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Abstract: This paper proposes a novel image region descriptor for face recognition, named 
kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are 
different effectual in characterizing and recognizing faces, we construct a weighting matrix 
by computing the similarity of each pixel within a face sample to emphasize features. We 
then incorporate the weighting matrices into a region covariance matrix, named weighted 
region covariance matrix (WRCM), to obtain the discriminative features of faces for 
recognition. Finally, to further preserve discriminative features in higher dimensional 
space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). 
Experimental results show that the KGWRCM outperforms other algorithms including the 
kernel Gabor-based region covariance matrix (KGCRM). 

Keywords: face recognition; Gabor features; weighted region covariance matrix; 
kernalization 

 

1. Introduction 

Feature extraction from images or image regions is a key step for image recognition and video 
analysis problems. Recently, matrix-based feature representations [1–6] have been developed and 
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employed for feature extraction. Tuzel et al. [3] introduced the region covariance matrix (RCM) as a 
new image region descriptor and have applied it to object detection and texture classification. RCM is 
a covariance matrix of basic features extracted from a region. The diagonal entries of the covariance 
matrix represent the variance of each feature, while the nondiagonal entries represent the respective 
correlations. Using RCM as region descriptor has several advantages. Firstly, RCM provides a natural 
fusion method because it can fuse multiple basic features without any normalization or weight 
operations. Secondly, RCM can be invariant to rotations. Thirdly, its computational cost does not 
depend on the size of the region. Due to these advantages, RCM has been employed to detect and track 
objects [3,5], and has achieved promising results. The RCM in [3] and [5] were constructed using the 
basic features including the pixel locations, color values and the norm of the first and second order 
derivatives. However, directly employing RCM for human face recognition cannot achieve higher 
recognition rates. In order to improve face recognition rates, Pang et al. [4] proposed the Gabor-based 
RCM (GRCM) method using pixel locations and Gabor features to construct region covariance. As 
Gabor features can carry more discriminating information, GRCM displayed better performance. 
Subsequently, they also proposed a kernel Gabor RCM (KGRCM) method [7] to capture the higher 
order statistics in the original low-dimensional space. Their experimental results have demonstrated 
that the KGRCM can improve the classification performance. Recently, KGRCM has been applied to 
object detection and tracking [6]. The nonlinear descriptor can capture nonlinear relationships within 
image regions due to the usage of nonlinear region covariance matrix.  

However, the previous methods based on RCM consider each pixel in the training image to be 
contributing equally when reconstructing the RCM, i.e., the contribution of each pixel is usually set to 
be 1/N2, where N is the number of pixels in a local region. However, this assumption of equal 
contribution does not hold in real-world applications because it is possible that different pixels in 
different image parts may have different discriminative powers. For example, pixels at important facial 
features such as eyes, mouth, and nose should be emphasized and others such as cheek and forehead 
should be deemphasized.  

Motivated by the above-mentioned reasons, we hence propose in this paper a weighted region 
covariance matrix (WRCM) to explicitly exploit the different importance of each pixel of a sample. 
WRCM can only extract linear face features. However, by using nonlinear features it can achieve 
higher performance for face recognition tasks [7–9]. To further preserve nonlinear features, we develop 
the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results on the 
ORL Face database [10], the Yale Face database [11] and the AR database [12] show that the 
KGWRCM algorithm outperforms the RCM, the WRCM, the RCM with Gabor features (GRCM) [4], 
the KRCM with Gabor features (KGRCM) [7], and the conventional KPCA [9], Gabor + PCA [13], 
and Gabor +LDA [13] algorithms in terms of the recognition rate. 

