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Abstract: A road sign recognition system based on adaptive image pre-processing models 
using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is 
to check the changes of the light illumination and rich red color of a frame image by the 
checking areas. The other is to check the variance of vehicle’s speed and angle of steering 
wheel to select an adaptive size and position of the detection area. The Adaboost classifier 
was employed to detect the road sign candidates from an image and the support vector 
machine technique was employed to recognize the content of the road sign candidates. The 
prohibitory and warning road traffic signs are the processing targets in this research. The 
detection rate in the detection phase is 97.42%. In the recognition phase, the recognition 
rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the 
best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average 
computing time is 51.86 milliseconds per frame. The proposed system can not only 
overcome low illumination and rich red color around the road sign problems but also offer 
high detection rates and high computing performance. 

Keywords: road sign recognition; fuzzy inference; Adaboost classifier; support vector 
machine 
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1. Introduction 

The term Intelligent Transportation System (ITS) refers to approaches that attempt to integrate 
advanced information, electronic, control, sensor, and communication technologies into both the 
transport infrastructure and vehicles in order to better manage transportation. The ITS provides the 
tools for skilled transportation professionals to collect and react to data about the performance of a 
system, and one of primary benefits of such systems is that much of the data is real time. Having this 
real time data enhances drivers’ ability to respond to incidents, adverse weather or other capacity 
constricting events. The main objective of an ITS is to improve transportation safety and reduce vehicle 
wear, transportation time, and fuel consumption. ITS encompasses a broad range of wireless and wired 
communications-based information and electronics technologies. The driver assistance systems (DAS) 
are one of the important aspects of ITS, as a well-designed human-machine interface should be able  
to increase individual car safety and road safety in general. Examples of DAS include in-vehicle 
navigation systems, lane change assistance, automatic parking, driver drowsiness detection, and traffic 
sign recognition. 

Road traffic sign detection and recognition system is one of vehicular assistance system employed 
for the recognition of stop signs, speed limits, and prohibitory, cautionary and guidance signs. The 
main problems in road traffic sign detection and recognition are that the signs may be viewed from odd 
angles, under low illumination, and partially occluded, and the rich red color that usually rings road 
signs also presents some challenges. In this paper, a vision-based road traffic sign recognition system 
was designed to process the mandatory and warning road signs used in Taiwan. The mandatory signs 
have a red circular ring and white background symbol(s) within the circle. The warning signs are have 
a red triangular rim, with a white background and black symbol(s) within the triangle.  

The main modules of the proposed system are a fuzzy image checking model scheme to perform 
image pre-processing, an adaptive boosting classifier to detect the candidate road signs and a support 
vector machine to recognize them. The image pre-processing phase is very important, especially in  
road sign detection, because the road environment is extremely variable. Consequently, fuzzy color 
enhancement [1,2] and contrast enhancement [3] are both applied in our system. 

2. Related Works 

Freund and Schapire [4] proposed their adaptive boosting (Adaboost) algorithm in 1997, and this is 
a machine learning method to decrease errors in exponentiation. Viola and Jones [5] used multiple 
weak classifiers in a cascade, and gave each classifier a weight to make a strong classifier. Using this 
approach, many strong classifiers can be combined in a cascade mode to implement the Adaboost 
algorithm. The Adaboost algorithm can retrain the last recorded classification errors to increase the 
detection accuracy. In practice, the Adaboost algorithm is used to combine multiple strong classifiers 
into a cascade mode scheme to classify a data set. Baro [6] proposed an Adaboost detection and  
forest-ECOC (error-correcting output code) classification approach to recognized traffic sign with high 
performance and accuracy. Baro’s method is based on embedding a forest of optimal tree structures in 
the ECOC framework. 
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In 1995, Vapnik [7] proposed a machine learning theory, the called support vector machine (SVM) 
method, derived from statistic learning theory, and this has become one of the most popular classification 
schemes, and has been adapted and applied in many different domains. The SVM method is a high 
performance classifier that has been extended to classify both linear separable and linear inseparable 
data sets. In practical applications, most data sets are linear inseparable. Under this condition, the SVM 
uses the slack variable to overcome the low degree of data overlap, and the kernel function to deal with 
a high degree of data overlap. 

