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Abstract: This paper is concerned with the reliable finite frequency filter design for
networked control systems (NCSs) subject to quantization and data missing. Taking into
account quantization, possible data missing and sensor stuck faults, NCSs are modeled in
the framework of discrete time-delay switched systems, and the finite frequency [y gain is
adopted for the filter design of discrete time-delay switched systems, which is converted into
a set of linear matrix inequality (LMI) conditions. By the virtues of the derived conditions,
a procedure of reliable filter synthesis is presented. Further, the filter gains are characterized
in terms of solutions to a convex optimization problem which can be solved by using the
semi-definite programme method. Finally, an example is given to illustrate the effectiveness
of the proposed method.
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1. Introduction

In recent years, there has been a growing interest in networked control systems (NCSs), which is a
class of systems in which sensors, controllers and plants are connected over the network media [1-4].
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Due to their advantages such as easy installation, low cost and high utilization, the NCSs have
widely applications in many application areas, such as manufacturing plants, automobiles and remote
process, etc. However, these systems require novel control design to account for the presence of network
in the closed loop, such as network-induced delay (see e.g., [5-8]) and packet loss (see e.g., [9,10]).
Further, for the NCSs where bandwidth and energy are limited, quantization becomes indispensable.
Consequently, there has been a lot of researches concerning this issue, (see e.g., [11,12]).

On the other hand, filtering problem has been playing an important role in control engineering
and signal processing that has attracted constant research attention, (see e.g., [13—17] and references
therein). However, it is quite common in practice that measurement outputs of a dynamic system
contain incomplete observations because of the temporal sensor faults, (see e.g., [18-21] and references
therein). Therefore, it is natural that the reliable filtering problem in presence of possible sensor faults
has recently obtained much attention and there have been many results investigating this important issue.
For example, reliable filtering problems have been thoroughly investigated in [22—24] for linear systems.
As for nonlinear systems, reliable filtering problems with sensor faults have also attracted many research
interests [25-27].

It should be noted that disturbances considered in those papers are all considered in full frequency
domain. However, practical industry systems often employ large, complex, or lightweight structures,
which include finite frequency fundamental vibration modes. Thus, it is more reasonable to design
reliable filters in finite frequency domain. However, to the best of the authors’ knowledge, reliable
filtering problems for NCSs subject to packet loss and quantization have not been fully investigated,
especially in finite frequency domain where faults occur frequently. This motivates the investigation of
this work.

In response to the above discussions, in this paper, the reliable finite frequency filtering problem for
NCSs subject to packet loss and quantization is investigated in finite frequency domain against sensor
stuck faults. Specifically, with consideration of quantization, possible packet losses and possible sensor
stuck faults, NCSs are modeled in a framework of discrete time-delay switched system. Then, the
definition of finite frequency /5 gain is given and an analysis condition to capture such a performance for
discrete time-delay switched system is derived. With the aid of the derived conditions, a reliable filter
is designed and the conclusions are presented in terms of linear matrix inequalities (LMIs). Finally, an
example is given to illustrate the effectiveness of the proposed method.

The reminder of the paper is organized as follows. The problem of system modeling for NCSs with
packet losses and quantization is presented in Section 2. Section 3 provides sufficient conditions for the
design of reliable filters. In Section 4, an example is given to illustrate the effectiveness of the proposed
method. Finally, some conclusions are presented in Section 5.

Notations: Throughout the paper, the superscript 7" and —1 stand for, respectively, the transposition
and the inverse of a matrix; M > 0 means that M is real symmetric and positive definite; I represents the
identity matrix with compatible dimension; ||-|| denotes the Euclidean norm; P is the probability measure;
E(-) denotes the expectation operator; [, denotes the Hilbert space of square integrable functions. In
block symmetric matrices or long matrix expressions, we use * to represent a term that is induced by
symmetry; The sum of a square matrix A and its transposition A is denoted by He(A) := A + AT.
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2. System Model and Problem Formulation

The NCS under consideration is setup in Figure 1, where the discrete-time plant is of the form:
x(k+1) = Az(k) + Bw(k)
y(k) = Cx(k) (D
where z(k) € R™ is the state, y(k) € R™ is the measured output, z(k) € RP? is the controlled output

and w(k) € R? is the exogenous disturbance which is assumed to belong to I3[0, 00). A, B, C' and E
are known real constant matrices with appropriate dimensions.

