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Abstract: In this study, the design, fabrication, surface functionalization and experimental 
characterization of an ultrasonic MEMS biosensor for urinary anti-apoptotic protein B-cell 
lymphoma 2 (Bcl-2) detection with sub ng/mL sensitivity is presented. It was previously 
shown that urinary Bcl-2 levels are reliably elevated during early and late stages of ovarian 
cancer. Our biosensor uses shear horizontal (SH) surface acoustic waves (SAWs) on 
surface functionalized ST-cut Quartz to quantify the mass loading change by protein 
adhesion to the delay path. SH-SAWs were generated and received by a pair of  
micro-fabricated interdigital transducers (IDTs) separated by a judiciously designed delay 
path. The delay path was surface-functionalized with monoclonal antibodies, ODMS, 
Protein A/G and Pluronic F127 for optimal Bcl-2 capture with minimal non-specific 
adsorption. Bcl-2 concentrations were quantified by the resulting resonance frequency shift 
detected by a custom designed resonator circuit. The target sensitivity for diagnosis and 
identifying the stage of ovarian cancer was successfully achieved with demonstrated Bcl-2 
detection capability of 500 pg/mL. It was also shown that resonance frequency shift 
increases linearly with increasing Bcl-2 concentration.  
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1. Introduction 

Ovarian cancer is the fifth leading cause of cancer death among women in United States and it has a 
1.4% (1 in 71) lifetime risk [1]. Diagnosis of ovarian cancer in the early stages currently accounts for 
only 30% of all cases, and in most late stages the cancer is lethal. The lack of overt symptoms and the 
absence of a reliable screening test results in over 70% diagnoses occurring the disease has spread 
beyond the ovary, so the prognosis is poor [1]. The 5 year survival rate after diagnosis for late stage 
disease is less than 40%. Currently, pelvic examination, ultrasound and blood levels of serum 
biomarker CA125 are the standard screening methods for ovarian cancer [2–4]. However, each of 
these ovarian cancer detection methods has limitations. Pelvic examination is known to be obstructed 
by the intraperitoneal location of the ovaries and is typically capable of late-stage disease detection 
only. Similarly, ultrasonic examination does not possess the capability of distinguishing between 
benign and malignant cases and is subject to variation in interpretations among sonographers. CA125 
is the current standard biomarker for ovarian cancer diagnosis and monitoring [4]. It is present in the 
blood serum of ovarian cancer patients. However, it has been shown that CA125 levels can also be 
elevated due to other disorders, including inflammation, benign gynecological disease, or hepatic 
disease, leading to false positive results [5,6]. There are other biomarkers that have been associated 
with ovarian cancer such as eosinophil-derived neurotoxin [7], Mesothelin [8], VEGF [9], and  
HE4 [10]. There also exists a few biochips relying on fluorescence or chemiluminescence for ovarian 
cancer monitoring based on DNA sequences (testing for ovarian cancer-related mutations) [11,12] and 
protein biomarkers [13,14]. However, these biosensors use complex reagents such as DNA extraction 
kits and expensive laboratory equipment including fluorescence microscopes or plate readers, thus, are 
not suitable for point-of-care testing [15]. Recently, an enzyme-linked immunosorbent assay (ELISA) 
test based on a cell-phone-coupled optical sensor has been presented for point-of-care quantification of 
urinary HE4 levels [15]. However, the chemicals and substances used during ELISA tests are still 
fairly expensive, and special attention should be given for storage. The absence of reliable screening 
methods to detect early ovarian cancer contributes to poor prognosis. Therefore, the development of a 
new, reliable, simple, safe, and economic testing platform to detect ovarian cancer is imperative. 