Various methods for road traffic sign recognition have been proposed, and these are usually 
composed of two parts. The first is road sign detection which used to detect the road signs within the 
image, while the second is road sign recognition, which is used to understand the content of the road sign 
thus detected. Two cameras were employed in the system proposed by Miura [8], one equipped with a 
wide-angle lens (called a wide-camera) and the other with a telephoto lens (called a tele-camera). The 
wide-camera is used to detect objects, and the tele-camera is used to extract targets from the input 
image. The targets in their proposed system were circular signs and guidance signs, and Hough 
transformation was applied to detection of the former. However, if a road sign is not perpendicular to 
the camera lens, then this detection scheme is likely to fail. Gao [9] proposed a system in which the 
input images first had to be transformed into the CIECAM97 color space so that regions of interest 
could be extracted. This system used to extract the shape features, with 49 sensor nodes obtained. 
Finally, the density and the edge orientation of these 49 areas can be as templates, with a matching 
scheme used to recognize the road signs. Liu [10] employed color equalization in a HSV color space to 
separate the color information in road signs. The area and aspect ratio were used to detect the Regions 
of Interest (ROI), which were then normalized to obtain 32 distributed radial areas. To obtain  
the final results, the histogram of the 32 areas was calculated and then matched with templates in the 
database. However, this approach is not very successful if road signs are under low illumination or 
partially occluded. Saturnino [11] proposed a road sign recognition system based on an RBF-kernel 
support vector machine, in which the HSI color information is used to extract the road sign candidates, 
and the shape of the road signs are recognized by using a linear support vector machine. Their approach, 
however, detected too many candidates in the detection phase, and thus required much more computing 
time to process these. Shi [12] focused on recognizing seven categories of road sign shapes and five 
categories of speed limit signs. Two kinds of features, binary image and Zernike moments, were used 
for representing the data to the SVM for training and testing. They found that the SVM produced better 
results using the binary image rather than the Zernike moments. Koncar [13] designed a hierarchical 
road sign classifier, and in their approach the Gabor wavelet transform was used to produce a Gabor 
similarity map, and the recognition process was similar to a decision tree by template matching.  
Barnes [14] proposed a system with a radial symmetry detector to detect circular signs more rapidly. 
Because the gradient orientations of the pixels that belong to the circumference are oriented to the center 
of the circle, this property was employed to aid the process. Their results showed that the detection time 
with this system was less than with the Hough transform method. Yoon [15] applied fuzzy measures and 
fuzzy integrals to extend the Adaboost algorithm, in a process called fuzzy-boosting, and the classifier 
produced by this approach was then used to detect road guidance signs.  

Most of the above related works emphasized the achievement of a high level of accuracy. However, 
the highly variable environment of real roads was not discussed in detail. For example, road signs in 
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any captured image are likely to suffer from low illumination, and blend with the background. Under 
these conditions, the correct detection rate will be decreased. The efficiency of a system is another 
important issue. In order to solve the above problems, we propose a system in this paper that not only 
robustly detects the road signs correctly for the images under variable and adverse conditions, but also 
works efficiently.  

3. The Proposed Road Sign Recognition System 

The proposed road sign recognition approaches are divided into three phases, which fuzzy adaptive 
models employed to pre-processing phases, road sign detection using Adaboost classifiers scheme and 
road sign recognition using SVM classifiers technique.  

