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Abstract: In order to detect distributed ground surface deformation, an elastic helical 
structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This 
special sensing cable consists of three parts: a silicone rubber rope in the center;  
a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the 
sensing cable. By analyzing the relationship between the impedance and the structure of 
the sensing cable, the impedance model shows that the sensing cable impedance will 
increase when the cable is stretched. This specific characteristic is verified in the cable 
stretching experiment which is the base of TDR sensing technology. The TDR experiment 
shows that a positive reflected signal is created at the stretching deformation point on the 
sensing cable. The results show that the deformation section length and the stretching 
elongation will both affect the amplitude of the reflected signal. Finally, the deformation 
locating experiments show that the sensing cable can accurately detect the deformation 
point position on the sensing cable. 

Keywords: elastic helical; distributed detection; TDR sensing cable; geological hazard 
monitoring 

 

  

OPEN ACCESS



Sensors 2012, 12 9587 
 

 

1. Introduction 

Surface deformation caused by geological hazards is an important phenomenon in geological hazard 
monitoring, such as landslides. Different kinds of ground deformation sensing technologies have been 
applied for detecting or measuring surface deformation, such as Global Positioning System (GPS) 
technology, Brillouin optical time domain reflectometer (BOTDR) and Differential Interferometric 
Synthetic Aperture Radar (D-InSAR).  

The GPS deformation monitoring system has been an important tool for studying surface 
deformation processes [1–6]. It can provide high-precision (mm level) three-dimensional displacement 
information of the monitoring points and the monitoring points do not have to be visible. Bai et al. 
built a comprehensive monitoring system including GPS InSAR and inclinometer to study the dynamic 
deformation process of the Jiaju landslide in Danba (Sichuan, China). With GPS displacement 
monitoring data, the FLAC3D numerical simulation method was adopted and the stress field, distribution 
of displacement and plastic zone in the dynamic deformation process were simulated. The simulation 
results were consistent with monitoring results. GPS deformation monitoring technology is also used 
in mine area safety monitoring applications. Zhao et al. established a systematical GPS monitoring 
network on the ground surface of the Longshou Opencast Mine in China. After five and half years of 
monitoring, a 3D numerical model was established to reveal the stress environment around the 
excavation and opencast slope rock mass, and the rock mass movement and deformation, stress 
distribution and failure mechanism were discussed. Combined with the monitoring results and field 
investigation, it pointed out that the overall slope stability is relatively good in the current stage. 
However, GPS technology can only measure the displacement of monitoring points with GPS 
observation stations. Rock masses are not rigid bodies. The deformation of different parts of the 
ground surface is different. One monitoring point’s displacement result cannot represent other parts’ 
displacement. In order to monitor ground deformation, the quantity of monitoring points should be 
large enough. In the Jiaju landslide monitoring system, there are 22 monitoring points. In the 
Longshou Opencast Mine, the number is nearly 300. In order to monitor so many deformation points, 
each deformation point has to be measured periodically with a limited amount of GPS equipment. The 
monitoring period can be several months, which limits the real-time performance of GPS deformation 
monitoring system.  

BOTDR is a kind of distributed deformation monitoring technology [7–11]. It sends a light pulse 
into an optical fiber fixed along the observed object. According to the relationship between reflected 
scattered light frequency shift change and optical fiber deformation and time interval between pulsed 
light and reflected scattered light, BOTDR can locate and measure the deformation point along the 
optical fiber from the reflected scattered light. Wang and Shi applied BOTDR technology to slope 
deformation monitoring. However, the optical fiber deformation is very small (generally 15,000 με).  
If the deformation is too large, the optical fiber will break. This situation has happen in several 
monitoring systems, such as the slope surface deformation monitoring system in the Guanjia slope of 
Longli freeway in Zhejiang Province in China, so BOTDR is usually used to measure the deformation 
of buildings, bridges or dams.  

D-InSAR is a wide area surface deformation sensing technology [12–15]. Interferometric Synthetic 
Aperture Radar takes pictures of the observed object from different view angles at different times. 