Figure 1. Structure of the Networked Control Systems.
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[

Networks

In this paper, we make the following assumption:
Assumption 1. System (1) is stable.

Remark 2. Assumption 1 is required to get stable dynamics of the filter system. If this assumption is not

satisfied, a stabilizing output feedback controller is required.

When the sensors in the NCSs experience faults, we consider the following sensor stuck fault model
similar to [28],
y" (k) = Fy(k) + (I = F)ysi(k), i=0,1,2,....q 2)

where ¢ is the quantity of the possible fault modes and
with y;;(k)(7 = 1,2,...,m) being the low frequency fault of the kth sensor. Further, F; is defined as

E:diag{ﬂlaFi27"'7Em}
Fp=0orl, k=12...,m

“4)

It is also assumed that, as shown in Figure 1, the measurement signals will be quantized before
transmitting via the networks wherein data missing may occur. The following logarithmic quantizer as
proposed in [29] is applied,

2 if —L—plvg <v<-—L—ph
P Yo m;ﬂ 0 > m;ﬂ 0
q(v) =140 if v=0 (5)
—q(v) if v<0
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where the parameter 0 < p < 1 is termed as quantization density and

6= (1—p)/(1+p) (6)
From [29], we can obtain
q(v) = (I +A)v (7)

where A, € [—d,, J,] is a suitable model for the logarithmic quantizer ¢(v) with parameter d,.
Therefore, the faulty measurements together with quantization and the data transmission in the
networks can be described by

ot (k) = (I + Ay (k) + (1 — a)(I + Ag)y™ (k — 1) (8)

where o € R is a Bernoulli distributed white sequence with

Specifically, if a = 1, the quantized signal (I + A,)y’ (k) is successfully transmitted, otherwise the

transmission fails, i.e., the phenomenon of data missing.

Remark 3. The description of data transmission (8) was introduced in [30]. It can be seen that the
output y(k) of the system model is (I + A,)y* (k) with probability & at k-th sampling time, and the value
(I + Ay (k — 1) with probability 1 — 5. Obviously, if the binary stochastic variable « takes the value

0 consecutively at different sample times, the consecutive data missing would occur.

In this paper, the following reliable filter is constructed:

€))

where Ay, By and C} are filter parameters to be designed.
Denoting ¢ (k) = [27 (k) iT(k)]T and e(k) = z(k) — Z(k), then the filtering error system for the
1th fault mode can be described by the following two subsystems.

S1: No packet dropout occurs.
((k+1) = Ayi¢(k) + AraiC(k — 1) + Byw(k) + Baiysi (k)
e(k) = C¢(k)
Sy: Packet dropout occurs.
C(k 4 1) = AgiC(k) + AzaiC(k — 1) + Buw(k) + Baysi(k)
e(k) = C((k)
where

A 0
By(I+A)FC A,

0 0
0 0

A0
0 A

0 0
Bi(I+Ay)FC 0

Aldi

A

[ A Asdi ] =
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B 0
[Bw‘Bsi ] 1o By(I+A)(I - F)
C:[E—Cf}

Due to packet drop-out, the filtering error system can be seen as combined by subsystem S; and Ss,
which can be lumped into the following discrete time-delay switched system:

C(k + ]‘) = AJMC(]C) + Aokdig(k - ]-) + wa<k) + Bszysz(k)
e(k) = CC (k)

where oy, is switching signal with o}, € S = {1,2} being a piecewise constant function.

(10)

Next, we will discuss how to design the filter parameters Ay, By and C. In order to formulate the

problem clearly, the following definitions are first given.

