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Abstract: This paper is concerned with the reliable finite frequency filter design for
networked control systems (NCSs) subject to quantization and data missing. Taking into
account quantization, possible data missing and sensor stuck faults, NCSs are modeled in
the framework of discrete time-delay switched systems, and the finite frequency l2 gain is
adopted for the filter design of discrete time-delay switched systems, which is converted into
a set of linear matrix inequality (LMI) conditions. By the virtues of the derived conditions,
a procedure of reliable filter synthesis is presented. Further, the filter gains are characterized
in terms of solutions to a convex optimization problem which can be solved by using the
semi-definite programme method. Finally, an example is given to illustrate the effectiveness
of the proposed method.
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1. Introduction

In recent years, there has been a growing interest in networked control systems (NCSs), which is a
class of systems in which sensors, controllers and plants are connected over the network media [1–4].
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Due to their advantages such as easy installation, low cost and high utilization, the NCSs have
widely applications in many application areas, such as manufacturing plants, automobiles and remote
process, etc. However, these systems require novel control design to account for the presence of network
in the closed loop, such as network-induced delay (see e.g., [5–8]) and packet loss (see e.g., [9,10]).
Further, for the NCSs where bandwidth and energy are limited, quantization becomes indispensable.
Consequently, there has been a lot of researches concerning this issue, (see e.g., [11,12]).

On the other hand, filtering problem has been playing an important role in control engineering
and signal processing that has attracted constant research attention, (see e.g., [13–17] and references
therein). However, it is quite common in practice that measurement outputs of a dynamic system
contain incomplete observations because of the temporal sensor faults, (see e.g., [18–21] and references
therein). Therefore, it is natural that the reliable filtering problem in presence of possible sensor faults
has recently obtained much attention and there have been many results investigating this important issue.
For example, reliable filtering problems have been thoroughly investigated in [22–24] for linear systems.
As for nonlinear systems, reliable filtering problems with sensor faults have also attracted many research
interests [25–27].

It should be noted that disturbances considered in those papers are all considered in full frequency
domain. However, practical industry systems often employ large, complex, or lightweight structures,
which include finite frequency fundamental vibration modes. Thus, it is more reasonable to design
reliable filters in finite frequency domain. However, to the best of the authors’ knowledge, reliable
filtering problems for NCSs subject to packet loss and quantization have not been fully investigated,
especially in finite frequency domain where faults occur frequently. This motivates the investigation of
this work.

In response to the above discussions, in this paper, the reliable finite frequency filtering problem for
NCSs subject to packet loss and quantization is investigated in finite frequency domain against sensor
stuck faults. Specifically, with consideration of quantization, possible packet losses and possible sensor
stuck faults, NCSs are modeled in a framework of discrete time-delay switched system. Then, the
definition of finite frequency l2 gain is given and an analysis condition to capture such a performance for
discrete time-delay switched system is derived. With the aid of the derived conditions, a reliable filter
is designed and the conclusions are presented in terms of linear matrix inequalities (LMIs). Finally, an
example is given to illustrate the effectiveness of the proposed method.

The reminder of the paper is organized as follows. The problem of system modeling for NCSs with
packet losses and quantization is presented in Section 2. Section 3 provides sufficient conditions for the
design of reliable filters. In Section 4, an example is given to illustrate the effectiveness of the proposed
method. Finally, some conclusions are presented in Section 5.

Notations: Throughout the paper, the superscript T and −1 stand for, respectively, the transposition
and the inverse of a matrix; M > 0 means that M is real symmetric and positive definite; I represents the
identity matrix with compatible dimension; ∥·∥ denotes the Euclidean norm; P is the probability measure;
E(·) denotes the expectation operator; l2 denotes the Hilbert space of square integrable functions. In
block symmetric matrices or long matrix expressions, we use ∗ to represent a term that is induced by
symmetry; The sum of a square matrix A and its transposition AT is denoted by He(A) := A+ AT .
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2. System Model and Problem Formulation

The NCS under consideration is setup in Figure 1, where the discrete-time plant is of the form:

x(k + 1) = Ax(k) +Bw(k)

y(k) = Cx(k)

z(k) = Ex(k)

(1)

where x(k) ∈ Rn is the state, y(k) ∈ Rm is the measured output, z(k) ∈ Rp is the controlled output
and w(k) ∈ Rd is the exogenous disturbance which is assumed to belong to l2[0,∞). A, B, C and E

are known real constant matrices with appropriate dimensions.

Figure 1. Structure of the Networked Control Systems.

Sensor Quantizer Reliable FilterPlant Data Missing ẑ(k)

w(k)

y(k) yFi(k) (I +∆q)y
Fi(k) yFi

c (k)

Networks

In this paper, we make the following assumption:

Assumption 1. System (1) is stable.

Remark 2. Assumption 1 is required to get stable dynamics of the filter system. If this assumption is not
satisfied, a stabilizing output feedback controller is required.