Sensors 2012, 12 9588 
 

 

After interferometric processing with these images, D-InSAR technology can give a synoptic view of 
the deformation events projected along the sensor-target line of sight on areas of hundreds to thousands 
of square kilometers. The accuracy of D-InSAR can be at cm level or more. Achache et al. studied  
the Saint-Etienne-de-Tinee landslide in the south of France using D-InSAR technology with six 
interferometry pictures obtained from ERS-1 in 1995 and proved the consistency between the accuracy 
of D-InSAR technology and the accuracy of other ground monitoring methods. However, image 
coherence will seriously affect the application of D-InSAR in surface deformation monitoring. 
Especially at areas with a large amount of vegetation or when a large surface deformation happens in  
a short time, the coherence may be too low to obtain surface deformation data. 

After analyzing ground surface deformation characteristics and the present surface deformation 
sensing technologies, we put forward a new distributed surface deformation detection technology based on 
TDR using a special TDR sensing cable. This special TDR sensing cable can overcome BOTDR’s 
intrinsic limit (small deformations). It can detect large distributed deformations in geological hazards. 

2. TDR Distributed Sensing Technology Background 

TDR technology is something like radar (Figure 1). A TDR device sends an exciting electrical 
signal into a TDR sensing cable. The exciting electrical signal can be a short-time pulse or  
a fast-leading-edge step electrical signal. The electrical signal will be reflected back at the position 
where the cable impedance is not continuous. This discontinuity can be caused by the change of the 
environment around the cable or the change of the sensing cable structure. According to the reflected 
signal waveform, the environmental situation along the cable can be measured and located.  

Figure 1. TDR measurement system. 

 
TDR technology has been used in many fields. Using TDR technology, cable fault location 

equipment can point out where telephone cable is broken or short circuited. It helps workers fix 
communication networks. TDR is also used in measuring the water content of soils [16,17]. Water 
content can change soils’ dielectric constant, and there is a relationship between soils’ dielectric 
constant and electrical signal’s propagation velocity. According to this relationship, Topp measured 
soil water content with coaxial transmission line sensing cable. Besides water content, TDR 
technology is also used in underground displacement measurements in landslide monitoring [18–21]. 
The deformation of soil/rock mass induces the cable’s cross-sectional deformation, which then induces 
the TDR response (Figure 2). Lin measured this deformation with coaxial cable [18]. 

However, traditional TDR sensor cable is hard to apply in surface deformation measurements. 
Generally, there are two kinds of TDR sensing cables. One is the coaxial cable; the other is the parallel 
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Figure 22 is the relationship between spike positions located by the oscilloscope from Figure 21 and 
the real deformation positions. It is a linear relationship. If choosing a straight line from the point at  
20 cm to the point at 140 cm to fit the experiment results in Figure 22, the max location error is 1.6 cm. 
Using this method, the deformation points can be located by EHTSC. 

7. Conclusions 

This research describes an elastic helical TDR sensing cable which is suitable for distributed ground 
surface deformation detection. From the research above, we can draw some conclusions as follows: 

(1) There is a relationship between an elastic helical TDR sensing cable’s structure and its 
impedance. This relationship is analyzed based on transmission-line model and shown as 
Equation (7). From Equation (7) we know that the cable impedance increases when the cable is 
stretched. This characteristic is verified by experiments.  

(2) A positive pulse reflected signal will be generated at the deformation point on the sensing cable. 
Because of non-uniformity of the cable structure, it is difficult to obtain the reflected signal 
caused by deformation. To overcome this problem, we use a comparison method to deal with 
the reflected signal wave and get a clear positive pulse reflected signal from the noise.  

(3) The reflected signal amplitude has a relationship with the deformation section length, stretching 
elongation and distance from TDR device. From experiments, we can see that the longer the 
deformation section length, the longer the stretching elongation and a short distance from TDR 
device will give a higher reflected signal amplitude. 

(4) The sensing cable can locate the deformation point accurately. After demarcation, the elastic 
helical TDR sensing cable could effectively locate the position of the deformation point in the 
simulation ground surface deformation experiment. In further application, the sensing cable 
will be fixed on the surface of a landslide. When the landslide happens, the sensing cable will 
be stretched. Through the sensing cable, we can monitor any deformation on the landslide 
along the sensing cable.  
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