Definition 4. (Asymptotical Stable) System (10) is said to be asymptotical stable under switching signal

Ok, if the solution satisfies

lim [|C(K)[| = (11)

k—0

Definition 5. Ding et al. [17] Let v > 0 be a given constant, then the filtering error system (10) is said
to have a finite-frequency lo gain v, if inequality

> e(k)e(k) <> w(k) w(k) (12)

k=0 k=0

holds for all solutions of Equation (10) with w(k) € ly such that the following hold

(i) For the low-frequency range |0| < ¥,

D Gk +1) = CRN(Ck +1) = (k) < (282'“%)2 YRR (13)

(ii) For the middle-frequency range 11 < 0 < U,
' (C(k+1) — & ¢(k) (C(k + 1) — e 72¢ (k)" <0 (14)
=0

where ¥, = (Vo — 1) /2.
(iii) For the high-frequency range |0| > vy,

S G+ 1) = CHREk+1) — )T > 2sin 2P SRR a5)
k=0 k=0
Now, the reliable filtering problem to be addressed in this paper can be formulated as follows:
Design a stable reliable filter (9) such that, for the quantization error, possible data missing and sensor
faults, the filtering error system (10) is asymptotical stable, and with a prescribed finite-frequency /, gain
7 from w(k) to e(k) by satisfying the following specification

le ||z<%Z||w M2 V6, (16)
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and a prescribed low frequency [, gain ~y, from y,;(k) to e(k) by satisfying

S lle®)lz <73 lysi(k)llzs V0. < Vg (17)
k=0 k=0

where 6, and 6, represent the frequency of the disturbance and the stuck faults, respectively.
Before ending this section, the following lemmas will be first given to help us to prove our

main results.

Lemma 6. (Finsler’s Lemma) For + € R", £ € R™™, 4 € R™™, let 4+ be any matrix such that

UL = 0. The following statements are equivalent:

(i) 27 Lx < 0,YUT2 = 0,2 #0,
(i) YHeut” <0,
(iii) Ip € R™ : £ — psl” < 0,
(iv) 3 € R™*" . £+ U +PTur < 0.

Lemma 7. Given the matrices E and F with appropriate dimensions, then
EAF + FTATET <0

where AAT < I, if and only if there exist a scalar € > 0 such that

e 3 FT o3iF ]

3. Main Results

In this section, the reliable filtering problem proposed in the above section will be investigated.

Lemma 8. Consider system (10) fori = 0,1, ..., qand a given scalar y; < 0, then Equation (16) holds,
i.e., system (10) is with a finite frequency ly gain v, if there exist matrices Py, ; = 733“ R; = RY and
Qoi = QF . >0, oy € {1,2} such that the following inequalities hold

cool [cool

T
Aaki Aakdi Bw - Aaki Aakdi Bw
- 00 I

I 0 0 I 0 0

- . (18)

T —_
I 00 R, O I 00
4 <0
0 I 0 0 —R; 0 I 0

where 11 =

I 0
and
0 —’y% I ]

(i) For the low-frequency range |0,,| < 9,

EZ' — _,Pa'k+1i oni (19)
Qaki Paki — 2c080 oni
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(ii) For the middle-frequency range v, < 6, < 15

_Pak+1i ejﬂc Qaki (20)
e Qi Pai — 200804 Qg

[1]

where V. = (03 + U1)/2, ¥ = (V2 — 1) /2.
(iii) For the high-frequency range |0.,| > Oun

EZ‘ - _P0k+1i _QO'ki (21)
_QUki Paki + 2008?91Uh QUki

Proof. We first consider the middle-frequency case for system (10) with y.(k) = 0. Assume
Equation (14) holds, pre- and post-multiplying it by [ (k) sT(k) ] and its transpose, we can derive

T (k) (Poyi + Ri)C(k) = ¢ (k + 1)PoyiC(k +1) = (T (k = DRiC(k — 1)
+ el (k)e(k) — viw” (k)w(k) (22)
+t1{ Qo (7" C(R)CT (k + 1) — e777C(k + 1) (k) — 2co89,((k)CT ()} < 0

