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Abstract: Bearing defects are one of the most important mechanical sources for vibration 
and noise generation in machine tool spindles. In this study, an integrated finite element 
(FE) model is proposed to predict the vibration responses of a spindle bearing system with 
localized bearing defects and then the sensor placement for better detection of bearing 
faults is optimized. A nonlinear bearing model is developed based on Jones’ bearing 
theory, while the drawbar, shaft and housing are modeled as Timoshenko’s beam. The 
bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling 
equations of motion. The Newmark time integration method is used to solve the vibration 
responses numerically. The FE model of the spindle-bearing system was verified by 
conducting dynamic tests. Then, the localized bearing defects were modeled and vibration 
responses generated by the outer ring defect were simulated as an illustration. The 
optimization scheme of the sensor placement was carried out on the test spindle. The 
results proved that, the optimal sensor placement depends on the vibration modes under 
different boundary conditions and the transfer path between the excitation and the response. 

Keywords: bearing defects; vibration simulation; finite element model; sensor placement 
optimization; spindle 
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1. Introduction 

Due to the increasing demands from aerospace, automotive, die/mold and other industries, machine 
tools with higher speed, precision and reliability are required urgently. In a machine tool, the spindle 
directly affects the cutting ability of the whole machine tool, since it either carries cutting tools as in 
milling operations, or work-pieces as in turning. In general, there are four types of spindle depending 
on the type of drives used: belt drive, gear drive, direct drive and integrated (built-in) drive [1]. The 
belt-driven spindles and gear-driven spindles are widely used in conventional machining, while the 
direct drive spindles and integrated spindles can run at higher rotation speeds, from 15,000 rpm. 
Recently, Abele et al. [2] have provided a detailed review on the historical development, recent 
challenges and future trends of machine tool spindles. Mechanical design of spindles, modeling the 
thermal and dynamical behavior of spindle units, sensor and actuator integration, were addressed in 
detail. In the application, the condition monitoring and fault diagnosis are very important to maintain 
the performance of spindles. Unexpected failure of spindles can lead to severe part damage and costly 
machine downtime, affecting the overall production logistics and productivity [3]. 

Bearings play an important role in machine tool spindle systems. Compared with hydrostatic, 
aerostatic or magnetic bearings [4], rolling element bearings are still most commonly used today in the 
spindles, which can provide the required precision, load carrying capacity, and spindle speeds. The 
bearings are usually extremely reliable, but failure can still occur by improper operation, overloading 
and thermal seizure. The early stage of bearing damage is often characterized by a sizeable local defect 
(pits or spalls) on inner raceway, outer raceway or rolling balls. When this occurs, subsequent rolling 
over of the damage will produce repetitive shocks or short-duration impulses. Extensive work has been 
carried out on the detection and diagnosis of bearing faults over the past several decades, as reviewed 
in several papers [5–7]. There is considerable interest in diagnostics and prognostics of rolling element 
bearings based on vibration analysis and signal processing [8]. Many powerful diagnostic methods 
have been developed to detect bearing failures based on advanced signal processing techniques such as 
envelope analysis [9,10], wavelets [11–13], empirical mode decomposition (EMD) [14–16], spectral 
kurtosis [17–20], and information entropy [21,22]. 

Most studies have focused on feature extraction of the faulty bearing from vibration signals, 
however, just a few of works attempted to model bearing faults mathematically so that the vibration 
signals generated by the defects can be simulated and explained theoretically. McFadden and  
Smith [23] gave a pioneering model to simulate the vibration signals produced by localized defects of 
rolling ball bearings. The successive impacts generated by a defect during rotation were modeled as a 
periodic impulse series. Based on this work, Wang and Kootsookos [24] proposed a general model for 
faulty bearing signals, which contained effects caused by non-uniform load distribution, machinery 
induced vibration and measurement noise. In another aspect, Ho and Randall [25] improved McFadden 
and Smith’s model by incorporating slight random variations in the spaces of the excitation pulses. 
They pointed out that the random fluctuation causes the harmonic frequency components to smear 
laterally and this viewpoint gave a good explanation of the vibration spectra observed in reality. The 
bearing fault signals were generated as a series of impulse responses of a single degree of freedom 
(DOF) system. Similarly, Brie [26] also concerned the non-strict periodicity of the impacts induced by 
the defect and a concept called quasi-periodic impulse train was proposed for the impact signals. The 
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bearing is modeled as a mass-spring-damper system with time-varying parameters. Later, Antoni and 
Randall [27] found out that vibration signals generated by localized faults were not exactly  
quasi-periodic since the random slippages are non-stationary and consequently developed a stochastic 
model to describe the vibration signals generated by localized defects. They treated the repetitive 
impacts as a non-stationary process for the first time. The vibration signals were viewed as the 
response of a linear system which is time-varying and accommodate some degrees of stochasticity. 
Choudhury and Tandon [28] modeled the rotor-bearing system as a 3-DOF system, and the vibration 
response due to a localized defect under radial load conditions were predicted with the model. 

