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Abstract: This paper proposes a novel method for identifying carriage errors. A general 
mathematical model of a guideway system is developed, based on the multi-body system 
method. Based on the proposed model, most error sources in the guideway system can be 
measured. The flatness of a workpiece measured by the PGI1240 profilometer is represented 
by a wavelet. Cross-correlation analysis performed to identify the error source of the 
carriage. The error model is developed based on experimental results on the low frequency 
components of the signals. With the use of wavelets, the identification precision of test 
signals is very high. 

Keywords: carriage error; multi-body system; error identification; cross-correlation 
analysis; wavelet transform 

 

1. Introduction 

With the rapid advances in the development of electronic and optical devices, machines need to 
meet high precision requirements. Component errors of machine tools are the main factor which affects 
the machinery accuracy. Due to some limitation reasons, some errors cannot be tracked in real-time, 
hence identifying the main errors which affect machinery accuracy is important. 
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A carriage is an oriented-device that can travel in a given trajectory. It is one of the important 
moving parts which can determine the surface roughness, the surface shape and the relative position. It 
has a direct effect on the processing results. In order to improve the accuracy of a machinery tool, 
analyzing and identifing the carriage error(s) is essential. 

The measurement of the carriage straightness error plays an important role in metrology. Various 
methods are adopted in the industrial measurement field [1–5]. Wei Gao [6] used the capacity probe 
and reversal method to measure and compensate the straightness of guideways. Other attempts were 
made to measure motion error sources of NC machines from circular tests. However, in the case of 
long-range measurement, the accuracy is affected by environmental conditions. 

Some researchers have analyzed and identified the motion errors of the machine tool including the 
guideway errors using some direct ways. For example, Kakino et al. [7–9] proposed a step-by-step 
identification method of dominant motion error sources with the aim of extracting major motion error 
patterns from several circular test results. However, since the method requires an insight into motion 
error patterns step by step, it may be of limited use if error sources simultaneously influence the 
motion errors. Recently, correlation analysis has been used in many research fields. Wieleba [10] 
applied correlation analysis to tribological research, evaluating the coefficient of friction and wear rate 
of PTFE composite with steel counterface roughness and hardness. Lockwood et al. [11] used digital 
image correlation (DIC) to provide an accurate and fast method of digitally reconstructing fracture 
surfaces. Ekinci et al. [12] investigated the relationship between the motion errors of the axis’ carriage 
and the guideways’ geometric errors both mathematically and experimentally. The analysis and 
experiments just for the bearings location and stiffness, guideway and static equilibrium, do not 
research the relationship between the geometric error and performance of guideway and flatness of the 
workpiece, and does not identify the guideway errors. 

From the above, the previous work just measured or modeled the single component error of a 
machinery tool. These methods will introduce some errors. The analytical results are different from the 
actual values. Some researchers have analyzed and identified the motion errors of machine tools from 
several measured results, but they cannot identify the dominant error from the flatness of workpieces.  

Multi-body theory is a theory developed several decades ago and used for analyzing complex 
mechanical systems with movement errors [13]. It can be generalized and used to describe complex 
mechanical systems. Also, both various factors affecting the systems and the mutual coupling 
relationship can be fully considered. During the early design stages, the kinematic behavior of  
machine tools can be simulated using multi-body simulation (MBS) tools and a rough estimation [14] 
can be obtained using rigid bodies. The simulation enables design engineers to make a preliminary and 
quick prediction of the kinematic behaviors so as to estimate the effects of the variations of the 
parameters in the model. The rigid coupled multi-body simulation tool can be used to simulate the 
kinematic behaviors of machine tools while the control loops of the drives are considered [15–17]. 
Since a machine tool is composed of various parts and it is a multi-body system, multi-body theory can 
be applied to study its behaviors.  

This paper proposes a model for identifying carriage errors of a multi-body system, computes the 
cross-correlation between the carriage errors and the machining accuracy of a workpiece, as well 
analyzes and identifies the error sources of the carriage. Straightness and squareness of the carriage  
are measured and calculated. From the fitting equations, if the errors are given, then a cylindical 
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workpiece is machined and the flatness is measured. Hence, the dominant error sources of the carriage 
can be deduced by performing the cross-correlation analysis on both the simulation results obtained 
from the model and the actual data obtained from measuring the flatness of the workpiece. The  
cross-correlation results show that the impact factor of each error of the carriage on the flatness of  
the workpiece and the main impact factor of the error from the carriage can be identified. 