3.1. Fuzzy Adaptive Checking Area  

Both prohibitory and warning signs in Taiwan have red rims. In order to detect road signs more 
quickly, red information will be found first when an image is input into the system, and the hue, 
saturation and intensity (HSI) color space is used to achieve this. Due to variations in the environment, 
the brightness of the captured images also varies:  

1 2  or H h H h
RedPixel S a

I b

≥ ≤⎧
⎪= >⎨
⎪ >⎩

 (1)

According to our experiments, giving sufficient values of the threshold conditions shown in 
Equation (1) could enable the system to find the appropriate number of the red pixels in a road sign, 
and get good results in most illumination environments. The above detection scheme, however, may 
fail with images taken under the following three conditions: against the sunlight (e.g., against the sky); 
with a darker background (e.g., low illumination), and in a scene with a lot of red. From observation of 
the real data, in most cases, the saturation of red color in a road sign is greater than the surrounding red 
background. Therefore, one way to address this case is to increase the threshold value of  
the saturation component. However, different situations may be combined together to reduce the 
performance of the system correction rate.  

Consequently, a scheme known as fuzzy checking areas is proposed, which first checks the 
illumination and red color component of the input image, and then the image is classified according to 
the results of these evaluations and the appropriate further processing procedure is selected. Assume N 
checking areas, each with a 3 × 3 pixels block, are located along the upper edge (called upper checking 
row), the middle portion (called middle checking row), and the bottom edge (called bottom checking 
row) of the image, each with N/3 checking areas and distributed uniformly within the checking row, as 
shown in Figure 1. 

The intensities and red color components of these checking areas are used, via the fuzzy logic 
inference method, to evaluate the image condition. After the fuzzy logic inference operation, the image 
will be classified into one of six classes: normal, situation 1 (bright background), situation 2 (too dark), 
situation 3 (rich red color), situation 1 and 3 (bright background and rich red color), or situations 2 and 
3 (too dark and rich red color) as shown on the column named situation of Table 1 
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Figure 1. The N checking areas, each with a 3 × 3 pixels block, which are allocated at  
the upper edge, the middle portion, and the bottom edge of the image, where j = N/3 and  
k = (2N)/3. 

  

Table 1. Fuzzy rules for determining image situations. 

Input Output 
Illumination Red Color Area CF (Certainty Factors) Situations 

Dark 
Normal 
Bright 
Dark 

Normal 
Bright 
Dark 

Normal 
Bright 

Low 
Low 
Low 

Medium 
Medium 
Medium 

Rich 
Rich 
Rich 

Dark-Low 
Normal-Low 
Bright-Low 

Dark-Medium 
Normal-Medium 
Bright-Medium 

Dark-Rich 
Normal-Rich 
Bright-Rich 

S2 
Normal 

S1 
S2 

Normal 
S1 

S2 & S3 
S3 

S1 & S3 

To evaluate the intensity level of an image, a fuzzy member function is defined and estimated from 
the image. Assume CIi denotes the average intensity of the ith checking area, normalized to the closed 
interval of 0 and 1 as Equation (2). The wi denotes the weighting value of the ith checking area, and the 
checking areas located on the same checking row are given the same weighting value. The summation 
of all the wi is equal to 1:  

 (2)
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With regard to real world environments, for intensity checking, the weight ratios of these checking 
areas located on the upper, middle, and bottom checking row are set at P1, P2, and P3, respectively. The 
sum of P1, P2, and P3 equals 1. This means that if there are N checking areas, the weights for each area 
of the upper, the middle, and the bottom checking rows are P1 /(N/3) = P1*3/N, P2 /(N/3) = P2*3/N, 
and P3 /(N/3) = P3*3/N, respectively. Let Fμ be the weighted intensity summation of the N checking 
areas, as shown in Equation (3), then Fμ is used as the fuzzy member function to evaluate the intensity 
of the input image as either dark, normal, or bright. 