In the above research, rolling element bearings are modeled linearly and usually simplified as single 
DOF systems. However, due to the nonlinear Hertzian force/deformation relationship, the varying 
compliance vibration effect, and lubricant film effect, rolling ball bearings show high non-linearity and 
time-varying characteristics during operation, so a linear model is not adequate to express the dynamic 
behavior of bearings. Recently, Sopanen and Mikkola [29,30] developed a dynamic nonlinear model of 
deep groove ball bearings, which included the effects of non-linear Hertzian contact deformation and 
elastohydrodynamic fluid film. Distributed defects and localized defects were both taken into 
consideration. Sawalhi and Randall [31,32] presented an integrated simulation model for a gearbox test 
rig through the incorporation of a time-varying, non-linear stiffness bearing model into a developed 
gear model. The incorporated bearing model has the capacity to simulate both localized spalls (inner 
race, outer race and rolling balls) and extended inner and outer race faults (rough surfaces). Similarly, 
Rafsanjani et al. [33] proposed an analytical model to study the nonlinear dynamic behavior of rolling 
ball bearing systems including surface defects. Mathematical expressions were derived for local 
defects of inner race, outer race and rolling balls. Sawalhi and Randall [8] simulated the acceleration 
time signal responses resulting from a rolling element entry into and exit from a typical spall, which 
has the potential to enable quantification of the fault size. 

Bearings in rotating machines are mechanically coupled to supporting structures, and thus  
defect-induced transient signals are often masked by interfering signals or background noise [34]. 
When bearing defects occur, the generated impacts can cause system vibration at many frequencies 
from different structures. The measured vibration responses to the localized defects are affected by the 
transmitting media between defects and sensors. However, most existing fault models don’t contain the 
effects induced by other components other than bearings.  

In the machine tool spindle system, bearings work as a subsystem. Accurately predicting the 
vibration signals of the spindle with bearing defects remains a challenging task because of its 
complicated nonlinear behavior. In this paper, the machine tool spindle system is focused on and an 
integrated finite element (FE) model for a spindle-bearing system is proposed. The nonlinear bearing 
model is developed based on Jones’ bearing theory [35], while the drawbar, shaft and housing  
are modeled as Timoshenko’s beam. The bearing model is integrated into the FE model of 
drawbar/shaft/housing by assembling equations of motion. In this way, bearings are coupled with other 
spindle components. The dynamic model is validated on a test spindle and then used to simulate the 
vibration signals generated by localized defects of the bearing outer ring. Considering the influences of 
the transmitting media between defects and sensors, the dynamic responses at different positions are 
compared to obtain an optimal sensor placement strategy. 
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The rest of the paper is organized as follows: in Section 2, a dynamic model of a spindle-bearing 
system is given with experimental validation. Localized bearing faults modeling is presented in 
Section 3, followed by the optimization of sensor positions in Section 4. The conclusions are given in 
Section 5. 

2. Dynamic Model of a Spindle-Bearing System  

The machine tool spindle system usually consists of drawbar, shaft, housing, bearings and other 
accessories. A typical test spindle is shown in Figure 1, which has five angular contact ball bearings in 
an O-type configuration. This spindle was used in [36–38] to demonstrate the FE modeling process  
as well. 

Figure 1. The test spindle. 