2. Analysis Theory  

2.1. Multi-Body System and Translated Matrix  

In this session, the multi-body theory is used to model the errors of the carriage. In the multi-body 
system, topology and low-order array are used for describing the relationship of the physical body. 
Topology is a major area in mathematics. It is a subject that studies the preservative properties of 
continuous deformations of the objects, such as the deformations due to stretching without tearing or 
gluing. This subject has overlapped with geometry and set theory, such as space, dimension and 
transformation. It is used to describe a family of sets that have certain properties and are used to define 
a topological space which is a basic object of topology. Figure 1(a) shows the structure of a machinery 
tool in the laboratory. It includes X and Z axes which are supported by a bridge. The topology of a 
machinery tool is obtained from its structure. As shown in Figure 1(b), body 0 includes a bed, a spindle 
and a workpiece. Body 1 is the X carriage. Body 2 includes the Z carriage and a tool. The low-order 
array is calculated as follows: 
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where L is the operator of the lower-order and S is n lower-order of body j when L(j) = S, S is the 
adjacent lower body of the body j, and j is the adjacent higher-order body of body S. In the  
multi-system, the body which is connected to the ground is fixed. It is called the inertia body. The 
coordinate of each body is the sub-coordinate in the coordinate system of the inertia body.  

The total error motion of the ith and jth body is a combination of the rotational and translational 
errors. For the motion of the body i, it rotates anticlockwise by the angle αij about the X axis first. Then, 
it rotates anticlockwise by the angle βij about the Y axis. Finally, it rotates anticlockwise by the angle γij 
about the Z axis. At the same time, it translates xij along the X axis first. Then, it translates yij along  
the Y axis. Finally, it translates zij along the Z axis. The actual position of the body j with respect  
to the reference frame can be obtained by multiplying the coordinate transformation matrix. The 
transformation matrix of the body i with respect to its adjacent body j is given below:  

1 0 0 0 cos 0 sin 0
0 cos sin 0 0 1 0 0
0 sin cos 0 sin 0 cos 0
0 0 0 1 0 0 0 1

cos sin 0 0 1 0 0
sin cos 0 0 0 1 0

       
0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

ij ij

ij ij
ij

ij ij ij ij

ij ij ij

ij ij ij

ij

T

x
y
z

β β
α α
α α β β

γ γ
γ γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
(2) 



Sensors 2012, 12 9554 
 

 

where αij, βij, γij are the Eulerian angles of axis X, Y and Z; xij, yij, zij are the linearity displacement in 
axis x, y and z; subscript i and j is the body number. The transformation matrix between two random 
body i and k is:  

1

1

( ) ( )
( )

n n
n

n

ik L k L k
L k i

T T −

=

=

= ∏  (3) 

Figure 1. The researched machine tool. (a) The structure; (b) The topology.  

 

2.2. Components Error of the Machinery Tool  

A rigid solid body has six degree of freedom [18], three translational errors and three rotational 
errors (roll, pitch, and yaw) for determining its location. When the slide moves along any axis, five 
degrees of freedom are limited in the space. In this paper, the errors of two carriages of the machinery 
tool shown in Figure 1(a) are modeled based on the homogeneous coordinate transformation. The 
description of the carriages errors is shown in Figure 1(b). Since the effect of the carriages errors on 
the machining results has been just considered as well as the spindle and the workpiece are shown 
together with the bed, they are fixed with the ground. The Z carriage and the tool are shown together. 
That is, the total error includes the Z carriage error. The tool’s coordinate is an ideal condition, but it’s 
error is ignored. Here, the corresponding errors of the X carriage are shown with the subscript 1, and 
the Z carriage ones are expressed with the subscript 2. The positional errors ∆y1, ∆z1, ∆x2 and ∆y2 are 
the translational errors. ∆α1 and ∆γ2 are the roll errors of the carriage, ∆β1 and ∆β2 are the pitch errors. 
∆γ1 and ∆α2 are the yaw errors. Assume that the coordinates of the tool at P (px, py, pz):  
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The deviation between the actual coordinate PA and the ideal coordinate P is the volumetric error. 
That is, the machinery error under the effect of the carriages is: 
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2.3. Cross-Correlation Analysis  