When the sensors in the NCSs experience faults, we consider the following sensor stuck fault model
similar to [28],

yFi(k) = Fiy(k) + (I − Fi)ysi(k), i = 0, 1, 2, . . . , q (2)

where q is the quantity of the possible fault modes and

ysi(k) = [ysi1(k) ysi2(k) . . . ysim(k)]
T (3)

with ysij(k)(j = 1, 2, . . . ,m) being the low frequency fault of the kth sensor. Further, Fi is defined as

Fi = diag {Fi1, Fi2, . . . , Fim}
Fik = 0 or 1, k = 1, 2, . . . ,m

(4)

It is also assumed that, as shown in Figure 1, the measurement signals will be quantized before
transmitting via the networks wherein data missing may occur. The following logarithmic quantizer as
proposed in [29] is applied,

q(v) =


ρiv0 if 1

1 + δq
ρiv0 < v ≤ 1

1− δq
ρiv0

0 if v = 0

−q(v) if v < 0

(5)
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where the parameter 0 < ρ < 1 is termed as quantization density and

δq = (1− ρ)/(1 + ρ) (6)

From [29], we can obtain
q(v) = (I +∆q)v (7)

where ∆q ∈ [−δq, δq] is a suitable model for the logarithmic quantizer q(v) with parameter δq.
Therefore, the faulty measurements together with quantization and the data transmission in the

networks can be described by

yFi
c (k) = α(I +∆q)y

Fi(k) + (1− α)(I +∆q)y
Fi(k − 1) (8)

where α ∈ R is a Bernoulli distributed white sequence with

P(α = 1) = E(α) = δ̄

P(α = 0) = 1− E(α) = 1− δ̄

Specifically, if α = 1, the quantized signal (I + ∆q)y
Fi(k) is successfully transmitted, otherwise the

transmission fails, i.e., the phenomenon of data missing.

Remark 3. The description of data transmission (8) was introduced in [30]. It can be seen that the
output y(k) of the system model is (I+∆q)y

Fi(k) with probability δ̄ at k-th sampling time, and the value
(I +∆q)y

Fi(k− 1) with probability 1− δ̄. Obviously, if the binary stochastic variable α takes the value
0 consecutively at different sample times, the consecutive data missing would occur.

In this paper, the following reliable filter is constructed:

x̃(k + 1) = Af x̃(k) +Bfy
Fi
c (k)

z̃(k) = Cf x̃(k)
(9)

where Af , Bf and Cf are filter parameters to be designed.
Denoting ζ(k) =

[
xT (k) x̂T (k)

]T and e(k) = z(k) − z̃(k), then the filtering error system for the
ith fault mode can be described by the following two subsystems.

S1: No packet dropout occurs.

ζ(k + 1) = A1iζ(k) +A1diζ(k − 1) + Bww(k) + Bsiysi(k)

e(k) = Cζ(k)

S2: Packet dropout occurs.

ζ(k + 1) = A2iζ(k) +A2diζ(k − 1) + Bww(k) + Bsiysi(k)

e(k) = Cζ(k)

where[
A1i A1di A2i A2di

]
=

[
A 0 0 0 A 0 0 0

Bf (I +∆q)FiC Af 0 0 0 Af Bf (I +∆q)FiC 0

]
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[
Bw Bsi

]
=

[
B 0

0 Bf (I +∆q)(I − Fi)

]
C =

[
E − Cf

]
Due to packet drop-out, the filtering error system can be seen as combined by subsystem S1 and S2,

which can be lumped into the following discrete time-delay switched system:

ζ(k + 1) = Aσkiζ(k) +Aσkdiζ(k − 1) + Bww(k) + Bsiysi(k)

e(k) = Cζ(k)
(10)

where σk is switching signal with σk ∈ S = {1, 2} being a piecewise constant function.
Next, we will discuss how to design the filter parameters Af , Bf and Cf . In order to formulate the

problem clearly, the following definitions are first given.

Definition 4. (Asymptotical Stable) System (10) is said to be asymptotical stable under switching signal
σk, if the solution satisfies

lim
k→0

∥ζ(k)∥ = 0 (11)

Definition 5. Ding et al. [17] Let γ > 0 be a given constant, then the filtering error system (10) is said
to have a finite-frequency l2 gain γ, if inequality

∞∑
k=0

e(k)T e(k) ≤ γ2

∞∑
k=0

w(k)Tw(k) (12)

holds for all solutions of Equation (10) with w(k) ∈ l2 such that the following hold

(i) For the low-frequency range |θ| ≤ ϑl

∞∑
k=0

(ζ(k + 1)− ζ(k))(ζ(k + 1)− ζ(k))T ≤ (2sin
ϑl

2
)2

∞∑
k=0

ζ(k)ζ(k)T (13)