 

The spindle drawbar/shaft/housing and the angular contact ball bearing are modeled separately. The 
drawbar, shaft, and housing are modeled as Timoshenko’s beam, while the nonlinear bearing model is 
developed based on Jones’ bearing theory which considers the centrifugal force and gyroscopic effects 
from rolling balls. The bearing model is integrated into the FE model of shaft/housing by assembling 
equations of motion. The pulley, clamping unit and other accessories are modeled using rigid disk 
elements. The spacers between bearings are modeled using bar elements. This FE modeling process 
can be extended to high-speed spindles of integrated structure, in which the motor is modeled using 
rigid disk elements. With the FE model of the spindle, the Newmark integration method is used to 
obtain the vibration responses numerically. 

2.1. Drawbar/Shaft/Housing Modeling  

The Timoshenko beam element (as shown in Figure 2) is used to model the drawbar, shaft and 
housing. The motion of each node q is described by three translational (δx, δy, δz) and two rotational  
(γy, γz) degrees of freedom:  
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 (1) 

where the torsional motion is not included.  
The equation of motion for the drawbar/shaft in matrix form is expressed by including the 

centrifugal force and gyroscopic effects as: 

 (2) 

where Kb and Mb are the stiffness and mass matrices of beam elements, Gb is the skew-symmetric 
gyroscopic matrix of the rotating shaft, MC is the mass matrix for the centrifugal force effect on the 
shaft, Ω is the rotating speed, and Fb is the external force vector. The subscript b represents the beam. 
For the housing, Equation (2) is still applicable. The rotating speed Ω is set to zero as the housing  
is stationary. 

Figure 2. Timoshenko beam element. 

 

In the spindle system, disk and other accessories (e.g., clamping units, nuts) are commonly used, 
and they are modeled using rigid disk elements. The equation of motion is given as: 

 (3) 

where Md is the mass matrix of disk elements, Gd is the gyroscopic matrix and Fd is the external  
force vector. 

2.2. Nonlinear Bearing Model  

The geometric drawing of an angular contact ball bearing is shown in Figure 3. The radii of the 
inner and outer ring grooves are: 

, (4) 

where fi and fo are curvature ratios of the inner ring and the outer ring, D is the diameter of the bearing 
ball. The angular position of the kth ball is:  

. (5) 

{ }, , , ,
T

x y z y zδ δ δ γ γ=q

( )2
b b b C b− Ω + − Ω =M x G x K M x F

Y

γy2

δy2

Xδx2

Z δz2

γz2

Y

γy1

δy1

Xδx1

Z δz1

γz1

Ω
Node2Node1

d d d− Ω =M x G x F

,i i o or f D r f D= ⋅ = ⋅

( )0 2π 1 / , 1, 2,...,k k N k Nϕ ϕ= + − =



Sensors 2012, 12 8737 
 

 

Similar to the shaft/housing, the bearing is modeled with ‘bearing element’. Each ‘bearing element’ 
consists of two nodes—the inner ring node and the outer ring node. The motion vectors of bearing 
nodes are expressed by qi (the inner ring node) and qo (the inner ring node), respectively: 

, . (6) 

Under the working condition, the bearing rotates at high speed with applied axial loads and/or radial 
loads and the relative positions between the inner ring, ball and outer ring change consequently. Based 
on Jones’ bearing model, the geometry relations of the bearings in the X-Y plane are shown in  
Figure 4. 

Figure 3. Geometry of an angular contact ball bearing. 

 

Figure 4. Positions of ball center and raceway groove curvature centers. 
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From Figure 4, the following geometric equations can be obtained using the Pythagorean Theorem: 

 (7) 

where sin ∆ , cos ∆  , δik is the ball-inner raceway contact deformation, and 
δok is the ball-outer raceway contact deformation. 

Considering the plane passing through the bearing axis and the center of a ball located at azimuth φk (see Figure 3), the load diagram without consideration of noncoplanar friction forces is obtained, as 
shown in Figure 5. 

Figure 5. The force acting on the ball at angular position φk. 

 
θik—inner ring contact angle; θok—outer ring contact angle; Qik—inner ring contact force;  

Qok—outer ring contact force; Fck—centrifugal force; Mgk—gyroscopic moment. 

