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Abstract: COMPASS is an indigenously developed Chinese global navigation satellite 
system and will share many features in common with GPS (Global Positioning System). 
Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage 
over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS 
integration has been investigated in this paper, particularly, by proposing a simplified 
prefilter model. Compared with a traditional prefilter model, the state space of this 
simplified system contains only carrier phase, carrier frequency and carrier frequency rate 
tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. 
Since the code tracking error related parameters were excluded from the state space of 
traditional prefilter models, the code/carrier divergence would destroy the carrier tracking 
process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance 
matrix based on state correction sequence was incorporated to compensate for the 
divergence. The federated ultra-tight COMPASS/INS integration was implemented with  
a hardware COMPASS intermediate frequency (IF), and INS’s accelerometers and 
gyroscopes signal sampling system. Field and simulation test results showed almost similar 
tracking and navigation performances for both the traditional prefilter model and the 
proposed system; however, the latter largely decreased the computational load.  
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1. Introduction 

The global COMPASS or Beidou II is a second generation Chinese satellite navigation system 
being developed from its first generation predecessor, Beidou I, which was a regionally-based system [1,2]. 
By the end of 25 February 2012 eleven COMPASS satellites have been launched successfully. 
Currently, COMPASS is providing reliable position services to the south and southeast coastland of 
China and south Asian areas [3].  

Like a GPS receiver, the COMPASS receiver also faces the paradoxical situation in optimising the 
carrier-tracking loop bandwidth to guarantee anti-jamming capability and dynamics adaptation 
simultaneously, i.e., anti-jamming capability needs a narrow bandwidth while dynamics adaptation 
needs a wider one [4,5]. Ultra-tight GPS/INS integration was actually proposed to solve this  
problem [6–11]. The basic concept behind the ultra-tight integration approach is that, the dynamics of 
the GPS receiver measured by an INS can be integrated with the GPS tracking loop, which results in 
‘dynamic-free’ GPS signals [12] that enters the tracking loop, so that GPS receiver’s anti-jamming 
capability and dynamic adaptation can be guaranteed simultaneously. In this paper, the discussion is 
based on COMPASS B3 frequency signal which share many features in common with the GPS L1 
frequency signal [1,2], and therefore the previous discussions on ultra-tight GPS/INS integration are 
applicable to COMPASS/INS system with minor modifications. 

Generally, the ultra-tight GPS/INS integrated navigation systems can be classified as central 
architecture [6,8] and federated architecture [9,10]. In central architecture, carrier and code tracking 
and INS corrections are performed simultaneously in a single integrated Kalman filter, as shown in 
Figure 1 [13]. The kernel of its implementation lies in establishing the mathematical relationship 
between I/Q measurements and INS error states (position, velocity, attitude, gyroscope and accelerator 
bias errors), which is nonlinear. In addition, if six measurements are contained in each channel, for N 
channels a 6 × N dimension measurement information need to be processed. For this reason, the central 
architecture is difficult to implement in real-time applications, and therefore the discussion primarily 
focuses on the federated architecture in this paper. 

Figure 1. Central design of ultra-tight GPS/INS integration. 
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In federated architecture, the large integrated Kalman filter is decomposed into two filters operating 
at different rates [7], as shown in Figure 2 [13]. The code and carrier tracking loops are completed in  
a baseband signal pre-processing filter (prefilter for short) in each channel, and the integrated 
navigation filter (master filter) is used to process the output of the prefilters and restrict the INS errors. 
Different prefilter models and their impact on GPS signal tracking have been discussed in [14,15]. 
Generally, the normalized signal amplitude, carrier phase tracking error, carrier frequency tracking 
error, carrier frequency rate tracking error and code phase tracking error are included in the state space 
of prefilter, and the code and carrier discriminator outputs are used as measurements to ensure a linear 
Kalman filter implementation for the prefilter.  

Figure 2. Federated design of ultra-tight GPS/INS integration. 