Summing up Equation (22) from 0 to oo with respect to k, it is easy to obtain

>° (B (k)e(k) — 72w (k)w(k)) ) + 1r{ Q0 Z} <0 (23)

k=0

since system (10) is asymptotical stable and £(0) = 0, where
Z =) (k)T (k+ 1) + e ¢ (k + 1)¢T (k) — 2c0804,¢ (k)¢ () (24)
k=0

It is easy to prove that —Z is equal to the left-hand side of Equation (14), thus we have Z > 0. Further,
from Q,,; > 0, one can obtain that the term ¢r{Q, ;Z} > 0 while Equation (14) is satisfied. Hence we
have 77 (E(e” (k)e(k) — viw™ (k)w(k)) < 0, which is equivalent to the condition Equation (16) for
middle-frequency in Definition 5.

Similarly, by choosing ¥, := —1,,;, U5 := ¥, for low-frequency case and ¥1 := UV, Vg := 27 — Dy,
for high-frequency case, respectively, the results for these two cases can be derived by following the
same procedure of the above proof. This completes the proof. [

Remark 9. Lemma 8 presents an analysis condition for finite frequency ly gain of system (10), where less
conservatism is introduced compared with the existing full frequency conditions when frequency ranges
of disturbances are known.

Remark 10. The sufficient condition, which guarantees a prescribed low frequency ly gain from ys;(k)
to e(k) for system (10), can be obtained by following the same process of Lemma 8 and utilizing relevant

system matrices.
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3.1. Finite Frequency Performance from w(k) to e(k)

In this section, sufficient conditions to capture the finite frequency performance from w(k) to e(k) for
system (10) will be derived with the aid of Lemma 8.

Theorem 11. Consider system (10) in fault free and faulty cases (i.e., i = 0,1,...,q) for given low
frequency range |0| < 0, which is with a prescribed ly gain v, from w(k) to e(k), i.e., the condition

(16) holds if there exist a scalar €, > 0, matrices X, Y, N, A¢, By, Cy and

IPLTZ’ — P, = P * ’ ,P’Z; — P = P.i1 * ’
PLi? PLi3 Pm‘Q ng
Ri K1

R?:Ri: L g Qgi:Qm': Crir * >0
RZQ Ri3 QmiQ meﬂ

with v,k € {1, 2} such that the following conditions hold

v <0 (25)
where
[ —Pii1 * * * * * * * ]
—Pia —Piz * * * * * * *
Qmil - X sz? - N \Ilg * * * * * *
Quiz =Y Quis—N ¥} 151 * * * * *
U= 0 0 w3 5 w2 * * ok
0 0 0 0 —RZ‘Q —'R,Z'g * * ES
0 0 BTxT BTyT 0 0 3 *
0 0 E -Cy 0 0 0 -1 *
I 0 0 B} B} 0 0 0 0 —eif
and
\Ifg(lﬁj = 1) = 'Pm-l — 200519le,€¢1 + Rﬂ + 5§€1CTFiTFiC + He(XA + BfEC),
\IJ%(/{ = 2) = Pm'l — ZCOSﬁwl Qm’l + Ril + HG(XA),
\I/i(/i = 1) == 7),“'2 — 200819le,%'2 + Riz + BfFZO + A? + ))A,
‘Ifi(l‘i = 2) = Priz — 2€050; Qpio + Riz + A? + VA,
Ul = Pz — 20080, Qpis + Riz + He(Ay),
Ur=1)=Qr=1)=0, Uik =2)=Q4(k =2) = CTF/B}
‘yg(/ﬁ = 1) = _Rib qjg(/‘i = 2) = _Ril + 5;€1CTF;-TF1'C

Proof. Itis shown, from Lemma 8, that the condition (16) can be reached if Equation (18) holds. Further,
the inequality (18) can be rewritten to