From Figure 5, the equilibrium of forces in the horizontal and vertical direction are given as: 

, (8) 

Combining Equation (7) and Equation (8), the following equations are obtained: 

 (9) 

where ε1, ε2, ε3 and ε4 are error variables. The Newton-Raphson iteration method is used to solve the 
Equation (9) and the values of Xbk, Ybk, δik, δok can be found. Then the contact loads are calculated by 
Hertzian theory for spherical contact as: 
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,  (10) 

where Ki and Ko are the load-deflection coefficients. 
The forces , , , , T

applied on the inner ring of the bearing are given as: 

.  (11) 

Similarly, the forces  , , , , T
 applied on the outer ring of the bearing  

can be obtained. The bearing stiffness matrix is obtained by calculating the derivative of the  
force , , , , T

 acting on the bearing rings with respect to the displacement  , , , , T of bearing rings, namely: 

 (12) 

The bearing stiffness matrix KB has the form: 

 (13) 

where kxx is the axial stiffness, kyy and kzz are the radial stiffness, kθxθx and kθyθy are the angular stiffness, 
and other terms are coupled stiffness. 

2.3. Finite Element Model of the Spindle-Bearing System  

The finite element model of the spindle-bearing system is shown in Figure 6. The black dots 
represent nodes, where each node has three translational and two rotational degrees of freedom. The 
connections between the drawbar and shaft are modeled by spring elements. The displacement 
relations among the spindle shaft, bearings, and the housing correspond to the configuration and 
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the second bearing (A2), and the inner ring of the fifth bearing (B5) are fixed to the corresponding 
nodes of the shaft or housing. Other rings of the five bearings are sliding in axial direction.  

Figure 6. The finite element model of the spindle-bearing system. 

 

By assembling the equations of the drawbar/shaft/housing and bearings, the following general 
nonlinear dynamic equation for the spindle-bearing system is obtained: 

 (14) 

where M = Mb, C = Cs − ΩGb, K = Kb + KB − Ω2MC are the mass, damping and stiffness matrices. Cs is 
the structural damping matrix constructed from modal damping ratios identified experimentally. The 
bearing stiffness matrix KB depends on the displacement , among other factors. In turn, the 
displacement is affected by the system stiffness and the external force F. Therefore, the dependency of 
bearing stiffness matrix on displacement is the root cause of the nonlinearity in the spindle system. The 
details of the matrices (M, C, K) can be referred in [40]. 

If the external load is time-varying, then the system responses are time-varying as well and the 
equation of motion at time t + Δt is given as: 

. (15) 

Assuming that the displacement, velocity, and acceleration vectors at time t (t 0) are known, the 
time history responses of the spindle system (i.e., displacement t+Δt, velocity t+Δt and acceleration 

t+Δt) at time t + Δt can be evaluated numerically using the Newmark time integration method. 

2.4. Model Validation  

The test spindle was hung using elastic strings as a free-free system. The impact forces were applied 
by a hammer on the spindle nose in the radial direction and the vibration responses at the opposite part 
of the nose were recorded by an accelerometer, as shown in Figure 7. The frequency response function 
(FRF) were measured by CutPro-MalTF® Fourier Analyzer. 

In the simulation, some parameters must be identified. These parameters include joint stiffness 
between the drawbar and the shaft, and the system damping ratios. It is possible to obtain a good match 
between the simulation and the measurement by tuning these parameters. The joint stiffness was found 
to be 2 × 108 N/m in the radial direction. The modal damping ratios were borrowed from experimental 
data and used in the FE simulations. From the simulated FRFs, the first mode (  = 965 Hz) and 
fourth mode (  = 2,722 Hz) have been found to be the most dominant. Corresponding to these two 
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main modes, experimental model damping ratios of 1.6% (  = 955 Hz) and 2.9% (  = 2,745 Hz) 
were used in the simulation. Damping ratios of other modes were set as 3%.  

Figure 7. The hammer test of the spindle. (a) The test spindle under free-free condition. 
(b) The measured position. 

 

The simulated and experimentally measured FRFs at the spindle nose are shown in Figure 8. On the 
whole, the simulated and experimental FRFs are in reasonable agreement, which indicates the validity 
of the spindle-bearing model. 

Figure 8. Simulated and experimentally measured FRFs at the spindle nose in the  
free-free condition. 

 

The time-history response of the acceleration  due to the impact force is investigated as well. In 
the simulation, the measured impact force shown in Figure 9 was input to the spindle-bearing model. 
This is a typical impulse force whose duration is about 0.24 ms. 
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Figure 9. The measured impact force at the spindle nose. 