 

A common characteristic of traditional prefilter models is that the signal amplitude is independent 
of other state variables and discriminator outputs, such that the observability of normalized signal 
amplitude would be a substantial problem in actual implementation [16]. It is well known that carrier 
tracking has more stringent requirements than the code tracking [4,5], besides, the code Doppler 
frequency is proportional to the carrier frequency, and the code phase can be controlled by shifting the 
code rate [17]. Therefore, the carrier tracking is emphasized during the prefilter implementation.  

This paper has proposed a simplified prefilter model and a corresponding adaptive Kalman filter 
algorithm to replace the traditional one. The state space of this simplified prefilter model consists of 
only carrier phase tracking error, carrier frequency tracking error and carrier frequency rate tracking 
error, and the two-quadrant arctangent discriminator output is used as a measurement. Since the code 
tracking error component has been excluded from the state space, if the code/carrier divergence was 
ignored it will destroy the carrier tracking process [11,18]. An adaptive Kalman filter algorithm was 
therefore used to compensate for the code/carrier divergence where the process noise covariance  
was tuned online based on state correction sequence [19]. The performance of federated ultra-tight 
COMPASS/INS integration with this simplified adaptive prefilter (S-AKF for short) has been 
compared with the traditional filter (T-KF for short). Two sets of data, collected in a field environment 
and with a complex GNSS/INS signal hardware simulator respectively, were used to assess the 
performance. Test results showed a more or less identical tracking and navigation performance of  
S-AKF with that of T-KF; however, S-AKF largely reduced the computational load.  

The remainder of this paper is organized as follows: Section 2 introduces a commonly used prefilter 
and integrated navigation filter models in federated GPS/INS architecture, Section 3 introduces the 
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simplified prefilter model and corresponding adaptive Kalman filter algorithm, in addition, the 
COMPASS/INS integrated navigation filter model is also proposed. Section 4 evaluates the performance 
of S-AKF and T-KF through simulation and field experiments. The paper finishes with conclusions 
and an outline of future work in Section 5. 

2. Traditional Filter Model in Federated GPS/INS Integration  

Before introducing the simplified adaptive prefilter model of ultra-tight COMPASS/INS 
integration, a brief introduction is given on traditional prefilter and integrated navigation model of 
federated GPS/INS integration. Expanding Figure 2 for a single channel, the architecture of federated 
ultra-tight GPS/INS integration is shown in the Figure 3 [7,11]. Prefilter and integrated navigation 
filter are two kernel components of this architecture. 

Figure 3. Federated ultra-tight GPS/INS integration with one channel in detail. 

 

2.1. Integrated Navigation Filter Model  

Traditionally, the state vector of navigation filter is defined as [11]: 
Te e e b bδ δ δ δ δ δ= ⎡ ⎤⎣ ⎦X R V A Tψ ω  (1) 

where δRe is position error, δVe is velocity error, δψe is attitude error, δωb is gyroscope bias error, δAb 
is accelerometer bias error, δT = [δb δd]T is the clock error vector, the superscript e and b represent 
ECEF frame and body frame respectively. 

The corresponding system model of navigation filter is: 
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where [x y z] is the vehicle’s current position in ECEF-frame, r =  [fx fy fz], is the 
specific force vector in the body frame,  is the body-to-Earth-frame coordinate transformation 
matrix, and ωe is the Earth’s angular rate [20]. 

For the integrated navigation filter, the error components of pseudo range, pseudo range rate and 
pseudo range acceleration are used as measurements which are proportional to corresponding 
estimated states of prefilter [11]. Since the emphasis was on the prefilter model, the measurement 
equation was deliberately omitted here, for more details please refer to [11,21]. 