Bcl-2 (B-cell lymphoma 2) is a protein that is directly related with apoptosis of healthy and cancer 
cells [16]. Apoptosis is the most common form of programmed cell death (cellular autophagocytosis, 
anoikis and necrosis are other forms). It has several other crucial functions, such as formation of the 
embryo, tissue maintenance, cellular homeostasis, terminating immune responses, and restricting the 
spreading of infections [17]. The Bcl-2 family, named after the Bcl-2 protein itself, includes both  
anti-apoptic and pro-apoptic constituents that control the release of catalysts of cell death. It was 
previously shown that urinary Bcl-2 levels are elevated during different stages of ovarian cancer [18,19]. 
Clinical validation of urinary Bcl-2 as a reliable biomarker for ovarian cancer was conducted with 
ELISA tests using urine samples collected from 388 patients, including healthy controls and patients 
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with benign gynecological disorders, early- and late-stage ovarian cancer [18]. The average urinary 
level of Bcl-2 was found to be 0.59 ng/mL in healthy controls, 1.12 ng/mL in benign disorders,  
2.60 ng/mL in early-stage ovarian cancer and 3.58 ng/mL in late-stage ovarian cancer. The highest 
Bcl-2 concentration observed in the study was around 10 ng/mL. The number of samples, average 
concentration, and standard deviation of Bcl-2 for these four patient groups are listed in Table 1. Signs 
of poor early stage diagnosis can be observed from the table of samples included in this study which 
represents actual availability of samples from tissue banks containing each stage of samples. Thus, 
analyzing the values in Table 1, the minimum detectable target concentration of Bcl-2 was chosen to 
be 0.5 ng/mL for design and for experimental characterization studies reported herein.  

Table 1. Elevated urinary Bcl-2 in cohorts for healthy controls, benign diseases, and  
early- and late-stage ovarian cancer (N:388) [18]. 

 Number of Samples Mean (ng/mL) Std. Dev. (ng/mL) 
Normal 77 0.59 0.61 
Benign 161 1.12 0.79 
Early-Stage Ovarian Cancer 13 2.60 2.23 
Late-Stage Ovarian Cancer 137 3.58 1.55 

The efficacy of Bcl-2 as a biomarker for ovarian cancer was further validated by comparison to 
CA125 serum levels using ELISA tests on 35 samples from the same cohort [18]. The comparison of 
Bcl-2 and CA125 levels for the same samples shows efficacy of Bcl-2 as a urinary ovarian cancer 
biomarker for reliable dual screening with CA125. 

The studied biosensor employs shear horizontal (SH) surface acoustic waves (SAWs) to identify 
mass loading changes caused by Bcl-2 binding specifically to antibodies on the sensor surface. It is 
composed of a pair of interdigital transducers (IDTs) microfabricated on ST-cut Quartz wafers in  
the direction 90° off x-axis and delay path specifically functionalized to capture Bcl-2 proteins  
while minimizing non-specific adsorption (Figure 1). An experimentally-verified optimized surface 
functionalization scheme was employed for effective capture of Bcl-2 protein while maximizing 
sensitivity and selectivity. The developed surface functionalization technique also minimizes the  
non-specific binding to the sensor surface. The sensor’s electrical connections were made by  
low-conductivity silver-reinforced epoxy. The experimental characterizations of the sensor’s response 
to varying Bcl-2 concentrations were performed in a custom-designed oscillatory circuit. The 
oscillatory circuit was composed of two RF amplifiers connected in series, a frequency counter, an 
oscilloscope (to monitor the signal), and the sensor, which was used as the feedback element 
determining the oscillation frequency. The characterization was performed by using multiple sensors 
with up to 10 tests conducted on a sensor by cleaning the delay path with 1.5 M NaCl solution in  
de-ionized (DI) water. The tests were done by placing 80 µL droplets of Bcl-2 solutions (in Dulbecco’s 
phosphate-buffered saline—DPBS) with various concentrations on the delay path. Quantification of 
the Bcl-2 concentration was achieved by monitoring the frequency shift for each solution. The 
frequency shift was caused by the change in surface density of the delay path (mass loading). As 
surface density increased by protein adhesion, SAW velocity decreased, resulting in a reduction in the 
oscillation frequency that was measured by the frequency counter. The frequency shift for each tested 
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concentration was measured, and the sensor was successful in detecting Bcl-2 concentrations as low as 
the target concentration, 0.5 ng/mL. It was observed that the frequency shift had a linear trend 
corresponding to increasing Bcl-2 concentration. Additionally, minimal frequency shift was observed 
for the control DPBS solution with no Bcl-2 present. 

Figure 1. Illustration of the sensor. 

 

In the following section, important design parameters, fabrication of the sensor, and surface 
functionalization are discussed in detail. In Section 3, the electrical characterization of the sensor  
and results are presented. The final section covers the discussions and conclusion along with the  
future work.  