(ii) For the middle-frequency range ϑ1 ≤ θ ≤ ϑ2

ejϑw

∞∑
k=0

(ζ(k + 1)− ejϑ1ζ(k))(ζ(k + 1)− e−jϑ2ζ(k))T ≤ 0 (14)

where ϑw = (ϑ2 − ϑ1)/2.
(iii) For the high-frequency range |θ| ≥ ϑh

∞∑
k=0

(ζ(k + 1)− ζ(k))(ζ(k + 1)− ζ(k))T ≥ (2sin
ϑh

2
)2

∞∑
k=0

ζ(k)ζ(k)T (15)

Now, the reliable filtering problem to be addressed in this paper can be formulated as follows:
Design a stable reliable filter (9) such that, for the quantization error, possible data missing and sensor

faults, the filtering error system (10) is asymptotical stable, and with a prescribed finite-frequency l2 gain
γ1 from w(k) to e(k) by satisfying the following specification

∞∑
k=0

∥e(k)∥2 ≤ γ2
1

∞∑
k=0

∥w(k)∥2, ∀ θw (16)
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and a prescribed low frequency l2 gain γ2 from ysi(k) to e(k) by satisfying

∞∑
k=0

∥e(k)∥2 ≤ γ2
2

∞∑
k=0

∥ysi(k)∥2, ∀ |θs| ≤ ϑsl (17)

where θw and θs represent the frequency of the disturbance and the stuck faults, respectively.
Before ending this section, the following lemmas will be first given to help us to prove our

main results.

Lemma 6. (Finsler’s Lemma) For x ∈ Rn,L ∈ Rn×n,U ∈ Rn×m, let U⊥ be any matrix such that
U⊥U = 0. The following statements are equivalent:

(i) xTLx < 0,∀UTx = 0, x ̸= 0,
(ii) U⊥LU⊥T

< 0,
(iii) ∃µ ∈ Rn : L− µUUT < 0,
(iv) ∃Y ∈ Rm×n : L+ UY+YTUT < 0.

Lemma 7. Given the matrices Ẽ and F̃ with appropriate dimensions, then

Ẽ∆F̃ + F̃ T∆T ẼT < 0

where ∆∆T ≤ I , if and only if there exist a scalar ε > 0 such that

[
ε−

1
2 F̃ T ε

1
2 Ẽ

] [ ε−
1
2 F̃

ε
1
2 ẼT

]
< 0

3. Main Results

In this section, the reliable filtering problem proposed in the above section will be investigated.

Lemma 8. Consider system (10) for i = 0, 1, . . . , q and a given scalar γ1 < 0, then Equation (16) holds,
i.e., system (10) is with a finite frequency l2 gain γ1, if there exist matrices Pσki = PT

σki
, Ri = RT

i and
Qσki = QT

σki
> 0, σk ∈ {1, 2} such that the following inequalities hold[

Aσki Aσkdi Bw

I 0 0

]T

Ξ

[
Aσki Aσkdi Bw

I 0 0

]
+

[
C 0 0

0 0 I

]T

Π

[
C 0 0

0 0 I

]

+

[
I 0 0

0 I 0

]T [
Ri 0

0 −Ri

] [
I 0 0

0 I 0

]
< 0

(18)

where Π =

[
I 0

0 −γ2
1I

]
and

(i) For the low-frequency range |θw| ≤ ϑwl

Ξi =

[
−Pσk+1i Qσki

Qσki Pσki − 2cosϑwlQσki

]
(19)
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(ii) For the middle-frequency range ϑ1 ≤ θw ≤ ϑ2

Ξi =

[
−Pσk+1i ejϑcQσki

e−jϑcQσki Pσki − 2cosϑwQσki

]
(20)

where ϑc = (ϑ2 + ϑ1)/2, ϑw = (ϑ2 − ϑ1)/2.
(iii) For the high-frequency range |θw| ≥ ϑwh

Ξi =

[
−Pσk+1i −Qσki

−Qσki Pσki + 2cosϑwhQσki

]
(21)

Proof. We first consider the middle-frequency case for system (10) with ysi(k) = 0. Assume
Equation (14) holds, pre- and post-multiplying it by

[
ξT (k) sT (k)

]
and its transpose, we can derive

ζT (k)(Pσki +Ri)ζ(k)− ζT (k + 1)Pσk+1iζ(k + 1)− ζT (k − 1)Riζ(k − 1)

+ eT (k)e(k)− γ2
1w

T (k)w(k)

+ tr{Qσki(e
jϑcζ(k)ζT (k + 1)− e−jϑcζ(k + 1)ζT (k)− 2cosϑwζ(k)ζ

T (k))} ≤ 0

(22)

Summing up Equation (22) from 0 to ∞ with respect to k, it is easy to obtain

∞∑
k=0

(
E
(
eT (k)e(k)− γ2

1w
T (k)w(k)