JAJT <0 (26)
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AT T 00
where J = | AT, 0 I 0 | and
BT 00 I
—P.i * * *
A — Qui Pui — 20050, Qi + R +CTC  * *
0 0 —R,; *
0 0 0 -2

Exploiting Lemma 6 and explicit null space bases calculations on Equation (26), it is easy to get that
Equation (26) holds if and only if

A+H6<JL[O WT 0 0]) <0 27)
that is
_Pm' * * *
Qm’ - W Pm' - 2COSﬁwl Qm' + Rz + CTC + H€<W"4m) * * < 0
0 ’Agﬁ’in _RZ *
0 BIwT 0 —2

T
where W is a matrix variable introduced by Lemma 6 and J+ = [ -1 A, B, A is utilized.

Performing Schur’s complement on Equation (27) yields to that

P, * * * *
Qui =W Prui — 2008051 Qi + Ri + HeOWA,) * *
0 AL WT —R;  * x | <0
0 BIwT 0 —30 =x
i 0 C 0 0 —1 |

Partitioning )V as the following form

X N
W = [ Vv N ] (28)
defining the following new variables
A; =NA;, By =NB; (29)
and applying Lemma 7 on Equations (27), (25) can be reached easily. This proof is completed. U

Remark 12. In Theorem 11, by introducing a variable VW, the coupling between the Lyapunov matrices
and the filter gains will be eliminated, which does not present any structural constraint.

The previous Theorem 11 presented the condition to capture the low frequency performance.
Similarly, conditions for middle frequency and high frequency performance are presented in the
following two corollaries.
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Corollary 13. Consider system (10) in fault free and faulty cases (i.e., © = 0,1, ..., q) for given middle
frequency range 01 < |0, < Uy, which is with a prescribed ly gain v, from w(k) to e(k), i.e., the
condition (16) holds if there exist a scalar £, > 0, matrices X, ), N, Ay, By, Cy and

PL’L' * PK’L *
Pr=Pi=|_" , Ph=Pa=| " ,
PLZQ PLiS Ple me%
Ri * Ki *
R;T:Rl: ! ) QZZ:Qm: Ql >0
Riz Ris Qriz Qi3
with v, k € {1, 2} such that the following conditions hold
¥ <0 (30)
where
i —P,i1 * * * * * * % x|
—P.io —P.is * * * * * * *
e Qi — X e QT N U3 * * * * * *
e Quis =Y €7 Qus—N U} v * * * * *
v = 0 0 VE VE w2 * * * *
0 0 0 0 —Rip —Ri  *
0 0 BTxT BTyT 0 0 3 *
0 0 E -C; 0 0 0 I =«
] 0 0 Bl Bf 0 0 0 0 -l

andﬁc = (192 + 191)/2, 7910 == (192 — 191)/2,

U3k = 1) = Prir — 2c050 Quir + Riy + 0;e:CTF F;,C + He(X A + B;F,C),
Ud(k = 2) = Pt — 2080, Qi1 + Ri1 + He(X A),
U3k =1) = Puia — 2089, Qpin + Rin + B FiC + Aif + VA,
Uik = 2) = Pria — 2c0504 Quin + Ria + A} + VA,
U3 = Pris — 2c050,Quuis + Ris + He(Ay),
Vk=1)=Q(k=1)=0, Uik=2)=Qr=2)= C’TFiTB?
Ui(k=1)=—Ry, Ui (k=2) = =R+ 0,e1CTFIF,C
Proof. By following the same lines of Theorem 1, it is immediate. [

Corollary 14. Consider system (10) in fault-free and faulty cases (i.e., © = 0,1,...,q) for given high
frequency range |0,,| > V., which is with a prescribed 1y gain v, from w(k) to e(k), i.e., the condition
(16) holds if there exist a scalar €, > 0, matrices X, Y, N, Ay, By, Cy and