2. Sensor Design and Fabrication 

2.1. Sensor Design 

The sensor uses shear horizontal surface acoustic waves, which are frequently used for liquid-loaded 
biosensing applications. In SH-SAWs, the particle displacement is in the plane of the surface (unlike 
normal-to-surface displacement of Rayleigh waves). SH-SAWs are not affected or damped by liquid 
loading, as compared to Rayleigh waves, in which the particle displacement is directly coupled with 
the liquid on top and highly damped by mass loading of the liquid itself. Thus, Rayleigh waves are 
virtually insensitive to mass loading changes in liquid sensing applications. On the other hand, almost 
all SH wave propagation on various substrates results in leaky waves (not pure waves like Rayleigh 
waves), which also leak into longitudinal and shear vertical wave components when excited. For this 
reason, special cuts of typical wafer types of wafers are typically used for SH waves, in which the 
energy is highly concentrated on the SH mode. Typical wafer types used in SH-SAWs are ST cut 
Quartz, 41° and 36° Y-cut lithium niobate (LiNbO3), and 36° Y-cut lithium tantalate (LiTaO3). The 
sensing mechanism of SH-SAW sensors relies on the change of SAW speed either by change in mass 
loading (most biological and chemical sensors) or by changing physical parameters. In general, the 
majority of SAW sensors include surface treatments and extra layers to effectively and specifically 
sense the target analyte. Several SH-SAW sensors have been reported using 36° Y-cut LiTaO3 [20], 
ST-cut Quartz [21,22], 36° Y-Cut Quartz [23], 41° Y-cut LiNbO3 [24,25], 64° Y-cut LiNbO3 [26,27], 
potassium niobate (KNbO3) [28], and langasite [29]. In the design stage, different alternative  
SH-SAW generating wafers (such as ST-cut Quartz, 36° Y-Cut LiNbO3, and LiTaO3) were tested with 
identical delay path designs and surface functionalization steps. It was observed that ST-cut Quartz is 
the most stable and the easiest to operate among those tested. ST-cut Quartz is also favorable for 
narrower bandwidth operation, and it does not need additional layers or gratings to concentrate the 
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energy in the surface. SH waves are present in the direction of 90° off the x-axis (parallel to primary 
flat) in ST-cut Quartz, so the features were designed to obtain wave propagation in this particular direction. 

The substrates used in this study were 3-inch, single-side-polished, 500 µm-thick ST-cut Quartz 
wafers. The SH-SAWs were generated and sensed by a pair of interdigital transducers separated with a 
delay path on these wafers. The pitch (corresponding to the wavelength of the SAW) was chosen as 
300 µm, ensuring fabrication yield and tolerable wave attenuation through the delay path. Each finger 
of the IDT was 75 µm wide (corresponding to the one quarter of wavelength) for the most efficient 
SAW generation, as reported by others [30]. The design parameters of the sensor are illustrated  
in Table 2. 

Table 2. Sensor design parameters. 

Wavelength (λ) 300 µm 
Finger width (λ/4) 75 µm 
Finger length 6,250 µm 
Number of IDT finger pairs 20 
Total sensor size 28 mm × 22 mm 
Delay path length 12 mm (40λ) 
Resonance frequency 16.8 MHz 

2.2. Fabrication 

The IDTs were microfabricated using conventional MEMS fabrication techniques with a  
single-mask photolithography process. The fabrication steps are illustrated in Figure 2. The fabrication 
process started with cleaning the wafer in an acetone bath placed in an ultrasound cleaner for 10 min, 
followed by rinsing with methanol and DI water and dried by a stream of nitrogen (Figure 2(a)). The 
metal film (Cr) was then sputtered by DC sputtering (CRC Sputter, Torr International, New Windsor, 
NY, USA) for 5 minutes at 200 mA constant current to obtain a film thickness of 1,000 Å  
(Figure 2(b)). After sputtering, the wafers were cleaned once again with acetone, methanol, and DI 
water and dried with nitrogen. A positive photoresist S1813 (Shipley, Marlborough, MA, USA) was 
then spun on the wafer. Photoresist was spun initially for 10 seconds at 700 rpm to be spread around 
the wafer, and then for 40 seconds at 3,000 rpm to reach the desired thickness (Figure 2(c)).  
A photoresist thickness of 1.6 µm was obtained using this recipe. The wafers were then soft-baked at 
90 °C for 60 seconds before exposure. After soft bake, the wafers were exposed to UV light for  
5 seconds with an average intensity of 25 W/m2 to transfer the features from the mask to the wafers 
(Figure 2(d)). The exposed wafers were then developed in developer MF-319 (Shipley) for 70 seconds 
to remove the exposed portions of the photoresist. The wafers were then hard-baked for 5 minutes at 
100 °C. The features were formed by etching for 40 seconds (Figure 2(e)). Then, the remaining 
photoresist was removed in an acetone bath (Figure 2(f)). After completing the fabrication process to 
realize the sensors, the wafers were coated with photoresist to protect the features during the dicing 
process. The dicing of the ST Quartz wafer was performed using resin-bonded diamond blades at a 
spindle speed of 20 K rpm and a feed rate of 1 mm/s in the dicing saw. One of the fabricated ST-cut 
Quartz sensors used in this study is illustrated in Figure 3. It should be noted that the yield was found 
to be very close to 100% with these optimized fabrication parameters. 
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Figure 2. Overview of sensor fabrication: (a) ultrasound cleaning; (b) chromium deposition; 
(c) photoresist spinning; (d) exposure; (e) wet etching of chrome; (f) photoresist stripping. 