To check that if the whole input image is rich in red, a fuzzy member function to evaluate the red in 
the image is defined and estimated from the image. The CRi is used to denote if the average red color 
component is greater than both the blue and green color components of the ith checking area. The CRi 
is set to 1 if (Ri − Gi) > 0 and (Ri − Bi) > 0. Otherwise, it is set to 0, where Ri, Gi and Bi are the average 
red, green, and blue color values of the ith checking area, respectively. To check the intensity of the red, 
each checking area is also assigned a weighting value and all the checking areas located on the same 
checking row have the same weights. The distribution of the total weights for the upper, middle, and 
bottom checking rows are thus given to P4, P5, and P6, respectively. The sum of P4, P5, and P6 equals to 1. 
This means that if there are N checking areas, the weighting values for each area of the upper, middle, 
and bottom checking rows are P4 /(N/3) = P4*3/N, P5 /(N/3) = P5*3/N, and P6 /(N/3) = P6*3/N, 
respectively:  
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0                                  
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Let Hμ be the weighted rich red color summation of the N checking areas, as Equation (4), where vi 
denotes the weighting value of the ith checking area, then Hμ is used as the fuzzy member function to 
evaluate the richness of the red color in the input image, as Equation (5). Figure 2 shows the 
relationship of the fuzzy member functions for illumination and red color, respectively. Figure 3 
illustrates the testing data for the fuzzy adaptive checking area scheme. Figure 4 shows that the Fμ and 
Hμ values for the nine testing images in Figure 3, with different numbers of checking areas. A 
comparison of the images and the corresponding Fμ and Hμ values shows that the Fμ and Hμ values 
could correctly indicate the illumination and red color information of the images. 
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Table 1 lists the fuzzy rules and their results for the inferences. According to these rules, the input 
image can be classified as belonging to one of nine situations. If the image is classified as a normal one, 
the threshold condition shown in Equation (1) with h1 = 330, h2 = 30, a = 0.2 and b = 30 is applied to 
obtain the red information for road sign detection. 
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Figure 2. The membership functions of illumination and the membership functions of red. 

Figure 3. The nine testing images for fuzzy checking area detection. 

 
Image 1 Image 2 Image 3 Image 4 Image 5 

  
Image 6 Image 7 Image 8 Image 9  

Figure 4. (a) The Fμ value curves and (b) the Hμ value curves of the nine testing images 
with different numbers of checking areas for Figure 3. 
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If the image is evaluated as belonging to situations 1 or 2, then the image is first contrast enhanced 
and then the threshold condition shown in Equation (1) with h1 = 345, h2 = 15, a = 0.4 and b = 30 is 
employed. If the image is rich in red color, which may occur with situations 1 or 2, as shown in  
Table 1, then contrast enhancement is applied to the image and the threshold condition would be 
change as h1 = 345, h2 = 15, a = 0.4 and b = 30 that is applied to the HSI image of the enhanced 
version. 

3.2. Fuzzy Detection Area for Video Frames 

We employ fuzzy technology to obtain an adaptive region of interesting. Figure 5(a) shows an 
example of a captured image from the driver’s viewpoint. It was taken from a camera installed in front 
of the driver’s seat in a car. Of course, this view is related to where the camera is installed, and the 
field of driver’s view (FODV) in a video frame is fixed when the camera is fixed in the car. Most of 
the content is the same in two adjacent frames. Usually the areas in the lower, right, and left portions 
of an image cannot provide new information, because the data contained in these areas is also in the 
previous frames. According the experimental results, the portion located in the top area of the image 
contains either the skyline or road signs that are too small to be detected. Therefore, for video sequence 
processing, the detecting area (DA) of a frame image is reduced from the original one to increase the 
processing speed. The area for detecting new objects in the current frame is presented at the top 
portion of the previous frames. 

Figure 5. (a) The field of driver’s view (FODV); (b) The detecting area and discarded portions. 

(a) (b) 

Figure 5 shows the relationship between FODV and DA. The clipped parameters dr, dl, dt, and db 
shown in Figure 5(b) can be adapted for applications which are dependent on the location of installed 
video camera, the driving direction of the car, and the status of road, for example, turning right, turning 
left, on an upgrade and on a downgrade. When the DA is larger, the processing time is longer and 
more objects can be detected. 

To find these adaptive parameters, fuzzy inference technology is adopted according to different 
vehicle driving environments. Suppose the speed and angle of the steering wheel of the vehicle system 
can be provided. Then parameters dt, db, dr, and dl can be used as adaptive parameters of the vehicle 
driving status. Assume that the vehicle driving direction is roughly classified as forward, turning left or 
turning right, the vehicle speed is roughly classified as low, normal or high. The fuzzy member 
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functions of speed V and the angle of the steering wheel θ can be obtained by Figure 6(a,b), 
respectively, where the turning right angle is positive and the turning left angle is negative. 

