of both FOS and WDN in the positioning accuracy. 

Figure 7. PSD plots for TG6000 inertial sensors before and after applying both FOS and WDN. 

(a) (b) 

(c) (d) 

Figures 8–11 show the position domain results and the corresponding horizontal position errors 
over the duration of each of the four GPS outages. The maximum and mean horizontal position errors 
during the four GPS outages for the NSY, WDN and FOS trajectories are summarized in Table 5. The 
percentage improvement over NSY provides an indication of the accuracy enhancement performance 
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in the position domain. Considering the average maximum horizontal position error values, FOS 
accuracy enhancement was slightly better than wavelet de-noising. However, the mean horizontal 
position error values indicate that FOS provided accuracy enhancement during the GPS outages that 
was relatively superior to wavelet de-noising. For example, it can be noticed in Figure 9 for GPS 
outage # 2 that the position errors in case of FOS was less than WDN for the whole GPS outages 
except for the last few seconds when the vehicle made a sharp turn. In this case, the maximum position 
error for FOS was slightly larger than WDN while the mean position error over the whole GPS outage 
showed better FOS performance over WDN [23]. The main reason for this is the ability of FOS to 
extract the frequency components of the motion dynamics within the low frequency range where these 
dynamics are mixed with the long-term inertial sensor errors. Wavelet, on the other hand, was only 
able to attenuate high frequency noises and some of short term errors. 

Figure 8. Land vehicle experiment position domain results for GPS outage 1. (a) Position 
domain plot. (b) Horizontal position error plot. 

(a) (b) 

Figure 9. Land vehicle experiment position domain results for GPS outage 2. (a) Position 
domain plot. (b) Horizontal position error plot. 

(a) (b) 
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Figure 10. Land vehicle experiment position domain results for GPS outage 3. (a) Position 
domain plot. (b) Horizontal position error plot. 

(a) (b) 

Figure 11. Land vehicle experiment position domain results for GPS outage 4. (a) Position 
domain plot. (b) Horizontal position error plot. 

(a) (b) 

The results verify that FOS is capable of processing real IMU data from a relatively long trajectory 
of one hour in duration. The FOS output is noticeably less noisy than the NSY signals for all sensors, 
and it is even less noisy than the WDN signals in the case of the X and Y gyroscopes (not shown in 
this paper). The residual frequency components above the estimated motion dynamics frequency range 
that are present in the WDN signals may be attributed to the thresholding techniques used in wavelet 
de-noising. Due to the setting of the parameters, FOS did not include these frequency components 
when it synthesized the estimate of the vehicle motion dynamics. These additional components do not 
likely constitute a significant portion of the true motion dynamics since they are outside the expected 
frequency range for land vehicle motion, but they could be attributed to road surface irregularities or 
vibrations from other machinery within the vehicle (i.e., pumps, fans, etc.). 

The NSY, WDN, and FOS position error values during the artificial GPS outages were in the order 
of those observed in other experimental work [23] with tactical grade IMUs and 30 s GPS outages. The 
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maximum and mean horizontal position error values from FOS were generally comparable or superior 
to those from wavelet de-noising, with the exception of GPS outage 2. Overall, this experimental work 
demonstrates that FOS can contribute to accuracy enhancement of the vehicle position during GPS 
outages. In the case of GPS outage 2, the maximum horizontal position error for FOS is larger than 
WDN. However, the mean horizontal position error for FOS is smaller than WDN, which is still a 
significant achievement in accuracy enhancement. 

Table 5. Summary of position domain accuracy enhancement during GPS outages (Road Test 1). 