 

The acceleration time responses and their spectra at the front side and the rear side of the spindle 
housing are predicted in Figure 10(a,b). The phases of the two acceleration time responses are 
converse (Figure 10(a)). From Figure 10(b), it can be seen that there are two distinct peaks in the 
frequency range of 0–5,000 Hz, which are corresponding to the two dominant modes of the spindle, 
i.e., the first mode (  = 965 Hz) and the fourth mode (  = 2,722 Hz). Therefore, the predicted 
acceleration time responses at both the front side and the rear side of the spindle housing are 
acceptable. The FE model of the test spindle is capable of predicting the acceleration time responses 
due to the excitation.  

Figure 10. The acceleration time responses and spectra at the front and the rear side of the 
spindle housing: (a) the acceleration time responses, (b) the spectra. 

 

If bearing defects occur in the spindle system, the defect in one surface of a bearing strikes another 
surface and then an impact force is generated, which may excite resonances in the spindle-bearing 
system. With the input excitation from an appropriate bearing fault model, the simulation of vibration 
response caused by the bearing defects is feasible. 
  

0 1 2 3
0

500

1000

1500

Time (ms)

Fo
rc

e 
(N

)

0 2 4 6 8 10

-100

0

100

Time (ms)

A
m

pl
itu

de
 (m

.s
-2

)

 

 

0 1000 2000 3000 4000 5000
0

0.5

1

Frequency (Hz)

A
m

pl
itu

de
 (m

.s
-2

)

 

 

Front side
Rear side

Front side
Rear side

965Hz

2722Hz

(a) 

(b) 



Sensors 2012, 12 8743 
 

 

3. Localized Bearing Defects Modeling and Vibration Simulation 

Vibration signals measured on a spindle contain rich physical information about the operating 
conditions. When local defects (e.g., cracks, pits, spalls) exist in one of the bearing components, 
transient impact forces occur whenever such a defect on one surface strikes its mating surface. The 
impact forces will excite the vibration responses at the natural frequencies of bearing parts and housing 
structure. During the rotating process, a series of approximately equally spaced force impulses are 
produced. The repetition rate of the force impulses is equal to the characteristic frequencies of the 
bearing, i.e., ball passing frequency for the outer raceway, ball passing frequency for the inner 
raceway, and twice the ball spin frequency [41].  

Similar to the impact force generated by a hammer test, the shape of the force impulse is modeled 
as a triangular form, as shown in Figure 11. In practice, the pulse form may not be of such a regular 
shape. The duration time ΔT can be determined by dividing the defect width (L) by the relative 
velocity (vr) between the mating elements, i.e., ΔT = L/vr. The magnitude A of the impulse is affected 
by both the contact load and the angular velocity at the defective surface, which can also be modulated 
due to relative motion of the load zone. The accurate calculation of the magnitude A is beyond the 
scope of this paper, which will be addressed in the future work. 

Figure 11. The force impulse form. 

 

To explain the localized bearing faults modeling process, the outer ring defect of the first bearing 
(HYKH61914) in the spindle is modeled as an example. The bearing parameters are listed in Table 1. 
With the expressions given in [41], the outer race defect frequency is calculated as 298 Hz when the 
rotating speed of the spindle is 1,200 rev/min. 

Table 1. Parameters of the fault bearing. 

Type Pitch diameter (mm) Ball diameter (mm) Ball numbers Contact angle (°) 
HYKH61914 85 6.35 32 25 

The load is applied in the radial direction and there is a pit on the surface of the outer ring, as shown 
in Figure 12. When the rolling balls pass through the pit, the force impulses are generated. The size of 
the pit is assumed very small and just one rolling ball passes through the defective region at a  
certain time. 
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Figure 12. The localized defect on the outer ring. 

 

The successive force impulses generated by the localized defect on the outer ring is shown in  
Figure 13. The time interval between two adjacent impulses is determined by the ball passing 
frequency for the outer raceway. In reality, there is a slight random fluctuation in the spacing between 
each force impulse because the load angle on each rolling element changes as the rolling elements 
enter and leave the load zone [25]. 

Figure 13. The successive force impulses. 

 

The impulse responses due to the outer ring defect are displayed in Figure 14. For each force 
impulse, a decay response is generated. 

Figure 14. The impulse responses of the outer ring defect. 