2.2. Traditional Prefilter Model  

In federated ultra-tight GPS/INS integration, the prefilters are responsible for implementing code 
and carrier tracking, and also providing measurement information and corresponding measurement 
noise matrices for the integrated navigation filter [9–11]. For specific appliactions different prefilter 
models have been investigated [14,15]. A most commonly used prefilter model will be introduced here, 
the performance of which will be compared with that of a simplified prefilter model with an adaptive 
Kalman filter. The system model for the prefilter is written as follows [14]: 

1 1
1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0
2 2

0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

A
L L

L
CA CA

f

a

wAA
w
w
wff
waa

τ

φ

λ λ
δτδτ πλ πλ
δφδφ
δδ
δδ

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎣ ⎦ ⎣ ⎦

 
(3) 

where A is the normalized signal amplitude, δ  is the carrier phase tracking error, δf is the carrier 
frequency error, δa is the carrier frequency rate error, δτ is the code phase error, λL1 ≈ 0.19 m is the 
GPS L1 carrier wavelength,  ≈ 293 m is the GPS CA  code chip length, wA is the process noise for 
the normalized signal amplitude, wτ represents the code/carrier divergence,  represents the carrier 
phase noise due to the clock bias, wf represents the carrier frequency noise due to the clock drift, and 
wa represents the carrier phase acceleration noise due to the receiver dynamics. 

The outputs of normalized early-minus-late envelope code discriminator and two-quadrant 
arctangent carrier discriminator are used as measurements, and the measurement equation is written  
as follows [14,15]: 
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(4) 

where v1 and v2 are the output noises of code and carrier discriminators respectively.  
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As shown in Equation (3), the code phase error δτ is proportional to the carrier frequency error δf, 
and in order to decrease the state space dimension the “carrier aided code tracking process” can be 
implemented “outside” the prefilter. In addition, as shown in Equation (4), if the normalized 
discriminators were used the measurements would contain no information of estimated signal 
amplitude, and the observability of which would be a substantial problem [16]. In some cases, the 
baseband I/Q information were used as measurements directly [14,15] including the signal amplitude; 
however, a non-linear filter algorithm is required to implement code and carrier tracking [7,14,15]. 
Considering the above analysis, the code phase error and signal amplitude will be excluded from the 
state space of prefilter in the following discussion. 

3. The Simplified Prefilter Model with Application to Federated Ultra-Tight COMPASS/INS 
Integration Implementation 

A simplified prefilter model for the federated ultra-tight COMPASS/INS integration is investigated 
for the reduction in the calculation load, and the corresponding integrated navigation filter model is 
also analyzed. 

3.1. Simplified Prefilter Model with Adaptive Kalman Filter 

For the jth (j = 1, 2, …, N) channel, the system model of the simplified pre-filter is defined as 
follows (discrete form): 
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where (rad) is the carrier phase tracking error at time instant k, (rad/s) is the carrier frequency 
error at time instant k, and (rad/s2) is the carrier frequency rate error at time instant k. 

The measurement is the output of two-quadrant arctangent carrier discriminator, and the 
corresponding measurement model is: 
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Since the navigation solution accuracy is insufficient for carrier phase tracking [14], the carrier 
phase is modified by channel filter directly, as shown in Figure 3. The carrier NCO control information 
is provided as follows: 
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where fIF represents the centre frequency of down-converted intermediate frequency(IF) COMPASS 
signal, Δ j,k represents the carrier Doppler frequency, ,  and ,  are the carrier phases after 
prefilter update, ,  and ,  are the carrier phases before prefilter update,  represents the 
updated state of prefilter, the subscript k represents the current time instant, rem represents remainder 
after division operation, and T is the prefilter update period. 
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In Equation (7), the carrier Doppler frequency is obtained from corrected INS information and 
COMPASS ephemeris as follows: 

3
, , ,, sat usrB

j k j k j k k
ff
c

Δ = −LOS V V  (8) 

where fB3 is the carrier frequency [1,2], c is light velocity, LOSj,k is the unit line-of-sight vector from 
user to satellite j, ,  and  represent the satellite and user velocity in ECEF frame respectively, 
and <,> represents vector dot operation. 

Since the code tracking related parameter has been excluded from the state space of this simplified 
prefilter model, the code tracking is controlled by the carrier tracking process. The code NCO control 
information is provided as: 
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where  is the code frequency [1,2], fsample is the sampling frequency, lcode is the code length [1,2], 
and [A] represents the nearest integer greater than or equal to A. 