))
+ tr{QσkiZ} ≤ 0 (23)

since system (10) is asymptotical stable and ξ(0) = 0, where

Z :=
∞∑
k=0

(ejϑcζ(k)ζT (k + 1) + e−jϑcζ(k + 1)ζT (k)− 2cosϑwζ(k)ζ
T (k)) (24)

It is easy to prove that −Z is equal to the left-hand side of Equation (14), thus we have Z ≥ 0. Further,
from Qσki > 0, one can obtain that the term tr{QσkiZ} ≥ 0 while Equation (14) is satisfied. Hence we
have

∑∞
k=0

(
E(eT (k)e(k)− γ2

1w
T (k)w(k)

)
≤ 0, which is equivalent to the condition Equation (16) for

middle-frequency in Definition 5.
Similarly, by choosing ϑ1 := −ϑwl, ϑ2 := ϑwl for low-frequency case and ϑ1 := ϑwh, ϑ2 := 2π−ϑwh

for high-frequency case, respectively, the results for these two cases can be derived by following the
same procedure of the above proof. This completes the proof.

Remark 9. Lemma 8 presents an analysis condition for finite frequency l2 gain of system (10), where less
conservatism is introduced compared with the existing full frequency conditions when frequency ranges
of disturbances are known.

Remark 10. The sufficient condition, which guarantees a prescribed low frequency l2 gain from ysi(k)

to e(k) for system (10), can be obtained by following the same process of Lemma 8 and utilizing relevant
system matrices.
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3.1. Finite Frequency Performance from w(k) to e(k)

In this section, sufficient conditions to capture the finite frequency performance from w(k) to e(k) for
system (10) will be derived with the aid of Lemma 8.

Theorem 11. Consider system (10) in fault free and faulty cases (i.e., i = 0, 1, . . . , q) for given low
frequency range |θ| ≤ ϑwl, which is with a prescribed l2 gain γ1 from w(k) to e(k), i.e., the condition
(16) holds if there exist a scalar ε1 > 0, matrices X , Y , N , Af , Bf , Cf and

PT
ιi = Pιi =

[
Pιi1 ∗
Pιi2 Pιi3

]
, PT

κi = Pκi =

[
Pκi1 ∗
Pκi2 Pκi3

]
,

RT
i = Ri =

[
Ri1 ∗
Ri2 Ri3

]
, QT

κi = Qκi =

[
Qκi1 ∗
Qκi2 Qκi3

]
> 0

with ι, κ ∈ {1, 2} such that the following conditions hold

Ψ < 0 (25)

where

Ψ =



−Pιi1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−Pιi2 −Pιi3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Qκi1 −X QT
κi2 −N Ψ3

3 ∗ ∗ ∗ ∗ ∗ ∗
Qκi2 − Y Qκi3 −N Ψ3

4 Ψ4
4 ∗ ∗ ∗ ∗ ∗

0 0 Ψ3
5 Ψ4

5 Ψ5
5 ∗ ∗ ∗ ∗

0 0 0 0 −Ri2 −Ri3 ∗ ∗ ∗
0 0 BTX T BTYT 0 0 −γ21I ∗ ∗
0 0 E −Cf 0 0 0 −I ∗
0 0 BT

f BT
f 0 0 0 0 −ε1I


and

Ψ3
3(κ = 1) = Pκi1 − 2cosϑwlQκi1 +Ri1 + δ2qε1C

TF T
i FiC +He(XA+ BfFiC),

Ψ3
3(κ = 2) = Pκi1 − 2cosϑwlQκi1 +Ri1 +He(XA),

Ψ3
4(κ = 1) = Pκi2 − 2cosϑwlQκi2 +Ri2 + BfFiC +AT

f + YA,

Ψ3
4(κ = 2) = Pκi2 − 2cosϑwlQκi2 +Ri2 +AT

f + YA,

Ψ4
4 = Pκi3 − 2cosϑlQκi3 +Ri3 +He(Af ),

Ψ3
5(κ = 1) = Ω4

5(κ = 1) = 0, Ψ3
5(κ = 2) = Ω4

5(κ = 2) = CTF T
i BT

f

Ψ5
5(κ = 1) = −Ri1, Ψ5

5(κ = 2) = −Ri1 + δ1qε1C
TF T

i FiC

Proof. It is shown, from Lemma 8, that the condition (16) can be reached if Equation (18) holds. Further,
the inequality (18) can be rewritten to

J∆JT < 0 (26)
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where J =

 AT
κi I 0 0

AT
κdi 0 I 0

BT
w 0 0 I

 and

∆ =


−Pιi ∗ ∗ ∗
Qκi Pκi − 2cosϑwlQκi +Ri + CTC ∗ ∗
0 0 −Ri ∗
0 0 0 −γ2

1I


Exploiting Lemma 6 and explicit null space bases calculations on Equation (26), it is easy to get that

Equation (26) holds if and only if

∆+He
(
J⊥[0 WT 0 0]

)
< 0 (27)

that is 
−Pιi ∗ ∗ ∗

Qκi −W Pκi − 2cosϑwlQκi +Ri + CTC +He(WAκi) ∗ ∗
0 AT

dκiWT −Ri ∗
0 BT

wWT 0 −γ2
1I

 < 0

where W is a matrix variable introduced by Lemma 6 and J⊥ =
[
−I Aκi Bw Aκdi

]T
is utilized.