The cross-correlation techniques have been widely used in engineering and science, particularly in 
the fields of measurement and communication [19]. The power of the techniques lies in their ability to 
eliminate the independent noise and the disturbances naturally occurring in the systems. In this paper, a 
correlation technique has been demonstrated to constitute a powerful tool for identifying the main 
impact errors of the carriage system on machinery accuracy. In the signal processing community, the 
cross-correlation refers to a time-lag function used to measure the similarity of two waveforms. To 
characterize a correlation between two random variables x and y, where their realizations are denoted as  
x = {x1,….,xn} and y = {y1,….,yn}, respectively, the correlation coefficient is used to measure the 
similarity between these two random variables [20]: 
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2.4. Daubechies Wavelet  

Daubechies wavelets can describe the details of signals because of their compact support and 
orthogonality properties. Another advantage of using compact support wavelets is they have fewer 
degree of freedoms than the others. Daubechies wavelets have enormous potential for the analysis of 
problems with local high gradients. For constructing Daubechies, the properties of Daubechies 
wavelets are presented below. A more detailed description can be found in [21]. Like other wavelets, 
both the scaling function φ(x) and the wavelet function ψ(x) of the Daubechies wavelets satisfy the 
following two-scaling relation: 
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Define pi(i = 0,1,…,N-1) as the so-called filter coefficients, the scaling function φN (where N is an 
even integer) has a support in [0, N-1], while the corresponding wavelet ψN has a support in [1-N/2, N/2] 
with N/2-1 vanishing wavelet moments [22]. Different choices of φ(x) and ψ(x) may have different 
multi-resolution properties. The scaling functions have compact support.  

3. Impact of the Carriage Errors on the Flatness of the Workpiece 

According to Equation (5), the machinery error caused by the X carriage in the Z direction can be 
expressed as: 

1 2 1 2 1 2( ) ( )x yEz p p z zβ β α α= − Δ + Δ + Δ + Δ + Δ + Δ  (9) 

where ∆β1 and ∆β2 are the pitch error and the squareness error of the carriages, ∆z1 is the straightness 
of the X carriage, ∆z2 is the positional error of the Z carriage and is ignored here, px is the displacement 
of the tool of the machine tool, py = 0 for two-axis machine tool. 
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3.1. Straightness of the Carriage 

If the X carriage has a straightness error ∆z1(x) in the vertical plane, then it will be reflected in the 
tool path. As shown in Figure 2, the cross carriage is expressed with subscript 1, and Z carriage is 
expressed with subscript 2, ∆α1, ∆γ2 are roll errors of carriage, ∆β1, ∆β2 are the pitch errors, ∆γ1, ∆α2 is 
the yaw errors, the guideway is for turning machine tool. In this research, we turn a cylindrical flat. 
Since the tool fixed on the z guideway moving in the X direction, the main error due to the pitch error. 
∆β2(z) is inducted by the variation of the x coordinate in the Z direction, the yaw error ∆α2(x) is not 
affect by the flatness of the machinery flat workpiece. The calculated value is ignored. The pitch error 
∆β2(z) is obtained by straightness ∆x2(z) of the Z carriage. They are expressed by in a polynomial form 
as follows: 

The straightness of the X carriage in the vertical plane: 
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The induced yaw error: 
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The pitch error: 
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Pitch error ∆β2(z) is: 
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The machinery errors caused by the straightness:  
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Figure 2. The processing error caused by the straightness error of carriage. 
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3.2. Squareness of the Carriage  

The major causes for squareness errors are as follows: 

(1) In multi-axis machine tools, the carriages are located on the same structure. There is an angular 
error between the carriages and the structure of the machine tool. In Figure 2, the X-axis and 
the Z-axis are located on the gantry. They will generate squareness errors when they are not 
perpendicular to each other. 