Equation (8) shows that the carrier Doppler frequency is obtained from INS information directly 
and Equation (9) shows that code phase is controlled by code frequency and propagated forward 
sequentially. As the code frequency is obtained from carrier frequency Doppler, the feedback from 
traditional prefilter to code NCO computation is omitted as shown in Figure 3 with a dashed arrow.  

Comparing Equations (3) and (5), it can be observed that the code/carrier divergence has been 
excluded from process noises in the simplified prefilter model resulting in degradation in the carrier 
tracking process [11,18]. Therefore, an adaptive Kalman filter was incorporated to compensate for the 
code/carrier divergence. Multi-model-based and innovation-based adaptive estimations are most 
commonly used adaptive Kalman filtering algorithms [19]. Since the simplified prefilter model is 
already determined an innovation-based adaptive estimation was adopted here. In innovation-based 
adaptive estimation, the process and measurement noise covariance matrices are adapted using 
innovation sequences; however, since the code/carrier divergence is a process noise the adaptation 
emphasis is on  in this manuscript. The initial value of  is calculated as follows: 
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where dR2/dt2 is the vehicle’s light of sight acceleration, and h0 and h−2 represent the white component 
and random walk of the oscillator frequency noise [22]. 
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The state correction sequence is used to adapt the process noise covariance matrix  which is 
computed as follows [19]: 
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mΔX  is the state correction sequence which is computed as: 
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While a standard Kalman filter, shown in Equation (13), is used to estimate the states of a traditional 
prefilter model, an adaptive Kalman filter is used for the simplified prefilter model:  
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Associated matrix multiplication operations in above Kalman filter algorithms are implemented  
to compare the computational complexities of both filter models. Table 1 shows the number of 
multiplication operations in detail. 

Table 1. Computational Complexities of Kalman filter implementation. 

Operation 

Simplified prefilter model with 
adaptive Kalman filter 

Traditional prefilter model 
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Measurement dimension l = 1 
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Measurement dimension l = 2 
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In Table 1, N is the window length as used in Equation (11). For example, if N = 5 was considered, 

a 128 451 65.6%
503

+− ≈  reduction in total number of multiplications is achieved. 

3.2. Integrated Navigation Filter  

The COMPASS B3 frequency signal considered in this paper is BPSK modulated as GPS L1 
frequency signal [1,2], the system model of navigation filter is almost in accordance with Equation (2) 
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by just replacing λL1 with λB3 and  with . However, as in [11,23], only the delta pseudorange and 
delta pseudorange residuals are chosen as measurements to the navigation filter. For the jth channel, 
the relationship between measurements and estimated states of pre-filter is as follows: 
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where λB3 is the COMPASS B3 carrier wavelength,  and  are the estimated state of prefilter at 
time instant “k” and “k – 1”.  

The corresponding measurement equation of integrated navigation filter is as follows (only a single 
channel is list): 
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where upre is the unit LOS vector from receiver to satellite in previous filter update period, u is the unit 
LOS vector from receiver to satellite in current filter update period, Δu is the difference of above two 
LOS vectors.  

The variances of measurement noises can be obtained from estimation error covariance matrices of 
pre-filters as follows [11]: 
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where  and  are the estimation error covariance matrix of jth prefilter at time instant “k” and  
“k – 1”. 

With the simplified prefilter model and adaptive Kalman filter, the federated COMPASS/INS 
integration implementation process is shown in Figure 4, where Φ represents the system matrix of jth 
prefilter defined in Equation (5),  represents the measurement noise variance of jth prefilter, 

 represents the measurements of integrated navigation filter at current instant k, and 
 represents the measurement noise covariance of integrated navigation filter at current 

instant k. The flow diagram consists of the following steps: 

(1) COMPASS IF data was sampled through a hardware sampling system, which will be discussed 
in “Test description” in detail.  
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(2) The acquisition process gets the initial code phase and carrier Doppler frequency for different 
visible satellites, which will be used to set the initial values for prefilters.  

(3) Adaptive Kalman filter algorithm is implemented in each prefilter to implement code and 
carrier tracking, and provide measurement information to the integrated navigation filter.  