2. Region Covariance Matrix (RCM)  

The RCM [3] is a matrix of covariance of features computed inside a region of an image. Let F be a 
two-dimensional image size of h × w, where w and h are the height and width of the image region. The 
number of pixels in image region is N = h × w. Define a mapping  that maps a pixel (k, l) of F onto 
the d dimensional feature vector xi:  
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 (1) 

As a result there are N d-dimensional feature vectors (xi)i = 1,…,N. For the intensity image, the feature 
mapping function  is defined by pixel locations, gray values and the norm of the first and second 
order derivatives of the intensities with respect to k and l: 

 (2) 

The image region can then be represented by a d × d covariance matrix of the basic feature vectors xi: 

 (3) 

where μ is the mean of the feature vectors xi: 

 
(4) 

Equation (3) can also be expressed by following equation:  

 (5) 

The computation process is given in Appendix A.  

3. Weighted Region Covariance Matrix (WRCM)  

Based on the feature vectors xi, the d × d weighted region covariance matrix of the image region is 
defined as follows:  

 (6) 

where the matrix S is a similarity matrix [14], which is chosen as:  

 (7) 

with a value ranging from 0 to 1, and σ is a suitable constant. Dii is a diagonal matrixes whose entries 
are column or row sums of S, ∑ . L = D − S is a matrix of N × N.  

Comparing Equations (5) and (6), we can see that the WRCM is just the RCM if 1/ , which 
implies that RCM is a special case of the WRCM method. However, as all the weights in RCM are 1/ , RCM cannot exploit the different importance of each pixel of a sample. On the other hand, the 
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WRCM can assign different weights for each pixel of a sample, so it can preserve more discrimination 
information than RCM. 

As CW in Equation (6) is a matrix-form feature, the commonly used distances are not used. The 
generalized eigenvalue based distance proposed by Forstner [15] is hence used to measure the 
distance/dissimilarity between the WRCMs  and : 

 (8) 

where λ1,…,λc are the generalized eigenvalues of covariance  and computed from: 

 (9) 

Figure 1. Five regions of a face image. Five WRCMs are constructed from the 
corresponding regions. 

 

To preserve the local and global patterns, similar to [3,4], we represent a face image with five 
WRCMs from five different regions (R1, R2, R3, R4, and R5) (Figure 1). The five WRCMs ( , , 

, , and ) are constructed from five different regions. As  is the weighted region 
covariance matrix of the entire image region R1, it is a global representation of the face. The , , 

, and  are extracted from four local image regions (R2, R3, R4, and R5), so they are part-based 
representations of the face.  

After obtaining WRCMs of each region, it is necessary to measure the distance between the gallery 
and probe sets. Let  and  be WRCMs from the gallery and probe sets. The distance between a 
gallery WRCM and a probe one is computed as follows: 

 (10) 
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Let  and  be the kernel weighted region covariance matrices of regions R1 and R2, respectively. 
 and  are computed as follows: 

 
(11) 

where , , and : 

 
(12) 

where , , and . 

Hence Equation (9) can be written as follows: 

 (13) 

As any eigenvector can be expressed by a linear combination of the elements, there exist 
coefficients αi (i = 1,2,…,m) and βj (j = 1,2,…,n) such that:  

 (14) 

where α = [α1,α2,…αm]T and β = [β1,β2,…βn]T. 
Combining Equations (13) and (14), the generalized eigenvalue task in Equation (13) can be 

expressed in the form of block matrices: 
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 (17) 

 (18) 

Equation (15) can be rewritten as: 

 (19) 

When A is positive definite, the generalized eigenvalues are obtained through solving the following 
eigenvalue problem:  

 (20) 

However, in many cases, A is a singular matrix, we hence incorporate a regularization parameter  
u > 0 on both sides, respectively: 

 (21) 

where I is an identity matrix. When u is large enough, (B + uI) is positive definite. Equation (21) 
becomes a standard eigenvalue problem: 

 (22) 

Based on eigenvalues obtained by Equation (9) or Equation (22), we compute the distance between 
the two image regions R1 and R2 using Equation (8). 