Figure 6. Membership functions of vehicle speed, and membership functions of the angle 
of the steering wheel. (a) The fuzzy member functions of speed V. (b) The fuzzy member 
functions of steering wheel θ. 

(a) (b) 

Table 2 illustrates the rules of the fuzzy logic system to obtain the adaptive size and position of the 
DA. There are three DA cases for when the vehicle driving status is at low, normal or high speed with 
the medium angle of steering wheel.  

Table 2. The rules of the fuzzy logic system for the adaptive DA. 

Input Output 
Size of DA Position of DA CF (Certainty Factors) 

Low Left Low-Left 
Low Medium Low-Medium 
Low Right Low-Right 

Normal Left Normal-Left 
Normal Medium Normal-Medium 
Normal Right Normal-Right 

High Left High-Left 
High Medium High-Medium 
High Right High-Right 

The outer rectangle area is the DA for low speed, the middle rectangle area is for normal speed, and 
the inner rectangle area is for high speed. Figure 7(a) shows that three DA cases when the vehicle 
driving status is at low, normal or high speed with the medium angle of steering wheel. The outer 
rectangle area DA is at low speed; the middle rectangle area is at normal speed, and the inner rectangle 
area is at high speed. Figure 7(b,c) show two cases for adapting the DA to the vehicle driving status 
while it is turning right and turning left with normal speed, respectively. In Figure 7(b), the position of 
DA has been moved to the right, and to the left in Figure 7(c). 
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Figure 7. (a) Adaptive DA with different speeds: the middle rectangle for normal speed, 
the inner one for high speed, and the outer one for slow speed; (b) adaptive DA examples: 
turning right; (c) adaptive DA examples: turning left. 

 
(a) (b) (c) 

3.3. Road Sign Detection Phase  

After the preprocessing described in the previous subsection, only the red pixels are left in the 
detecting area of the image. The road sign detection phase evaluates if there are any signs included 
within the red pixels detected in the image. The size and location of the road sign candidates are 
reported if the system finds any possible road sign candidates in this phase. Finally, the detected road 
sign candidates are segmented from the original image as the input for next stage of processing. 

Two Adaboost classifiers are trained to detect road sign candidates in this study, one is for prohibitory 
signs, and the other is for warning ones. The aim of our schemes is to overcome such problems as low 
illumination, viewpoint rotation and partial occlusion. The training data for the Adaboost classifiers 
includes both positive and negative samples. The negative training samples mean that no desired road 
signs are contained in the image, while the positive training data all include a road sign. In this study, 
the positive samples for prohibitory signs are included in the negative samples for warning signs, and 
the positive samples for warning signs are also included in the negative samples for prohibitory signs. 

3.4. Road Sign Recognition Phase 

The segmented road sign candidates generated from the road sign detection phase are further 
processed by the road sign recognition module. The function of the road sign recognition phase is to 
decide if the candidates are truly road signs or not. If they are, then the specific one is determined, and 
so the main work of this phase is to recognize the content of the detected candidate road sign. 

The input image data for this phase is the extracted road sign candidates obtained from the previous 
phase, which is a square image. The road sign recognition process is as follows: first, the ROI from the 
road sign candidate image is selected and normalized into a 30 × 30 pixel block to get a higher 
recognition rate. Second, the Canny edge detector is employed to obtain the contour information of the 
ROI and transform it into a binary edge image. Third, the feature vector of the ROI is formed from the 
binary edge image. The next step is to use the corresponding SVM, circular (prohibiting) or triangle 
(warning), to recognize the content of the ROI and then output the result. Assume the size of the detected 
road sign candidate image is m × m pixels and d is the number of pixel which would be cut out from 
each edge of the candidate image, then the size of the ROI will be (m − 2d) × (m − 2d). For this, the 
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ROI will contain the content of the road sign only, as shown in Figure 8(a). The ROI is normalized into 
a 30 × 30 pixel block so that the images input into the classifier are all of a uniform size. In this approach, 
the contour information of the ROI is applied to represent its feature vector, and the Canny edge detector 
is used to obtain its contour information. For example, Figure 8(d) shows the binary edge image of 
Figure 8(b). In Figure 8(d), the pixel value for these edge pixels is set to 1 (white), while the others are 
set to 0. 