 

Figure 3. Fabricated ST-cut Quartz sensor. 

 

The electrical connections to the sensors were obtained with a low-conductivity silver-reinforced 
conductive epoxy (Duralco 120, Cotoronics Corp., Brooklyn, NY, USA). This connection method was 
preferred over the wire bonding method because stronger connections are desired during tests and it is 
not possible to solder chromium. Unlike the wire bonding method, it was observed that the conducting 
silver epoxy successfully withstood the solvents used in the surface functionalization of the delay path. 

2.3. Surface Functionalization  

The sensor will quantify Bcl-2 levels in aqueous solutions, so it is necessary to apply surface 
treatments to the delay path section of the sensor to specifically and selectively sense the target protein. 
Molecular self-assembly techniques involving bioconjugation were employed to develop an effective 
Bcl-2 capture method. Bioconjugation can be defined as molecular linking of two or more components 
to construct a compound—namely, molecular self-assembly of several reagents for a desired  
purpose [17,31]. A scheme was developed to isolate the Bcl-2 protein from a solution via specific 
binding to a monoclonal capture antibody that is immobilized on the sensor surface. More specifically, 
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self-assembled monolayers (SAMs) and blocking agents were used to optimize Bcl-2 capture on the 
sensor surface. The surface functionalization developed in this study is novel as it is the first of its kind 
to isolate and capture Bcl-2 protein using functionalization by surface assemblies. The method was 
optimized for most effective Bcl-2 capture, with trials of several different SAMs and recipes, which 
were presented in detail in [17]. The optimization was handled by modified sandwich ELISA tests. The 
surface functionalization recipe employed in this study is summarized in the following steps (Figure 4):  

• First, oxygen plasma cleaning of the surface was performed to remove organic residues and 
form hydroxyl groups on the surface. The sensors were oxygen plasma-cleaned for 5 minutes. 
The beaker in which the silanization was performed also was plasma-cleaned for 5 minutes. 
The hydroxyl groups serve as a foundation for organofunctional silanization.  

• Silanization was done using the organosilane, octyldimethyl silane (ODMS, molecular formula 
CH3(CH2)7Si(CH3)2Cl, Sigma Aldrich, St. Louis, MO, USA) using a solution of 474 µL of 
stock ODMS in 20 mL of acetone resulting in an ODMS concentration of 0.1 M. ODMS 
provides the linkage between organic and inorganic domains through hydrophobic interactions. 
The sensors were kept in the solution for 30 minutes, while IDTs were protected by Kapton 
tape. If the IDTs were not protected, it was observed that the chromium was attacked by HCl 
formed during the silanization process, and the sensor did not work properly. After the 
silanization step, the sensors were rinsed with acetone and ethanol and dried with nitrogen.  

• Protein A/G (Pierce Recombinant Protein A/G, Thermo Fisher Scientific, Rockford, IL, USA) 
with a concentration of 1 µg/mL in Dulbecco’s Buffer Phosphate Silane (DPBS, Life 
Technologies, Grand Island, NY, USA) was employed for immobilizing antibodies. The 
sensors were again placed completely in the solution for 1 hour. Protein A/G was adsorbed 
directly on the ODMS to ensure proper orientation of the antibodies on the sensor surface  
by binding their constant fragment (Fc) domains. The sensors were rinsed with DPBS after  
this step. 