5. Kernel Gabor-Based Weighted Region Covariance Matrix (KGWRCM) 

In Equation (2), these features such as pixel locations (k,l), intensity values and the norm of the first 
and second order derivatives of the intensities with respect to k and l are effective for tracking and 
detecting objects. However, their discriminating ability is not strong enough for face recognition [4]. 
To further improve the performance, Gabor features are added to the feature space. A 2-D Gabor 
wavelet kernel is the product of an elliptical Gaussian envelope and a complex plane wave, defined as: 

 (23) 
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operator, and the wave vector ku,v is defined as follows: 
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 (25) 

where, * denotes the convolution operator, and  is a magnitude operator. 
Therefore, a feature mapping function based on Gabor features is obtain by:  

 (26) 

As the Gabor wavelet representation can capture salient visual properties such as spatial 
localization, orientation selectivity, and spatial frequency characteristic, Gabor-based features can 
carry more important information. The proposed KGWRCM method can be briefly summarized  
as follows: 

(1) partition a face image into five regions (R2, R3, R4, and R5), and extract basic features of five 
regions using Equation (26).  

(2) compute two weight matrices L* and L# using Equations (11) and (12), and obtain four kernel 
matrices K(X,X), K(X,Y), K(Y,X), and K(Y,Y), using Equations (30)–(33). Based on these 
matrices, the matrices A and B are computed utilizing Equations (17) and (18), respectively.  

(3) with A and B, the eigenvalues are obtained by Equation (20) or Equation (22) and submitted into 
Equation (8) to calculate the distance.  

(4) based on the distance defined in Equation (10), the nearest neighborhood classifier is employed 
to performance classification. 

6. Experimental Results  

We tested the GKWRCM algorithm on the ORL Face database [10], the Yale Face database [11] 
and AR Face database [12]. The ORL Face database comprises of 400 different images of 40 distinct 
subjects. Each subject provides 10 images that include variations in pose and scale. To reduce 
computational cost, each original image is resized to 56 × 46 by the nearest-neighbor interpolation 
function. A random subset with five images per individual is taken with labels to comprise the training 
set, and the remaining constructs the testing set. There are totally 252 different ways of selecting five 
images for training and five for testing. We select 20 random subsets with five images for training and 
five for testing.  

The Yale face database contains 165 grayscale images with 11 images for each of 15 individuals. 
These images are subject to expression and lighting variations. In this recognition experiment, all face 
images with size of 80 × 80 were resized to 40 × 40. Five images of each subject were randomly 
chosen for training and the remaining six images were used for testing. There are hence 462 different 
selection ways. We select 20 random subsets with five images for training and six for testing. 

The AR database consists of over 4,000 images corresponding to 126 people’s faces (70 men and 
56 women). These images include more facial variations, including illumination change, and facial 
occlusions (sun glasses and scarf). For each individual, 26 pictures were taken in two separate sessions 
and each section contains 13 images. In the experiment, we chose a subset of the data set consisting of 
50 male subjects and 50 female subjects with seven images for each subject. The size of images are 
165 × 120. We select two images for training and five for testing from the seven images. There are 21 
different selection ways. Figure 2 shows some examples of the first object in each database used here. 
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Table 1. The performance of different approaches on the ORL face database. 

Method Mean Recognition rates (%) Standard deviations (%) 
KGWRCM 99.21 1.12 

KGRCM 98.41 1.24 
GRCM 97.06 1.28 
WRCM 93.83 2.11 

RCM 91.88 2.57 
GPCA 89.78 2.43 
GLDA 97.5 1.37 
KPCA 94.43 1.55 

Table 2. The performance of different approaches on the Yale face database. 

Method Mean Recognition rates (%) Standard deviations (%) 
KGWRCM 79.20 8.72 

KGRCM 76.23 9.04 
GRCM 72.00 10.58 
RWCM 61.67 8.76 

RCM 51.94 7.22 
GPCA 67.94 9.36 
GLDA 73.47 7.06 
KPCA 73.28 8.11 

Table 3. The performance of different approaches on the AR face database. 