Figure 8. (a) The selected ROI for the extracted road sign candidate image; (b) its 
corresponding source image; (c) the ROI of (b); (d) the binary edge image of (a). 

(a) (b) (c) (d) 

To reduce the feature vector dimensions and reduce processing time, the binary edge image is 
divided into a 10 × 10 grid, as shown in Figure 9, to obtain a 100 components feature vector. The value 
of each component of the redesigned feature vector is set as the sum of the values of the corresponding 
3 × 3 edge image block. This redesigned feature vector is used as the input data of the SVM classifier. 

Figure 9. Reduction of dimensions of the feature vector. 

 

Two SVM classifiers are employed, one for prohibition signs and the other for warning signs to 
recognize the road sign contents. In our proposed system, the prohibitory road signs are divided into  
34 classes and warning road signs are also divided into 34 classes. Besides total 68 classes of road 
signs, the “non-road-sign” class also included, too. In the proposed system, both the prohibitory and 
the warning sign SVM classifiers are designed to output 34 different classes of the corresponding road 
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signs, and 30–45 training samples are provided for each class. For the “non-road-sign” class, 75 training 
samples are used for training in both of the SVM classifiers. The C-SVC scheme [16] is adopted in the 
proposed system. The kernel function of C-SVC is a radial basic function (RBF) and the parameters to 
be set are C andγ . 

4. Experimental Results 

The proposed system has been implemented in C++ language and developed on a PC platform with 
an Intel Core 2 Duo 2.4 GHz CPU and 2 GB RAM. The training data for each of the two Adaboost 
classifiers are 350 positive and 1,850 negative samples. The number of test images is 350 that included 
242 prohibitory road signs, 223 warning road signs and 38 non-road signs, as listed in Table 3. The 
LIBSVM library [16] support vector machine was used in the proposed system. The parameters of SVM: 
for the prohibitory sign C = 4 andγ  = 0.00390625, and for the warning sign C = 2 andγ  = 0.00390625. 
The number of checking areas N = 9. The weight ratios of checking areas P1 = 0.5, P2 = 0.4, P3 = 0.1, 
P4 = 0.4, P5 = 0.5 and P6 = 0.1. Table 4 lists the training and testing data of SVM classifier. 

Table 3. The Adaboost classifier training and testing data. 

Dataset #Training #Testing 
Prohibitory Warning Prohibitory Warning 

#Positive 350 350 242 223 
#Negative 1,850 1,850 38 38 

Table 4. The SVM classifier training and testing data. 

Dataset #Training #Testing 
Prohibitory Warning Prohibitory Warning 

#Class 34 34 34 34 
#Sample 1,212 1,235 234 219 
#Non-Road Sign 75 75 38 38 

4.1. The Results of Static Images 

The image size is 320 × 240 pixels. The experiment has three aims as follows: (1) To check the 
effectiveness of the SVM classifiers; (2) To determine the minimum size of the road signs that could 
be detected under the image resolution used, and thus to estimate the distance that can be effectively 
processed by the proposed system; (3) To determine the average processing time for one image by 
adjusting the frame rate of the video sequence used in the second part of experiment. As not all of the 
testing images were taken from the field of driver’s view, the whole testing image was processed as the 
detection area, meaning that the testing image was not reduced in size in this experiment. 