• Immunoglobin G (IgG) antibodies (polyclonal rabbit anti-human Bcl-2, Sigma Aldrich,  
St. Louis, MO, USA) were used for Bcl-2 capture, which are Y-shaped with two antigen 
binding (Fab) regions and one Fc. The Fc regions were immobilized with the help of Protein A/G 
onto the surface, resulting in properly-oriented free Fab regions for the most effective Bcl-2 
capture and therefore maximum sensor surface affinity. A working concentration of 5 µg/mL of 
anti-Bcl-2 in DPBS was placed on the sensor surface as a droplet covering only the delay path 
for 1 hour. The sensor surface was then rinsed with DPBS before the final step. 

• Pluronic F127 (Sigma Aldrich) was adsorbed to obtain a non-fouling surface for highly 
selective Bcl-2 capture, which is essential for a diagnostically applicable sensor. The Pluronic, 
a tri-block copolymer whose non-fouling nature is mediated by its two polyethylene glycol 
(PEG) chains, prevents other molecules from non-specifically attaching to the sensor surface. 
The sensor was submerged in 10 µg/mL Pluronic F127 in DI water for one hour and then 
rinsed with DI water. 
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Figure 9. Measured frequency shift (Hz) for various concentrations of Bcl-2 in DPBS. 

 

Figure 10. Average frequency shift measured, corresponding to different Bcl-2 
concentrations and best line fit (R2 = 0.959). 

 
4. Discussion and Conclusions 

In this study, an ultrasonic MEMS biosensor for detection of urinary anti-apoptotic protein Bcl-2 
was successfully designed, fabricated, and experimentally characterized. SH-SAWs were employed 
with microfabricated IDTs on ST-cut Quartz to quantify the Bcl-2 concentration. SH-SAWs were 
generated and sensed by a pair of micro-fabricated IDTs separated by a surface functionalized delay 
path. An optimized recipe using SAMs of ODMS, Protein A/G, monoclonal antibodies, and Pluronic 
F127 was employed for the most effective Bcl-2 capture. The method was optimized for specificity 
and selectivity, with trials of several different similar SAMs.  

The sensor was experimentally characterized in a resonator circuit by placing buffer solutions of 
Bcl-2 of known concentration (in DPBS) on the delay path. Bcl-2 concentrations were characterized by 
the resulting resonance frequency shift caused by the mass loading increase of biomarker binding, 
which reduces the speed of the SH-SAWs. The target sensitivity for diagnosis and quantifying the 
stage of ovarian cancer was achieved with successful detection of Bcl-2 in the concentration range of 
0.5 to 12 ng/mL. It was also observed that there is a linear relationship between the shift in resonance 
frequency and Bcl-2 concentration. Each sensor was used up to 10 times after applying 1.5 M NaCl 
solutions in DI water to remove the proteins attached to the antibodies. It was also observed that due to 
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optimized fabrication process, the inter- and intra-array variation was minimal and had no measurable 
impact on the experimental results. The sensor developed was successful in detecting and quantifying 
Bcl-2 in the target concentration range. 

The sensor can potentially be employed in a point-of-care test device for monitoring and diagnosis 
at the patient’s bedside. The electrical components of the sensing system—RF amplifiers, frequency 
counter, and analog filter can potentially be miniaturized, assembled, and packaged in a standalone 
device with the sensor itself. A new, low-cost, accurate, safe, simple, and reliable testing platform to 
diagnose ovarian cancer by urinary Bcl-2 levels would benefit all women not only in the USA, but 
worldwide, including medically underserved geographical areas and women at high risk for developing 
ovarian cancer. This is especially important for detection of early-stage ovarian cancer, which is 
associated with high survival (>95%) and reduced lifelong medical costs, but currently accounts for 
less than 10% of diagnosed ovarian cancer cases. In addition to our sensor’s ability to accurately  
detect initial ovarian cancer cases, ovarian cancer monitoring during the course of the disease  
may indicate recurrent disease and, possibly, therapeutic efficacy. In 2009, 21,550 women were 
diagnosed with ovarian cancer in the USA [1]; this biosensor could potentially detect thousands of 
previously-undiagnosed cases. However, it should be noted that the efficacy of the method is limited 
by biomarker capability/availability. Future work includes plans to collect fresh urine samples from 
ovarian cancer patients for further validation of the sensor as a detection assay for Bcl-2. The urine 
samples with concentrations of Bcl-2 characterized by ELISA tests will be tested with this  
SAW-based sensor. 
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