Performing Schur’s complement on Equation (27) yields to that
−Pιi ∗ ∗ ∗ ∗

Qκi −W Pκi − 2cosϑwlQκi +Ri +He(WAκi) ∗ ∗ ∗
0 AT

dκiWT −Ri ∗ ∗
0 BT

wWT 0 −γ2
1I ∗

0 C 0 0 −I

 < 0

Partitioning W as the following form

W =

[
X N
Y N

]
(28)

defining the following new variables

Af = NAf , Bf = NBf (29)

and applying Lemma 7 on Equations (27), (25) can be reached easily. This proof is completed.

Remark 12. In Theorem 11, by introducing a variable W , the coupling between the Lyapunov matrices
and the filter gains will be eliminated, which does not present any structural constraint.

The previous Theorem 11 presented the condition to capture the low frequency performance.
Similarly, conditions for middle frequency and high frequency performance are presented in the
following two corollaries.
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Corollary 13. Consider system (10) in fault free and faulty cases (i.e., i = 0, 1, . . . , q) for given middle
frequency range ϑ1 ≤ |θw| ≤ ϑ2, which is with a prescribed l2 gain γ1 from w(k) to e(k), i.e., the
condition (16) holds if there exist a scalar ε1 > 0, matrices X , Y , N , Af , Bf , Cf and

PT
ιi = Pιi =

[
Pιi1 ∗
Pιi2 Pιi3

]
, PT

κi = Pκi =

[
Pκi1 ∗
Pκi2 Pκi3

]
,

RT
i = Ri =

[
Ri1 ∗
Ri2 Ri3

]
, QT

κi = Qκi =

[
Qκi1 ∗
Qκi2 Qκi3

]
> 0

with ι, κ ∈ {1, 2} such that the following conditions hold

Ψ < 0 (30)

where

Ψ =



−Pιi1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−Pιi2 −Pιi3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

e−jϑcQκi1 −X e−jϑcQT
κi2 −N Ψ3

3 ∗ ∗ ∗ ∗ ∗ ∗
e−jϑcQκi2 − Y e−jϑcQκi3 −N Ψ3

4 Ψ4
4 ∗ ∗ ∗ ∗ ∗

0 0 Ψ3
5 Ψ4

5 Ψ5
5 ∗ ∗ ∗ ∗

0 0 0 0 −Ri2 −Ri3 ∗ ∗ ∗
0 0 BTX T BTYT 0 0 −γ21I ∗ ∗
0 0 E −Cf 0 0 0 −I ∗
0 0 BT

f BT
f 0 0 0 0 −ε1I


and ϑc = (ϑ2 + ϑ1)/2, ϑw = (ϑ2 − ϑ1)/2,

Ψ3
3(κ = 1) = Pκi1 − 2cosϑwQκi1 +Ri1 + δ2qε1C

TF T
i FiC +He(XA+ BfFiC),

Ψ3
3(κ = 2) = Pκi1 − 2cosϑwQκi1 +Ri1 +He(XA),

Ψ3
4(κ = 1) = Pκi2 − 2cosϑwQκi2 +Ri2 + BfFiC +AT

f + YA,

Ψ3
4(κ = 2) = Pκi2 − 2cosϑwQκi2 +Ri2 +AT

f + YA,

Ψ4
4 = Pκi3 − 2cosϑlQκi3 +Ri3 +He(Af ),

Ψ3
5(κ = 1) = Ω4

5(κ = 1) = 0, Ψ3
5(κ = 2) = Ω4

5(κ = 2) = CTF T
i BT

f

Ψ5
5(κ = 1) = −Ri1, Ψ5

5(κ = 2) = −Ri1 + δ1qε1C
TF T

i FiC

Proof. By following the same lines of Theorem 1, it is immediate.