/PLI; = PLi — Pw‘l * 7 PIZ; _ Pm _ Pm’l * ’
PLZQ ,Pn'g Pm’Q Pm’?,
Ri K1

'R?Z'Ri: 1 X ’ Qgi:Qni: Quit * -
RZQ RB Qnﬂ Qm'?;

with v, k € {1, 2} such that the following conditions hold

v <0 3D
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where
[ — il * * * * * * * * i
— 2 — i3 * * * * * * %
Qw1 — X —QL,-N U3 * * * * * .
—Quiz—Y —Quiz—N ¥} v * * % % %
U = 0 0 \Ilg \Ilé ‘Ilg * * * *
0 0 0 0 —Rio —Ris * * *
0 0 BTxT BTyT 0 0 I *  x
0 0 E  —C; 0 0 0 I =«
I 0 0 B} B} 0 0 0 0 —eil |
and
\Ifg(li = 1) = P.i1 + 2080, 9i1 + Ri1 + 53810TFZ<TFiC + H@(XA + BfFl'C),
U3(k = 2) = Poit + 20804 Qpi1 + Rix + He(X A),
\I/i(/i = 1) = Pm‘Q + 260879th,“‘2 + Rig + BszC -+ A? + yA,
Uik = 2) = Priz + 2c080u3 Qriz + Ri + A + VA,
U = Pris — 2c050;Qpis + Rz + He(Ay),
Vk=1)=Q(k=1)=0, Uik =2)=Q4(k =2) = CTF/B}
Ui(k=1)= Ry, Vi (k=2) = =R+ 0,e1CTFIFC
Proof. By following the same lines of Theorem 1, it is immediate. ]

3.2. Low Frequency Performance from y4; (k) to e(k)

In this subsection, sufficient conditions to capture the low frequency performance (17) for system (10)
will be deduced.

Theorem 15. Consider system (10) in faulty cases (i.e., 1 = 1,...,q) for given low frequency range
05| < O, which is with a prescribed low frequency ls gain s for nonzero yg(k), i.e., condition (17)
holds, if there exist a scalar €5 > 0, matrices X, Y, N, A, By, Cy and

Psuil *

Psm' *
733,121 - Psw' = 5 st,;z = Psm' = ! s
Psw'Q 7Dsw'3 Psm’Q Psm'3
Rsi * SK1 *
RL =Ry= ' QT = Q= | O >0
7?/52'2 RsiS Qsm’Q Qsm’3
with v, k € {1, 2} such that the following conditions hold
0<0 (32)
where
[ —Psii1 * * * * * * * ]
—Psii2 — 3 * * * * * * *
Qsm’l - X sz'g - N Qg * * * * * *
Qsm’2 - y Qsm'?) - N Qi Qi * * * * *
Q= 0 0 Qg Qé Qg * x % *
0 0 0 0 —Rsiz —Rsis * * *
0 0 (I-F)'B} (I-F)"Bf 0 0 QF « <
0 0 FE -C f 0 0 0 -1 *
i 0 0 B} B} 0 0 0 0 —eof |
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and
Q3(k = 1) = Popin — 200800 Qarin + Resir + 062CT FF,C + He(X A+ B FC),
D (k = 1) = Porit — 2c0894 Qi1 + Ruit + He(X A),
Qi (k= 1) = Papiz — 2¢050 Quniz + Resiz + By F,C + A} + VA,
Q3 (k = 2) = Pyniz — 20503 Qniz + Reio + A? + 4,
Q4 = Pouiz — 2089, Qs + Rsiz + He(Ay),
Q3 =1) =0, Q3(r = 2) = CTF/'B],
(k= 1) = —Ra, Bk =2) = —Rair + ;6207 F FC,
OF = =31 + daeo(1 — F3)'(1 = Fy),

Proof. 1t is easily derived, from Lemma 8 and Remark 10, that the condition (17) holds if

Ay Avsi Bul _ [ A Asu B cool" Tcool
=d + 11
I 0 0 I 0 0 0 0 I

T - - (33)
I 00 R 0 I 00

+ <0
0 I 0 0 —Rg 0 1 0

where =, has the similar structure as in Lemma 8 for low frequency case.