(4) With measurement information from the prefilters and INS, a classical Kalman filter algorithm 
is implemented for integrated navigation filter, and the corresponding INS correction 
information is fed back to update INS errors.  

(5) Modified INS information and COMPASS ephemeris are used to generate carrier frequency for 
different satellites [21].  

(6) Repeat steps (3) to (5). 

Figure 4. Flow diagram for federated COMPASS/INS integration complementation with 
the simplified prefilter model and adaptive Kalman filter. 

 

4. Test Description  

Federated COMPASS/INS integration with S-AKF and T-KF were implemented in software. Two 
sets of data were used to compare the performance of S-AKF and T-KF. First, data were collected 
using a hardware complex GNSS/INS signal simulator to assess the performance in high dynamic case. 
Second, field data were collected with a COMPASS B3 frequency antenna and an INS to assess the 
tracking performance of the above two methods.  
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The comparison of the performance of S-AKF and T-KF is made in both the tracking domain and 
navigation domain. In tracking domain, Phase Lock Indicator (PLI) and Doppler frequency tracking 
error are used to evaluate the carrier phase tracking ability. In navigation domain, the position and 
velocity errors in Earth Centered Earth Fixed (ECEF) frame were compared.  

4.1. Simulation Test Results  

For the simulation tests, a complex GNSS/INS signal hardware simulator was used to generate the 
COMPASS radio frequency(RF) signal and INS’s accelerometers and gyroscopes data (INS data for 
short). A hardware sampling system was constructed to sample and store the digitized COMPASS IF 
signal and INS data. Data collection process for the simulation case is shown in Figure 5. 

Figure 5. COMPASS IF data and INS data collection process with GNSS/INS hardware simulator. 

 

The data collection system consists of complex GNSS/INS signal hardware simulator, COMPASS 
B3 RF module, FCFR-PCIe9801 data sampling card [24], RCK-I-ET224-MC electronic disk [25] and 
FS725 rubidium clock [26]. The function of each component is as follows: 

(1) GNSS/INS hardware simulator provides synchronized COMPASS B3 frequency RF signal  
and INS data; the vehicle scenario and signal strength can be configured by users for their 
corresponding applications. 

(2) COMPASS B3 RF module is responsible for down-converting B3 RF signal into IF signal and 
providing driving clock for FCFR-PCIe9801 data sampling card. A reference sampling clock 
from Rubidium Oscillator is used for the data sampling card. 
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(3) FCFR-PCIe9801 data sampling card completes the data sampling process of IF signal and 
transfers the sampled data to electronic disk in real time. 

(4) RCK-I-ET224-MC electronic disk is responsible for storing sampled IF data from sampling card. 
(5) FS725 rubidium clock provides reference clock for radio frequency module.  

The ultra-tight COMPASS/INS integration algorithm was implemented in MATLAB, and the 
parameters defined in baseband signal processing part are listed in Table 2. 

Table 2. Parameters defined in software-defined COMPASS Receiver. 

Parameter Values 
Coherent integration time  1 ms 

Prefilter update period  1 ms 
Correlator spacing 0.5 chip 

Adaptive window length (N) 5 
h0 1.82 × 10−21 (s2/Hz)
h−2 1.51 × 10−20 (1/Hz) 

In Table 2, h0 and h−2 are quantitative description of oscillator biases of COMPASS B3 RF module 
and FS725 rubidium clock. With the complex GNSS/INS signal hardware simulator, a reference 
trajectory with known dynamics was generated with 10 mg accelerometer bias errors and 200 deg/h 
gyroscope bias errors. The reference position and velocity in ECEF frame are shown in Figure 6(a), 
where “star” represents the initial position while ‘square’ represents the end. The COMPASS signal 
strength was kept at −130 dBm (C/N0 ≈ 35 dB − Hz). The satellites 01, 02, 03, 04, 07 and 08 were 
visible during the simulation test, and the sky plot of the satellites is shown in Figure 6(b). 