Corollary 14. Consider system (10) in fault-free and faulty cases (i.e., i = 0, 1, . . . , q) for given high
frequency range |θw| ≥ ϑwh, which is with a prescribed l2 gain γ1 from w(k) to e(k), i.e., the condition
(16) holds if there exist a scalar ε1 > 0, matrices X , Y , N , Af , Bf , Cf and

PT
ιi = Pιi =

[
Pιi1 ∗
Pιi2 Pιi3

]
, PT

κi = Pκi =

[
Pκi1 ∗
Pκi2 Pκi3

]
,

RT
i = Ri =

[
Ri1 ∗
Ri2 Ri3

]
, QT

κi = Qκi =

[
Qκi1 ∗
Qκi2 Qκi3

]
> 0

with ι, κ ∈ {1, 2} such that the following conditions hold

Ψ < 0 (31)
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where

Ψ =



−Pιi1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−Pιi2 −Pιi3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

−Qκi1 −X −QT
κi2 −N Ψ3

3 ∗ ∗ ∗ ∗ ∗ ∗
−Qκi2 − Y −Qκi3 −N Ψ3

4 Ψ4
4 ∗ ∗ ∗ ∗ ∗

0 0 Ψ3
5 Ψ4

5 Ψ5
5 ∗ ∗ ∗ ∗

0 0 0 0 −Ri2 −Ri3 ∗ ∗ ∗
0 0 BTX T BTYT 0 0 −γ21I ∗ ∗
0 0 E −Cf 0 0 0 −I ∗
0 0 BT

f BT
f 0 0 0 0 −ε1I


and

Ψ3
3(κ = 1) = Pκi1 + 2cosϑwhQκi1 +Ri1 + δ2qε1C

TF T
i FiC +He(XA+ BfFiC),

Ψ3
3(κ = 2) = Pκi1 + 2cosϑwhQκi1 +Ri1 +He(XA),

Ψ3
4(κ = 1) = Pκi2 + 2cosϑwhQκi2 +Ri2 + BfFiC +AT

f + YA,

Ψ3
4(κ = 2) = Pκi2 + 2cosϑwhQκi2 +Ri2 +AT

f + YA,

Ψ4
4 = Pκi3 − 2cosϑlQκi3 +Ri3 +He(Af ),

Ψ3
5(κ = 1) = Ω4

5(κ = 1) = 0, Ψ3
5(κ = 2) = Ω4

5(κ = 2) = CTF T
i BT

f

Ψ5
5(κ = 1) = −Ri1, Ψ5

5(κ = 2) = −Ri1 + δ1qε1C
TF T

i FiC

Proof. By following the same lines of Theorem 1, it is immediate.

3.2. Low Frequency Performance from ysi(k) to e(k)

In this subsection, sufficient conditions to capture the low frequency performance (17) for system (10)
will be deduced.

Theorem 15. Consider system (10) in faulty cases (i.e., i = 1, . . . , q) for given low frequency range
|θs| ≤ ϑsl, which is with a prescribed low frequency l2 gain γ2 for nonzero ysi(k), i.e., condition (17)
holds, if there exist a scalar ε2 > 0, matrices X , Y , N , Af , Bf , Cf and

PT
sιi = Psιi =

[
Psιi1 ∗
Psιi2 Psιi3

]
, PT

sκi = Psκi =

[
Psκi1 ∗
Psκi2 Psκi3

]
,

RT
si = Rsi =

[
Rsi1 ∗
Rsi2 Rsi3

]
, QT

sκi = Qsκi =

[
Qsκi1 ∗
Qsκi2 Qsκi3

]
> 0

with ι, κ ∈ {1, 2} such that the following conditions hold

Ω < 0 (32)

where

Ω =



−Psιi1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−Psιi2 −Pιi3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Qsκi1 −X QT
sκi2 −N Ω3

3 ∗ ∗ ∗ ∗ ∗ ∗
Qsκi2 − Y Qsκi3 −N Ω3

4 Ω4
4 ∗ ∗ ∗ ∗ ∗

0 0 Ω3
5 Ω4

5 Ω5
5 ∗ ∗ ∗ ∗

0 0 0 0 −Rsi2 −Rsi3 ∗ ∗ ∗
0 0 (I − Fi)

TBT
f (I − Fi)

TBT
f 0 0 Ω7

7 ∗ ∗
0 0 E −Cf 0 0 0 −I ∗
0 0 BT

f BT
f 0 0 0 0 −ε2I


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and

Ω3
3(κ = 1) = Psκi1 − 2cosϑslQsκi1 +Rsi1 + δ2qε2C

TF T
i FiC +He(XA+ BfFiC),

Ω3
3(κ = 1) = Psκi1 − 2cosϑslQsκi1 +Rsi1 +He(XA),

Ω3
4(κ = 1) = Psκi2 − 2cosϑslQsκi2 +Rsi2 + BfFiC +AT

f + YA,

Ω3
4(κ = 2) = Psκi2 − 2cosϑslQsκi2 +Rsi2 +AT

f + YA,

Ω4
4 = Psκi3 − 2cosϑlQsκi3 +Rsi3 +He(Af ),

Ω3
5(κ = 1) = 0, Ω3

5(κ = 2) = CTF T
i BT

f ,

Ω5
5(κ = 1) = −Rsi1, Ω5

5(κ = 2) = −Rsi1 + δ2qε2C
TF T

i FiC,

Ω7
7 = −γ2

2I + δ2qε2(I − Fi)
T (I − Fi),

Proof. It is easily derived, from Lemma 8 and Remark 10, that the condition (17) holds if[
Aσki Aσkdi Bsi