 

The characteristic frequencies of the outer ring defect are shown in Figure 15. The high harmonics 
of the defect frequency in the range of 4,000–8,000 Hz are quite clear (Figure 15(a)). The envelope 
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spectrum (Figure 15(b)) is obtained by using the Hilbert transform technique. The defect frequency of 
the outer ring (298 Hz) and its harmonics are extracted clearly. 

Figure 15. The characteristic frequencies of the outer ring defect. (a) The spectrum.  
(b) The envelop spectrum. 

 
 

 

For the spindle-bearing system, out-of-balance contributions at the shaft rotational frequency fr, is 
always evident as various sources (e.g., shaft mis-alignment) contribute to unbalanced rotation of the 
shaft. To include the out-of-balance effect, the vibration responses induced by force impulses are 
modulated in amplitude, as shown in Figure 16. 

Figure 16. The amplitude modulated impulse responses of the outer ring defect. 

 

The characteristic frequencies of the outer ring defect with the out-of-balance effect are shown in 
Figure 17. Besides the defect frequency of the outer ring at 298 Hz and its harmonics, the rotating 
frequency fr (20 Hz) is extracted as well in Figure 17(b). 
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Figure 17. The characteristic frequencies of the outer ring defect with the out-of-balance 
effect. (a) The spectrum. (b) The envelop spectrum. 

 

 

For measurements in practice, the noise problem can never be avoided. For enhancing the 
simulation towards more realistic data, the impulse responses are contaminated with a normal 
distribution N(0,1) noise such that: 

 (16) 

where w is the noise level. As an illustration, the amplitude modulated impulse responses of the outer 
ring defect with noise contamination is shown in Figure 18.  

Figure 18. The amplitude modulated impulse responses of the outer ring defect with  
noise contamination. 

 

The characteristic frequencies of the outer ring defect with the out-of-balance and the noise 
contamination effects are shown in Figure 19. Due to the noise, the spectra are not so clear as in  
Figure 17, and the amplitudes at the characteristic frequencies decrease. It can be predicted that when 
the signal-to-noise ratio is very low, the characteristic frequencies might be merged. Consequently, 
advanced signal processing techniques become indispensable to extract the bearing fault features from 
the raw signals contaminated by noise. 
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Figure 19. The characteristic frequencies of the outer ring defect with the out-of-balance 
and the noise contamination effects. (a) The spectrum. (b) The envelop spectrum. 

 

 

4. The Optimization of Sensor Placement  

For the condition monitoring and diagnosis of the spindle bearings, vibrations produced due to 
defects are usually measured using the velocity transducer or accelerometers. However, the measured 
vibration responses are affected by the transmitting media between defects and sensors. To obtain a 
better monitoring effect, the optimization of the sensor position is necessary. 

In this study, the optimization scheme of the sensor position is carried out on the test spindle, as 
shown in Figure 20. The spindle is fixed on the machine tool at the flange by bolts. It is assumed that 
the defect occurs at the outer ring of the first bearing (HYKH61914). Since the spindle housing is 
stationary, seventeen measured points are chosen evenly on the surface of the spindle housing to detect 
the bearing fault. The measured point 7 is chosen on the fixed flange. The position of the measured 
point 4 is coincident with the defect bearing in axial direction. Next, the best measured point for 
detecting the bearing defect will be determined.  

Figure 20. The sensor distribution on the test spindle. 
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It is well known that the displacement of a vibratory system due to the excitation is related with 
mode shapes. In Figure 21, the first three mode shapes of the test spindle are displayed. It can be seen 
that, the flexural mode of the shaft is the dominant vibration mode. For the housing, the displacement 
at the rear is much larger than that at the front. From the aspect of the mode shapes, the point 17 at the 
rear of the spindle housing may be the best choice to detect bearing defects. 

Figure 21. The first three mode shapes of the spindle (The flange is fixed). 

 

On the other hand, it is better to monitor the vibration response signals at the nearest location to the 
defective bearing from experience [42]. From this point of view, point 4 may be the best position to 
mount the sensor, since it is the closest measured point to the defective bearing.  