Following the same process in Theorem 11, we first rewrite the inequality (33) to the following form,

£oel <0 (34)
A';fi I 00
where £ = T, 0 I 0| and
T

B fi 0 0 I

_Psw' Qsm' k *

@ . Qsm' Ps;«ci - 26081931 Qsm’ + Rsi —+ CTC * ES

0 0 0 —7%]

Exploiting Lemma 6 and explicit null space bases calculations on it, we have Equation (34) is

equivalent to

E+He(£L[O wr o 0]) <0 (35)
that is
[ —Ps.i * * * x ]
Qm' - W Psm' - 200319&1 Qsm' + Rsi + HG(WA:‘%) * * *
0 AgdiWT —Ri * <0
0 Biw?” 0 —yal =x
I 0 C 0 0 -1 |

T

where )V is a matrix variable introduced by Lemma 8 and £+ = [ -1 A, Awii Byi } is utilized.
By applying Lemma 7 on Equation (35), the inequality Equation (32) can be reached easily. This
proof is completed. 0
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3.3. Stability Condition

Since Theorems 1 and 2 presented in the above section cannot guarantee the stability of the system

(10), in this subsection, asymptotical stability conditions for system (10) will be presented.

Theorem 16. Consider system (10) in fault free and faulty cases (i.e.,© = 0,1, ..., q), it is asymptotical
stable when w(k) = 0 and ys;(k) = 0, if there exist a scalar €3 > 0, matrices X, Y, N, Ay, By, Cy and

[P
T awtl
Pau’ — P(I,Li — > O
i PaLiZ PaLi3
K-
T akil
Pam' g Pa/«ci pr— > O
i Pam? Pam'S

RT —Ryi—| Rat * |
7—\)'ai2 Rai3

with v, k € {1, 2} such that the following conditions hold

b <0 (36)
where
[ Pt — He(X) * * * * * ]
Paviz =Y = N1 Paiz — He(N) * * < < *
(I)é CI% @g * * * *
P = A;cp ./435 —Pariz + Raiz  —Pariz + Rai3 * * *
(I)% Q)g 0 0 <I>55’ * *
0 0 0 0 —Raiz —Raiz  *
I B} B 0 0 0 0 —e3l |
and
Pk =1)= ATXT + CTFI'BY, Pk =2) = ATXT,
P2k =1)= ATYT + CTFI BT, Pk =2) = ATYT
Pk =1) = —Puagit + Rair + 5353CTETEC, P3(k = 2) = —Parit + Rait,
Olk=1)=®%rk=1)=0, (k= 2) = Pi(r =2) = CTF B,
(I)g(/i = 1) = _Raila (I)g(li = 2) - —Raﬂ + 62530TETEC.

Proof. Consider the following Lyapunov functional candidate for w(k) = 0 and y;(k) =0
Vii (k) = ¢ (k) PawiC (k) + ¢" (k = DRai¢ (k — 1) (37)
The forward difference of the Lyapunov functional V;(k) along the trajectories of the system (10) is
given by
= CT(k)(AZzPawAm - Pabi + RaZ)C(k) + CT(k)(AgzPaLZAKdZ)C(k - 1)
+ ¢ (k= 1) (AL PaiAni)C (k) + ¢ (k= 1) (AL PaiArdi — Rai)((k — 1)
= &' (k)Y (k)

(38)
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where £(k) = [ (T(k)y ¢T(k—-1) }T and

T R AZ’[PGLZ'AH’L' - Pau,' + Rai *
" AT PaLiAm AT PaLiAmdi - Rai

rdi rdi

By following an opposite direction to the proof for Theorem 11 and exploiting Schur’s complement
and Lemma 7 on Equation (36), we have T,; < 0, which implies that AV,;(k) < 0. Therefore, from
Equation (38), one can easily obtain, for a sufficiently small scalar p > 0 and (k) # 0, that

AVii(k) < —pll¢ (k)P (39)