Figure 6. (a) The reference trajectory for simulation; (b) COMPSS satellite sky-plot in simulation test. 
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Figure 6. Cont.  

 

(b) 

4.1.1. Tracking Domain Analysis 

Phase lock indicator (PLI) and Doppler frequency tracking errors were used to evaluate the tracking 
performance. The PLI is calculated as described by [4]:  
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where  is the in-phase prompt correlator output,  is the quadra-phase prompt correlator output, 
and M = 20 is the window length chosen for calculating PLI. 

Simplifying Equation (12) yields: 

( )cos 2j
k

j
kPLI δφ≈  (13) 

where δ  is the carrier phase tracking error of jth prefilter. 
As shown in Equation (13), the value of PLI lies between +1 and −1 and a value of positive one 

indicates perfect phase lock.  
The variations of PLI and Doppler frequency tracking errors for SV04 and SV05 are shown in 

Figure 7(a,b), respectively. From these figures, the PLI values of S-AKF and T-KF are closer to +1, 
which indicated that both S-AKF and T-KF are in a near perfect tracking status in this case. The root 
mean square (RMS) of the tracking Doppler frequency errors are summarized in Table 3 where the  
S-AKF and T-KF showed an almost similar Doppler frequency tracking errors. 
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Figure 7. (a) Tracking performance comparison for SV04; (b) Tracking performance 
comparison for SV05.  

 
(a) 

 
(b) 

Table 3. RMS Doppler frequency errors of tracked SVs with different prefilter models. 

Prefilter model for federated ultra-tight 
COMPASS/INS integration 

RMS Doppler frequency estimation error 
per PRN (Hz) 

SV = 04 SV = 05 
Simplified prefilter model with adaptive Kalman filter 3.773 3.094 
Traditional prefilter model 3.687 2.974 
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4.1.2. Navigation Domain Analysis 

For federated COMPASS/INS integrated navigation system with S-AKF and T-KF, the estimated 
velocity and position errors in ECEF frame were used to compare the navigation performance as 
shown in Figure 8(a,b), respectively.  

Figure 8. (a) Velocity estimation errors of S-AKF and T-KF in ECEF frame; (b) Position 
estimation errors of S-AKF and T-KF in ECEF frame.  

 
(a) 

 
(b) 

The statistics of position and velocity estimation errors are summarized in Table 4 where the  
S-AKF and T-KF showed very closer velocity and position estimation errors. 
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Table 4. Statistics of position and velocity errors in ECEF frame with different prefilter models. 

Prefilter model for federated  
ultra-tight COMPASS/INS integration 

Simplified prefilter model 
with adaptive Kalman filter 

Traditional prefilter model 

X Y Z X Y Z 
Mean Position Error(m) −13.436 −5.886 −30.279 −14.064 −6.036 −30.936
Std Position Error(m) 4.372 3.612 4.973 4.153 3.687 5.378 
Mean Velocity Error(m/s) −0.623 −0.267 −1.501 −0.639 −0.274 −1.406 
Std Velocity Error(m/s) 0.199 0.207 0.237 0.188 0.197 0.244 

4.2. Field Test Results  

A field test was conducted to collect real COMPASS B3 frequency IF data and INS data.  
A COMPASS B3 frequency antenna and an INS were used to replace the complex GNSS/INS signal 
hardware simulator in simulation case. The corresponding data collection process in the field is shown 
in the Figure 9. The INS used in this case had 5 mg accelerometer bias errors and 150 deg/h gyroscope 
bias errors.  

Figure 9. COMPASS IF data and IMU data collection process in field environment. 

 

The antenna was located on the roof of an office building to guarantee a strong COMPASS signal 
(C/N0 ≈ 45 dB − Hz), and the INS was collocated with the antenna. A high precision GPS receiver was 
used to provide the truth reference of the antenna which are −2,207,210.269, 5,171,488.332 and 
3,000,859.525 m in the ECEF frame. The satellites 01, 03, 04, 05, 06, 08, 09 and 10 were visible 
during the field test, and the sky plot of the satellites is shown in Figure 10. 
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Figure 10. COMPASS satellite sky-plot of field test. 