The acceleration responses due to the localized defect are simulated by using the dynamic spindle-
bearing model. The dynamic responses at different positions are simulated and then compared with 
each other to obtain an optimal sensor position. The peak-to-peak value of the vibration responses at 
each measured point is displayed in Figure 22. Since the measured point 7 is chosen on the fixed 
flange, the simulated vibration response is zero from the dynamic model. It is necessary to clarify that 
the vibration response at point 7 exists in reality and can be measured definitely. In our dynamic 
model, the boundary conditions are simplified and the flange is fixed rigidly on the ground. Therefore, 
the simulated vibration response at point 7 is zero. The simulation gives a different aspect: the 
amplitude of the vibration response at point 1 is the largest, which means that the point 1 is the best 
position to measure the vibration responses induced by the localized defect bearing. Neither point 4 
nor point 17 will be chosen in practice. 
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Figure 22. The peak-to-peak value of vibration responses. 

 

Although the point 4 is the nearest point to the defective bearing, it is also close to the fixed flange 
which lowers the vibration response. For point 17, although the displacement of the mode shapes is the 
largest, the vibration energy decreases largely due to the long transfer path between the excitation and 
the response. It can be concluded that, the optimal sensor placement depends on the vibration modes 
under different boundary conditions, and the transfer path between the excitation and the response. 

The impulse responses of the outer ring defect at three typical measured points (1, 4 and 17) are 
shown in Figure 23(a–c). The impulse responses are equally spaced. It is clear that the amplitude of the 
impulse responses is different. Here, the noise is not included. 

Figure 23. The noise-free impulse responses of the outer ring defect. (a) Point 1.  
(b) Point 4. (c) Point 17. 

 

 

 

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

Measured points number

P
ea

k-
pe

ak
 v

al
ue

 (m
.s-2

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-100

-50

0

50

100

Time (s)

A
m

pl
itu

de
 (m

.s
-2

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-50

0

50

Time (s)

A
m

pl
itu

de
 (m

.s
-2

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-5

0

5

Time (s)

A
m

pl
itu

de
 (m

.s
-2

)

(a) 

(b) 

(c) 



Sensors 2012, 12 8750 
 

 

Next, the noise contamination is included to enhance the simulation towards more realistic data. 
The impulse responses with noise contamination at the three measured points (1, 4 and 17) are 
displayed in Figure 24(a–c). It can be seen that the equally spaced impulse responses are submerged in 
the strong white noise. The signal-to-noise ratios (SNRs) of the impulse responses with noise  
are calculated. For the three measured points (1, 4 and 17), the SNRs are −1.52 dB, −4.61 dB and 
−25.87 dB, respectively. 

Figure 24. The impulse responses of the outer ring defect with noise. (a) Point 1.  
(b) Point 4. (c) Point 17. 

 

 

 

The envelope spectra of the impulse responses with noise are shown in Figure 25. For the measured 
point 1, the defect frequency of the outer ring (298 Hz) and its harmonics are extracted clearly. The 
rotating frequency fr (20 Hz) is extracted as well (Figure 25(a)). For point 4 (Figure 25(b)), the defect 
frequency of the outer ring and its harmonics can still be extracted, but the information of the rotating 
frequency is lost. The worst case is the point 17 shown in Figure 25(c), where none characteristic 
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bearing defects occur at the first bearing, the point 1 is the best position to mount the sensor. This case 
study illustrates the significance of sensor placement optimization. If the sensor is mounted at 
improper position, the bearing faults may not be detected. 
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Figure 25. The envelop spectrum of the impulse responses with noise. (a) Point 1.  
(b) Point 4. (c) Point 17. 

 

 

 

5. Conclusions 

In the current study, the vibration response simulation and sensor placement optimization of 
machine tool spindles were investigated using an integrated FE model. The localized bearing defects in 
spindles were modeled visually, and vibration responses generated due to the outer ring defect were 
simulated as an illustration. The results have shown that: 

(1) The FE model of the spindle is capable of predicting the acceleration time responses due to the 
excitation. With the input excitation from an appropriate bearing fault model, the simulation of 
vibration response caused by bearing defects in machine tool spindles is feasible.  

(2) The noise decreases the amplitudes at the bearing characteristic frequencies in the envelop 
spectrum. If the signal-to-noise ratio is very low, the characteristic frequencies are submerged 
and cannot be detected from sensor signals. 

(3) The optimization of sensor placement in machine tool spindles depends on the vibration  
modes under different boundary conditions and the transfer path between the excitation and  
the response. 
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