Then, from Definition 4, the asymptotical stability of system (10) can be established. This proof is
completed. [

3.4. Algorithm

Based on the above analysis, a set of optimal solutions A, By and C'y can be obtained by solving the

following optimization problem for given d:

min  ay; + by,

s.t. (25), fori=0,1,...,q,
(40)
(32), fori=1,2,...,q,
(36), fori=0,1,...,q,
where a and b are weighting factors.
Then the dynamic output feedback controller gains can be computed by the following equalities:
Ay =N"'4;, By=N"'B;, C;=0C; (41)

Remark 17. On the other hand, we can obtain a coarser quantizer through solving the following

optimization problem for given finite-frequency ls gains v, and

max 4,

s.t. (25), fori=0,1,....q
(32), fori=1,2,...,q
(36), fori=20,1,...,q

(42)

4. Example

In this section, an application and simulations are given to illustrate the effectiveness of the

proposed methods.
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The utilized model is the F-404 aircraft engine described by the following state space model [31],

[ —1.4600 0 2.4280 —0.09
i(t)= | 0.1643 —0.4000 —0.3788 | z(t)+ | —0.14 | w(t)
| 0.3107 0 —2.2300 0.02
(110 (43)
1) = ¢
y(t) 01 1]9:()
[ 02 —07 05
1) = ¢
D=10s5 o6 _0.4]:13()

Assume the sampling period is h = 1s, and packet transmission is as shown in Figure 2, which is

subject to the rate of packet lost 1 — 0 = 0.32.

Figure 2. The number of the lost packet.

H :

number of the lost packet
T

LU

0 5 10 15 20 25

30 35 40 45 50

time steps (k)

For given 9,; = 0.2, ¥4 = 0 and J, = 0.6, solving the optimization problem (40), we can obtain the

optimal value for low frequency performances are, respectively, v; = 0.0825 and v, = 0.0378 with the

corresponding reliable filter parameters

[ 0.1454 —0.0418  0.0447
F(k+1)= ] 07084 0.1740  0.1958
| 0.0246  0.0061 —0.0620

Sk = [ 0.7055  0.8941 —0.0583

| —1.2318 —0.7672  1.4227

0.0813  0.0813

F(k)+ | 02741 02741 |yl (k)
—0.0049 —0.0049 (44)

] z(k)

In the following, the system is simulated in low frequency domain, where the faults always occur,

under the following two fault modes with zero initial condition and the disturbance input w(k) is

w(k) =

0.5sin(k),
0,

which is shown in Figure 3.

10< k<15

otherwise
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Figure 3. The disturbance input w(k).

0.5 T - T .

0.4

0.2

0.1

-0.1

-0.2

-0.3

-0.4
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Mode 1. The first sensor being stuck at 0, i.e.,

F =

0 0
01

and y,; (k) = 0 when k£ > 30.

Mode 2. The second sensor being stuck at 0, i.e.,
1
F = 0
0 0

The controlled outputs and the corresponding estimations for both the two fault modes are shown in

and ys; (k) = 0 when k& > 30.

Figures 4 and 5, respectively, where the blue solid lines are the controlled output while the red dashed
lines are their estimations.

It is easily seen from these figures that all the expected system performance requirement are well
achieved, which shows the effectiveness of the proposed method.
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Figure 4. The z(k) (blue solid) and Z(k) (red dashed) when faulty mode 1 occurred.
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Figure 5. The z(k) (blue solid) and Z(k) (red dashed) when faulty mode 2 occurred.
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5. Conclusions

In this paper, the reliable finite frequency filtering problem for NCSs subject to quantization and
packet have been studied with finite frequency specifications when sensor fault would occur. The
considered NCSs have been first modeled as a discrete time-delay switched system. Subsequently, a
sufficient condition to characterize the finite frequency [/, gain has been presented. Then by virtues of
the derived condition, a procedure of reliable filter synthesis has been derived in terms of LMIs. Finally,
an example has been given to illustrated the effectiveness of the proposed method.
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