 

4.2.1. Tracking Domain Analysis 

The variations of PLI and Doppler frequency tracking errors for SV01 and SV03 are shown in 
Figure 11(a,b) respectively. From these figures it can be observed that the PLI values of S-AKF and  
T-KF are closer to +1 which indicate that both S-AKF and T-KF were in a near perfect tracking status.  

Figure 11. (a) Tracking performance comparison for SV01; (b) Tracking performance 
comparison for SV03.  
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Figure 11. Cont.  

 
(b) 

The RMS of the tracking Doppler frequency errors are summarized in Table 5. The S-AKF and  
T-KF showed almost similar Doppler frequency tracking errors. 

Table 5. RMS Doppler frequency errors of tracked SVs with different prefilter models. 

Prefilter model for federated ultra-tight 
COMPASS/INS integration 

RMS Doppler frequency estimation error 
per PRN (Hz) 

SV = 01 SV = 03 
Simplified prefilter model with adaptive Kalman filter 0.663 0.744 
Traditional prefilter model 0.613 0.778 

4.2.2. Navigation Domain Analysis 

For the field test case, the estimated velocity and position errors with S-AKF and T-KF in ECEF 
frame are shown in Figure 12(a,b), respectively. The statistics of position and velocity estimation 
errors are summarized in Table 6, where the S-AKF and T-KF showed almost similar velocity and 
position estimation errors. 

Table 6. Statistics of position and velocity errors in ECEF frame with different prefilter models. 

Prefilter model for federated  
ultra-tight COMPASS/INS integration 

Simplified prefilter model 
with adaptive Kalman filter 

Traditional prefilter model 

X Y Z X Y Z 
Mean Position Error(m) −9.231 −4.952 −18.953 −9.543 −5.011 −19.256
Std Position Error(m) 1.591 2.748 3.316 1.697 3.031 3.443 
Mean Velocity Error(m/s) −0.151 −0.069 −0.299 −0.164 −0.074 −0.312 
Std Velocity Error(m/s) 0.030 0.047 0.052 0.028 0.049 0.055 
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Figure 12. (a) Velocity estimation errors of S-AKF and T-KF in ECEF frame; (b) Velocity 
estimation errors of S-AKF and T-KF in ECEF frame.  
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5. Conclusions and Future Work 

This paper investigated a simplified prefilter model for the ultratight COMPASS/INS integrated 
system. When compared to a traditional 5-dimension state prefilter model, the normalized signal 
amplitude and code tracking error were excluded, and only carrier phase, carrier frequency and carrier 
frequency rate tracking errors were included in the state space. However, as the code is not considered 
and there is a possibility of code/carrier divergence resulting in degradation in the carrier tracking 
process, an adaptive Kalman filter has been used to compensate for the divergence. Based on the 
COMPASS B3 frequency signal a federated COMPASS/INS integration system was implemented in 
software. A hardware sampling system was constructed to collect COMPASS IF data and INS data. 
Simulation and field tests showed an almost similar tracking and navigation performances of federated 
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COMPASS/INS integration with traditional prefilter model and the proposed models. However, scalar 
measurement prefilter model with a 3-dimension state, even with an inclusion of an adaptive Kalman 
filter, has been observed to have significant reduction in the calculation load when compared to  
a traditional 5-dimension state and 2-dimension measurement prefilter model.  

As with the GPS case, the ultra-tight COMPASS/INS integration shows an advantage over 
independent COMPASS receivers, particularly in low signal-to-noise and high dynamics environment. 
Only a static field test and a high dynamic simulation test were conducted for this analysis, and the 
future work will focus on further quantifying the benefits of ultra-tight COMPASS/INS integrations. 
The same simulation or field test will be conducted as the COMPASS, which is still a ‘local navigation’ 
satellite system, evolves into a global navigation satellite system in the future. Finally, although the 
COMPASS IF data and INS data collection was implemented in hardware, and the ultra-tight integration 
part was implemented in software, the future work will focus on the hardware implementation for the 
entire system. 
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