The common detection scheme, however, may fail with image under the following three conditions: 
(1) against the sunlight (e.g., against the sky); (2) With a darker background (e.g., low illumination);  
(3) In a scene with a lot of red. Examples of these cases are shown in Figures 10(a1), (b1), and (c1), 
respectively. Figures 10(a2), (b2), and (c2) show the corresponding detection results produced using 
Equation (1) with h1 = 330, h2 = 30, a = 0.2 and b = 30 from Figures 10(a1), (b1), and (c1). It can be 
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Figure 10. Cont. 

 
(a4) (b4) (c4) 

A total of 350 test images, 242 prohibitory road signs and 223 warning road signs were included in 
these test images. After the road sign detection stage, 234 prohibitory road signs, 219 warning road 
signs and 38 non-road signs were detected. After analyzing the detection results, the minimum size of 
road sign which could be detected was 20 × 20 pixels, from which it is estimated that the effective 
distance for the proposed system is about 20 meters from the camera. The average processing time for 
one image was 118.7 milliseconds.  

Figure 11 shows four samples of experimental results. The images (a) and (b) are correct cases with 
partially occluded road signs. The image (c) is an error case. In this case, the road sign has been detected, 
but the content of the road sign is not clear. The image (d) is two correct and one error case. The error 
reason is the location of road sign too far away, but we still detected it. 

Figure 11. Four samples of experimental results. (a) and (b) are correct cases; (c) is a error 
case; (d) is two correct and one error case. 

 
(a) (b) 

 
(c) (d) 
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Tables 5 and 6 show the processing results of the static images. After the recognition stage,  
219 prohibitory road signs, 211 warning road signs, and 38 non-road signs were recognized correctly. 
In the detection phase, the detection rates are 96.69% and 98.21% for prohibitory and warning road 
signs, respectively. The average detection rate is 97.42%. In the recognition phase, the recognition 
rates 91.79% and 95.40% for prohibitory and warning road signs. The average recognition rate is 
93.04%. The system true positive rates are 90.50% and 94.62% for prohibitory and warning road signs. 
The average false negative rate is 0%. Finally, the average true positive rate is 92.47%.  

Table 5. The experimental results of standard metrics for static images. 

Confusion Matrix 
(Standard Metrics) 

Predicted Sign Predicted Sign Total 
Prohibitory Non- Prohibitory Warning Non-Warning Road Sign Non-Road Sign

Actual 
Sign 

Road Sign 219 0 211 0 430 0 
Non-Road Sign 23 38 12 38 35 38 

Table 6. The experimental results of detection and recognition for static images. 

Item Prohibitory Warning Total 
Detection Rate 96.69% 98.21% 97.42% 

Recognition Rate 91.79% 95.40% 93.04% 
False Negative Rate 0% 0% 0% 
True Positive Rate 90.50% 94.62% 92.47% 

Table 7 compares the average accuracy rate of different method with different recognition road sign 
type in the static image. The first five methods [12] focused on road sign shapes and speed limit signs 
classification. The best average accuracy rate is 99.5% (SVM & BI) and the worst average accuracy 
rate is 69.0% (FA & ZM & PCA). Adaboost & F-ECOC method [6] classified circular, triangular and 
speed road signs. The average accuracy rate is 94.0%. The proposed method focused on prohibitory 
and warning road signs. The proposed method not only classified road sign shapes, but also recognized 
the content of these road signs. 

Table 7. The comparison with other methods for accuracy rate in static image. 

Method Average Accuracy rate Recognition type 
FA & ZM 86.3% Road sign shapes & Speed limit signs 
FA & ZM & PCA 69.0% Road sign shapes & Speed limit signs 
FA & ZM & LDA 98.0% Road sign shapes & Speed limit signs 
SVM & ZM 91.7% Road sign shapes & Speed limit signs 
SVM & BI 99.5% Road sign shapes & Speed limit signs 
Adaboost & F-ECOC 94.0% Circular, Triangular and Speed road signs
Proposed 93.0% Prohibitory and Warning road signs 
FA & ZM is the Fuzzy ARTMAP neural network with Zernike moments. SVM & BI is the 
SVM with binary representation. 
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4.2. The Results of Video Sequences 

The testing data included 10 video sequences which were recorded with the camera installed in 
front of the driver’s seat. The image frame size was 320 × 240 pixels and the frame rate was 10 frames 
per second. Two video sequences were recorded on a cloudy day and the others were recorded on a 
sunny day. Because the information included in two adjacent image frames is almost the same, except 
for the depth of the view, usually the area of the lower, right, and left portions of a frame image are 
processed on the previous frames. In addition, based on the results in the previous subsection, the road 
signs located in the top portion of a frame image are too small to be detected. Therefore, for video 
sequences testing, the detecting area of a frame image is reduced to increase the processing speed.  