Method Mean Recognition rates (%) Standard deviations (%) 
KGWRCM 95.95 1.46 

KGRCM 91.80 2.58 
GRCM 81.46 11.73 
WRCM 48.56 11.08 

RCM 41.31 12.54 
GPCA 78.64 5.35 
GLDA 88.99 4.18 
KPCA 66.89 7.68 

These results clearly show that the proposed KGWRCM method can capture more discriminative 
information than other methods for face recognition. Particularly KGWRCM and WRCM outperform 
KGRCM and RCM, which implies that the weighted approaches can better emphasize more important 
parts in faces and deemphasize the less important parts, and also preserve discriminated information 
for face recognition.  

7. Conclusions  

In this paper, an efficient image representation method for face recognition called KGWRCM is 
proposed. Considering that some pixels in face image are more effectual in representing and 
recognizing faces, we have constructed KGWRCM based on weighted score of each pixel within a 
sample to duly emphasize the face features. As the weighted matrix can carry more important 
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information, the proposed method has shown good performance. Experimental results also show that 
the proposed KGWRCM method outperforms other approaches in terms of recognition accuracy. 
However, similar to KGRCM, the computational cost of KGWRCM is high due to the computation of 
the high dimensional matrix. In future work, an effective KGWRCM method with low computational 
complexity will be developed for face recognition.  
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Appendix A 

Equation (3) can be formulated 

 (27) 

where e is a column vector taking one at each entry and I is the identity matrix. 
By some simple algebraic, Equation (5) is expressed by 
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Based on Equations (27) and (28), the following equation is obtained by  
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Appendix B 

Let k(xi, xj) = (xi)· (xj) be the kernel function, the following four kernel matrices K(X,X), K(X,Y), 
K(Y,X), and K(Y,Y) with sizes of m × m, m × n, n × m, and n × n can be obtained by 

 (30) 

 (31) 

 (32) 

 (33) 

Substituting Equation (11) into Equation (10), we can obtain 

 (34) 

Based on Equations (21)–(24), Equation (25) can be expressed as  

 (35) 

To express Equation (26) in the form of a kernel function, we multiply  on both sides, 
respectively. The following equation is obtained  
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Similarly, we multiply  on both sides of Equation (26), and have 

 (37) 

Equations (27) and (28) can be expressed using matrices and vectors 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( ) ( )

( , ) ( , ) ( , )

m

mT

m m m m

k x x k x x k x x
k x x k x x k x x

K X X X X

k x x k x x k x x

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( ) ( )

( , ) ( , ) ( , )

n

nT

m m m n

k x y k x y k x y
k x y k x y k x y

K X Y X Y

k x y k x y k x y

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( ) ( )

( , ) ( , ) ( , )

m

mT

n n n m

k y x k y x k y x
k y x k y x k y x

K Y X Y X

k y x k y x k y x

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( ) ( )

( , ) ( , ) ( , )

n

nT

n n n n

k y y k y y k y y
k y y k y y k y y

K Y Y Y Y

k y y k y y k y y

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

* #( ) ( )( ( ) ( ) ) ( ) ( )( ( ) ( ) )T TX L X X Y Y L Y X Yφ φ φ α φ β λφ φ φ α φ β+ = +

* * # #( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )X L K X X X L K X Y Y L K Y X Y L K Y Yφ α φ β λφ α λφ β+ = +

( )T Xφ

* *

# #

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

K X X L K X X K X X L K X Y
K X Y L K Y X K X Y L K Y Y

α β
λ α λ β

+
= +

( )T Yφ
* *

# #

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

K Y X L K X X K Y X L K X Y
K Y Y L K Y X K Y Y L K Y Y

α β
λ α λ β

+
= +



Sensors 2012, 12 7422 
 

 

 (38) 

 (39) 

Combining Equation (29) and Equation (30) obtains 

 (40) 
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