 
 

Outage 1 
(1,371–1,400 s) 

Outage 2 
(2,500–2,529 s) 

Outage 3 
(3,251–3,280 s) 

Outage 4 
(3,816–3,845 s) 

Average 
(All Outages) 

NSY Maximum Horizontal 
Position Error (m) 

38.8 24.7 32.8 29.3 31.4 

WDN Maximum Horizontal 
Position Error (m) 

37.4 12.9 31.9 28.2 27.6 

WDN Enhancement (%) 4% 48% 3% 4% 14% 
FOS Maximum Horizontal 

Position Error (m) 
36.3 16.3 31.6 23.3 26.9 

FOS Enhancement (%) 7% 34% 4% 20% 16% 
NSY Mean Horizontal 

Position Error (m) 
19.4 9.5 14.8 15.2 14.7 

WDN Mean Horizontal 
Position Error (m) 

18.7 7.5 13.4 14.0 13.4 

WDN Enhancement (%) 3% 21% 9% 8% 10% 
FOS Mean Horizontal 

Position Error (m) 
18.1 6.6 13.3 8.6 11.6 

FOS Enhancement (%) 6% 31% 10% 43 % 23% 

5.2. MEMS IMU 

The inertial system used in the second road test is the Crossbow MEMS grade IMU (Crossbow 
Technologies) with its specifications shown on Table 4. The trajectory of the second road test is shown 
in Figure 12. This experiment was performed between the City of Kingston and Smith Falls (Ontario, 
Canada; see Figure 12) of and the inertial sensor measurements were acquired at 20 Hz. The raw 
sensor measurements were processed by both WDN and FOS and the PSD plots for the forward 
accelerometer and the vertical gyroscopes are shown in Figure 13. It can be noticed from these plots 
that FOS attenuated some of the noises in the frequency band containing the motion dynamics, while 
WDN was only able to attenuate frequencies outside this frequency band. The influence of WDN 
appears only after 4 Hz. We introduced 9 artificial GPS outages, each of 30 s, at different locations 
along the trajectory as can be seen in Figure 12. The performance of the overall system before and 
after pre-filtering was assessed in terms of the position error at the end of the GPS outage. The results 
are shown in Figure 14 for the 9 GPS outages and for the NSY, WDN and FOS signals and more 
details are given in Table 6. 
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Figure 12. The second road test trajectory (for MEMS based IMU) with the location of 
some intentionally introduced GPS outages. 

 

Figure 13. PSD plots for MEMS inertial sensors before and after applying both FOS and WDN. 
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(c) (d) 
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Figure 14. Positioning accuracy at the end of 9 GPS outages for MEMS IMU for the 2nd road test. 

 

Table 6. Summary of percentage position improvement during GPS outages (Road Test 2). 

Clearly the overall system performance benefited from the de-noising by FOS and position errors 
was reduced after the pre-filtering process. Moreover, except for GPS outages 3 and 5, FOS provided 
better accuracies than wavelet. In fact, WDN was providing almost the same accuracy of the raw noisy 
signal for all GPS outages. The average percentage improvement (considering all 9 GPS outages) for 
the vehicle horizontal position was 24% when using FOS and almost no improvement when using 
wavelets. In fact the superior accuracy obtained with FOS de-noising is due to the ability of FOS to fit 
the frequencies with the highest energy first, which are mostly the motion dynamic terms, and then 
reject terms (the long term errors or insignificant motion dynamics) with its adaptive noise threshold. 
Such errors exist in the very low frequency part of the signal and mixed with motion dynamics, thus 
cannot be removed by wavelet de-nosing since it is basically a lowpass filtering and do not include the 
noise rejection threshold inherent in FOS. 

6. Conclusions 

The experimental work discussed in this section for tactical grade IMUs validates FOS as an inertial 
sensor accuracy enhancement technique that is applicable to a real INS integrated with a GPS and 
applicable to relatively long trajectories. Processing raw inertial measurements with FOS can 
contribute to improved accuracy enhancement in the position domain during GPS outages, and the 
position improvements are frequently better than wavelet de-noising. For tactical grade IMUs, the 
mean horizontal position error was reduced by 23% after applying FOS while wavelet de-nosing has 
only shown 10% enhancement. For MEMS-based IMU, FOS has shown 74% improvement while 
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wavelet has only shown 55%. The main reason of the superior accuracy provided by FOS is its 
capability of removing the long-term inertial sensor errors prior to INS mechanization and KF-based 
integration with GPS.  
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