Figure 12 shows the results for these 10 testing video sequences that show the accuracy recognition 
rate and the average processing time per frame in each video sequence. The worst recognition rate is 
70.0%, the best accuracy rate is 90.54%, and the average recognition rate is 80.17%. There is thus a 
large gap in recognition rate between the best and the worst rates. After inspecting the road conditions 
where the video sequences were taken, it was found that the road was too bumpy for recording video 
sequence #8, causing lower image quality. The total average computing time is 51.86 ms/frame. 
According to the average the computing time, the proposed system can handle 19 frames per second. 

Figure 12. The experimental results for the 10 testing video sequences. 

 

Table 8 compares the accuracy rate and average processing time between fuzzy boosting [15] and 
proposed methods in the video sequences. The average accuracy rate of fuzzy boosting is better than 
our proposed method. But the proposed best accuracy rate and the average processing time are better 
than fuzzy boosting method. 

Table 8. The comparison with other methods in video sequences. 

Method 
Best  

Accuracy Rate 
Worst 

Accuracy Rate
Average Accuracy 

Rate  
Average Processing 

Time(ms) 
Fuzzy Boosting 87.0% 81.0% 84.67% 58.9 
Proposed 90.5% 70.0% 80.17% 51.9 
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In addition, the recorded images tend to blur when the car swings left or right, also causing errors  
in detection and recognition. Figure 13(a) is the 41st frame of video sequence #08, and shows that no 
sign was detected, and this is because the vehicle started to turn right at that moment. We conjecture 
that this problem is related to the format of the source video sequence file. When the vehicle 
encounters vertical variation (vibration) or horizontal variation (turning left or right), it causes 
mistakes in the prediction of the motion vector and thus and causes the frame to be blurred. However, 
usually the adjacent frame could be recognized correctly, as Figure 13(b) shows, which successfully 
detected a road forking sign. 

Figure 13. Blurred image may cause error: (a) the detection result of the 41st frame of 
video sequence #08; (b) the next frame, which can be recognized correctly. 

 
(a) (b) 

Figure 14 shows some example frames in a sequence. According to the detecting area setting, 
Figure 14(a) shows the case that the road sign is in the detecting area but too small to detect. The road 
sign in Figure 14(b,c) can be detected and correctly recognized. Figure 14(d) shows the target is out of 
the detection area, and thus the system cannot detect it. 

Figure 14. Road sign appearing in a sequence of frames: (a) too small to be detected;  
(b) correctly recognized; (c) correctly recognized; (d) out of the detecting area and thus  
no detected. 

 
(a) (b) (c) (d) 

In practice on vehicles, the performance is an important issue. The experimental results show that  
the proposed scheme not only provides high detection and recognition rate, but also give a high 
computing performance. The performance of the average processing time is excellent. The proposed 
system could process video sequence above 15 frames per second. Thus the proposed system is 
suitable for a real road sign recognition application in the vehicle. 
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4. Conclusions 

In this paper, an adaptive image pre-processing road sign recognition system has been proposed, 
which employed fuzzy adaptive image checking areas and fuzzy adaptive detection area selection. The 
Adaboost classifier to detect candidate road signs and support vector machines to recognize the content 
of the detected candidate road signs are used. The proposed system can not only overcome low 
illumination and rich red color around the road sign problems but also offers a high detection rate and 
high computing performance. Although the sample data are about prohibitory and warning road traffic 
signs, however, it is easy to extend these approaches to others using similar technology. 
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