I 0 0

]T

Ξd

[
Aσki Aσkdi Bsi

I 0 0

]
+

[
C 0 0

0 0 I

]T

Π

[
C 0 0

0 0 I

]

+

[
I 0 0

0 I 0

]T [
Rsi 0

0 −Rsi

][
I 0 0

0 I 0

]
< 0

(33)

where Ξd has the similar structure as in Lemma 8 for low frequency case.
Following the same process in Theorem 11, we first rewrite the inequality (33) to the following form,

LΘLT < 0 (34)

where L =

 AT
κi I 0 0

AT
κdi 0 I 0

BT
fi 0 0 I

 and

Θ =


−Psιi Qsκi ∗ ∗
Qsκi Psκi − 2cosϑslQsκi +Rsi + CTC ∗ ∗
0 0 −Rsi ∗
0 0 0 −γ2

2I


Exploiting Lemma 6 and explicit null space bases calculations on it, we have Equation (34) is

equivalent to
Ξ +He

(
L⊥[0 WT 0 0]

)
< 0 (35)

that is 
−Psιi ∗ ∗ ∗ ∗

Qκi −W Psκi − 2cosϑslQsκi +Rsi +He(WAκi) ∗ ∗ ∗
0 AT

κdiWT −Ri ∗
0 BT

fiWT 0 −γ2
2I ∗

0 C 0 0 −I

 < 0

where W is a matrix variable introduced by Lemma 8 and L⊥ =
[
−I Aκi Aκdi Bfi

]T
is utilized.

By applying Lemma 7 on Equation (35), the inequality Equation (32) can be reached easily. This
proof is completed.
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3.3. Stability Condition

Since Theorems 1 and 2 presented in the above section cannot guarantee the stability of the system
(10), in this subsection, asymptotical stability conditions for system (10) will be presented.

Theorem 16. Consider system (10) in fault free and faulty cases (i.e., i = 0, 1, . . . , q), it is asymptotical
stable when w(k) = 0 and ysi(k) = 0, if there exist a scalar ε3 > 0, matrices X , Y , N , Af , Bf , Cf and

PT
aιi = Paιi =

[
Paιi1 ∗
Paιi2 Paιi3

]
> 0

PT
aκi = Paκi =

[
Paκi1 ∗
Paκi2 Paκi3

]
> 0

RT
ai = Rai =

[
Rai1 ∗
Rai2 Rai3

]
> 0

with ι, κ ∈ {1, 2} such that the following conditions hold

Φ < 0 (36)

where

Φ =



Paιi1 −He(X ) ∗ ∗ ∗ ∗ ∗ ∗
Paιi2 − Y −N T Paιi3 −He(N ) ∗ ∗ ∗ ∗ ∗

Φ1
3 Φ2

3 Φ3
3 ∗ ∗ ∗ ∗

AT
f AT

f −Paκi2 +Rai2 −Paκi3 +Rai3 ∗ ∗ ∗
Φ1
5 Φ2

5 0 0 Φ5
5 ∗ ∗

0 0 0 0 −Rai2 −Rai3 ∗
BT
f BT

f 0 0 0 0 −ε3I


and

Φ1
3(κ = 1) = ATX T + CTF T

i BT
f , Φ1

3(κ = 2) = ATX T ,

Φ2
3(κ = 1) = ATYT + CTF T

i BT
f , Φ2

3(κ = 2) = ATYT ,

Φ3
3(κ = 1) = −Paκi1 +Rai1 + δ2qε3C

TF T
i FiC, Φ3

3(κ = 2) = −Paκi1 +Rai1,

Φ1
5(κ = 1) = Φ2

5(κ = 1) = 0, Φ1
5(κ = 2) = Φ2

5(κ = 2) = CTF T
i BT

f ,

Φ5
5(κ = 1) = −Rai1, Φ5

5(κ = 2) = −Rai1 + δ2qε3C
TF T

i FiC.

Proof. Consider the following Lyapunov functional candidate for w(k) = 0 and ysi(k) = 0

Vκi(k) = ζT (k)Paκiζ(k) + ζT (k − 1)Raiζ(k − 1) (37)

The forward difference of the Lyapunov functional Vi(k) along the trajectories of the system (10) is
given by

∆Vκi(k) = Vιi(k + 1)− Vκi(k)

= ζT (k)(AT
κiPaιiAκi − Paιi +Rai)ζ(k) + ζT (k)(AT

κiPaιiAκdi)ζ(k − 1)

+ ζT (k − 1)(AT
κdiPaιiAκi)ζ(k) + ζT (k − 1)(AT

κdiPaιiAκdi −Rai)ζ(k − 1)

= ξT (k)Υκiξ(k)

(38)
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where ξ(k) =
[
ζT (k) ζT (k − 1)

]T
and

Υκi =

[
AT

κiPaιiAκi − Paιi +Rai ∗
AT

κdiPaιiAκi AT
κdiPaιiAκdi −Rai

]

By following an opposite direction to the proof for Theorem 11 and exploiting Schur’s complement
and Lemma 7 on Equation (36), we have Υκi < 0, which implies that ∆Vκi(k) < 0. Therefore, from
Equation (38), one can easily obtain, for a sufficiently small scalar ρ > 0 and ζ(k) ̸= 0, that

∆Vκi(k) < −ρ∥ζ(k)∥2 (39)

Then, from Definition 4, the asymptotical stability of system (10) can be established. This proof is
completed.