(2) When the two axes are not perpendicular due to the upright column tilts forwards or backwards, 
or due to the right or left when the column base is not horizontal, the two-axis machine of a 
reference coordinate system will fix the machinery frame to each body in the kinematic chain. 
Based on the reference Cartesian coordinate systems, the Y-reference axes coincide with the 
actual Y machinery axis. Thus, the actual Y axis has no angular error or squareness error 
component. The actual X axis has only one angular or squareness error ∆βxz on the ZX plane. 
The machinery error caused by squareness is:  

q xz xEz pβ= −Δ  (15) 

Therefore, the machinery error caused by the straightness and the squareness of the carriage 
according to Equation (5) is: 

1 1
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k k k
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= = =
= − ⋅ ⋅ + ⋅ ⋅ + Δ +∑ ∑ ∑  (16) 

4. Identification for the Carriage Errors 

4.1. Simulation for the Carriage Errors 

The structure of a machine tool is shown in Figure 1(a). It is a vertical lathe, and it has one  
cross-slide and one vertical slide. The cross slide belongs to the aerostatic slide type. The tool is set up 
in the Z (vertical) carriage. The workpiece is supported by the spindle system. Figure 3 shows the 
experimental setup for the measurement of the straightness of the cross carriage. The photoelectric 
autocollimator TA80 is mounted on the cross guideway. The measurement range of the device is  
±600 arc-s, and the resolution and accuracy are 0.01 arc-s and 0.5 arc-s, respectively. A mirror is 
mounted on the cross slide. The measurement data is collected with 10 mm intervals. The measured 
result is 0.3 µm/600 mm. The best polynomial fitting equation of these test data according to  
Equations (9–16) is:  

16 5 13 4 10 3 8 2

7 4

2.3 10 3.4 10 1.558 10 2.29 10

 5.19 10 2.41 10

Ez x x x x

x

− − − −

− −

= − × + × − × + ×

− × + ×
 (17) 

The results obtained by measuring the data and fitting the curve are shown in Figure 4. The abscissa 
shows the test range from 0 to 600 mm. The vertical coordinate is the value of the straightness with the 
unit being mm. It shows that the maximum measured straightness error is 2.5 × 10−4 mm, the 
maximum measured straightness error is 2.48 × 10−4 mm and the fitting error is about 0.065 µm. It is 
approximately at the point of 360 mm test range. Here, the measured straightness is 2 × 10−5 mm, and 
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the value of the fitting curve is −4.5 × 10−5 mm. The actual tool displacement is from 0 to 10 mm in 
the X direction as shown in the blue curve of the small figure region in Figure 4. 
 

Figure 3. Experimental setup for measurement straightness of cross guideway. 

 

Figure 4. Measurement and fitting curve of straightness. 

 

To verify the effect of the errors of the carriage on the out-of-flatness of the workpiece, an aluminum 
workpiece with a diameter of 20 mm has been machined by the two-axis lathe. The workpiece is a 
cylindrical flat, and it is supported by the rotating spindle of the machine tool. The tool is fixed on  
the Z carriage. The displacement in the horizontal direction is controlled by the cross-slider.  
The Z-directional depth-of-cut of the cutting tool is kept constant, so that a flat surface could be 
generated. The rotating speed of the spindle is 110 rpm and the cutting depth is 15 µm.  

Figure 5 shows the measured out-of-flatness of the machined surface with a profiler, with different 
feed rates: 2 mm/min and 8 mm/min. It shows that the out-of-flatness error is approximately 2 µm. It 
can also be observed that the out-of-flatness profile has a main component. The p-v is 2 µm. In 
addition, there is a lot of waviness. The vibration amplitude with the feed rate 8 mm/min is larger than 
that with feed rate 2 mm/min. The straightness and the squareness errors of the cross carriage are 
included in the out-of-flatness profile. There is a relationship among the straightness of the carriage, 
the feed rate and the spindle rotation speed when both the feed rate and the spindle speed are high. The 
straightness will be increased. For the squareness error, it is different. It is dependent on the structure 
of the machine tool. Thus, the errors of the carriage that caused the out-of-flatness have been obtained. 
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Also, the dominant errors of the carriage and the impact on the flatness of the workpiece are identified. 
The method can also be applied to the error identification of other machine tool components. 
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