3.4. Algorithm

Based on the above analysis, a set of optimal solutions Af , Bf and Cf can be obtained by solving the
following optimization problem for given δq:

min aγ1 + bγ2

s.t. (25), for i = 0, 1, . . . , q,

(32), for i = 1, 2, . . . , q,

(36), for i = 0, 1, . . . , q,

(40)

where a and b are weighting factors.
Then the dynamic output feedback controller gains can be computed by the following equalities:

Af = N−1Af , Bf = N−1Bf , Cf = Cf (41)

Remark 17. On the other hand, we can obtain a coarser quantizer through solving the following
optimization problem for given finite-frequency l2 gains γ1 and γ2

max δq

s.t. (25), for i = 0, 1, . . . , q

(32), for i = 1, 2, . . . , q

(36), for i = 0, 1, . . . , q

(42)

4. Example

In this section, an application and simulations are given to illustrate the effectiveness of the
proposed methods.
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The utilized model is the F-404 aircraft engine described by the following state space model [31],

ẋ(t) =

 −1.4600 0 2.4280

0.1643 −0.4000 −0.3788

0.3107 0 −2.2300

x(t) +

 −0.09

−0.14

0.02

w(t)

y(t) =

[
1 1 0

0 1 1

]
x(t)

z(t) =

[
0.2 −0.7 0.5

0.3 0.6 −0.4

]
x(t)

(43)

Assume the sampling period is h = 1s, and packet transmission is as shown in Figure 2, which is
subject to the rate of packet lost 1− δ̄ = 0.32.

Figure 2. The number of the lost packet.
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For given ϑwl = 0.2, ϑsl = 0 and δq = 0.6, solving the optimization problem (40), we can obtain the
optimal value for low frequency performances are, respectively, γ1 = 0.0825 and γ2 = 0.0378 with the
corresponding reliable filter parameters

x̃(k + 1) =

 0.1454 −0.0418 0.0447

0.7084 0.1740 0.1958

0.0246 0.0061 −0.0620

 x̃(k) +

 0.0813 0.0813

0.2741 0.2741

−0.0049 −0.0049

 yFi
c (k)

z̃(k) =

[
0.7055 0.8941 −0.0583

−1.2318 −0.7672 1.4227

]
x̃(k)

(44)

In the following, the system is simulated in low frequency domain, where the faults always occur,
under the following two fault modes with zero initial condition and the disturbance input w(k) is

w(k) =

{
0.5sin(k), 10 ≤ k ≤ 15

0, otherwise

which is shown in Figure 3.
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Figure 3. The disturbance input w(k).
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Mode 1. The first sensor being stuck at 0, i.e.,

F =

[
0 0

0 1

]

and ysi(k) = 0 when k > 30.

Mode 2. The second sensor being stuck at 0, i.e.,

F =

[
1 0

0 0

]

and ysi(k) = 0 when k > 30.

The controlled outputs and the corresponding estimations for both the two fault modes are shown in
Figures 4 and 5, respectively, where the blue solid lines are the controlled output while the red dashed
lines are their estimations.

It is easily seen from these figures that all the expected system performance requirement are well
achieved, which shows the effectiveness of the proposed method.
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Figure 4. The z(k) (blue solid) and z̃(k) (red dashed) when faulty mode 1 occurred.

0 10 20 30 40 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time steps (k)

z
1
(k

) 
a

n
d

 i
ts

 e
s
ti
m

a
ti
o

n

0 10 20 30 40 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time steps (k)
z

2
(k

) 
a

n
d

 i
ts

 e
s
ti
m

a
ti
o

n

Figure 5. The z(k) (blue solid) and z̃(k) (red dashed) when faulty mode 2 occurred.
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5. Conclusions

In this paper, the reliable finite frequency filtering problem for NCSs subject to quantization and
packet have been studied with finite frequency specifications when sensor fault would occur. The
considered NCSs have been first modeled as a discrete time-delay switched system. Subsequently, a
sufficient condition to characterize the finite frequency l2 gain has been presented. Then by virtues of
the derived condition, a procedure of reliable filter synthesis has been derived in terms of LMIs. Finally,
an example has been given to illustrated the effectiveness of the proposed method.
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