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Abstract: This study proposes a new condition diagnosis method for rotating machinery 

developed using least squares mapping (LSM) and a fuzzy neural network. The  

non-dimensional symptom parameters (NSPs) in the time domain are defined to reflect the 

features of the vibration signals measured in each state. A sensitive evaluation method for 

selecting good symptom parameters using detection index (DI) is also proposed for 

detecting and distinguishing faults in rotating machinery. In order to raise the diagnosis 

sensitivity of the symptom parameters the synthetic symptom parameters (SSPs) are 

obtained by LSM. Moreover, possibility theory and the Dempster & Shafer theory (DST) 

are used to process the ambiguous relationship between symptoms and fault types. Finally, 

a sequential diagnosis method, using sequential inference and a fuzzy neural network 

realized by the partially-linearized neural network (PLNN), is also proposed, by which the 

conditions of rotating machinery can be identified sequentially. Practical examples of fault 

diagnosis for a roller bearing are shown to verify that the method is effective. 

Keywords: condition diagnosis; least squares mapping; possibility theory; Dempster & 

Shafer theory; fuzzy neural network 
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1. Introduction 

In the field of machinery diagnosis, vibration signals are often used for fault detection and state 

discrimination. Machinery diagnosis depends largely on the feature analysis of vibration signals 

measured for condition diagnosis, because the signals carry dynamic information about the machine 

state [1–3]. The vibration signals in different states will show different features, that is to say when 

plant machinery is in abnormal state, it will output signal sets which correspond to different faults. 

However, in most cases of condition diagnosis for rotating machinery, the values of symptom 

parameters calculated from vibration signals for condition monitoring and fault diagnosis are 

ambiguous. The main reasons for this can be explained as follows: (1) When the rotation speed and 

load of rotating machinery vary while vibration signals is being measured and a fault is in an early 

stage, the signal contains strong noise, stronger than the actual failure signal, that may lead to 

misrecognition of useful diagnostic information; (2) The statistical objectivity of the measured signal 

cannot always be satisfied because of the measurement techniques and manner of the inspectors [4]. 

Therefore, it is important to solve the ambiguous problem of fault diagnosis. 

Roller bearings are an important part, widely used in rotating machinery. The failure of a rolling 

bearing may cause the breakdown of a rotating machine, and furthermore, serious consequences may 

arise due to the failure. Therefore, fault diagnosis of rolling bearings is extremely important for 

guaranteeing production efficiency and plant safety. Although fault diagnosis of rolling bearings is 

often artificially carried out using time or frequency analysis of vibration signals, there is a need for a 

reliable, fast automated diagnosis method thereof. Neural Networks (NN) have potential applications 

in automated detection and diagnosis of machine failure [5–9]. However, a conventional NN cannot 

adequately reflect the possibility of ambiguous diagnosis problems, and will never converge, when the 

symptom parameters, input to the 1st layer of the NN, have the same values in different states [4]. 

Figure 1. Flowchart of the condition diagnosis. 
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For the above reasons, this paper proposes a novel condition diagnosis method for rotating 

machinery developed using LSM and a fuzzy neural network realized by the PLNN. The NSPs in the 

time domain are defined to reflect the vibration signal features measured in each state. To raise the 

diagnosis sensitivity of the symptom parameters the SSPs are obtained by LSM. Using statistical 

theory, a detection index (DI) has also been defined to evaluate the applicability of SSPs. The DI can 

be used to indicate the fitness of a SSP for the PLNN. A sequential diagnosis approach is also 

proposed through the PLNN to sequentially identify the types of fault of rotating machinery. 

Diagnostic knowledge for the PLNN is acquired by possibility theory and the DST for solving the 

problem of ambiguous fault diagnosis. A practical example of condition diagnosis for a roller bearing 

verifies that the method is effective. The flowchart of the condition diagnostic procedure proposed in 

this paper is shown in Figure 1. 

2. Experimental System for Fault Diagnosis 

Figure 2 shows the experimental system for the roller bearing fault diagnosis test. The most 

commonly occurring faults in a roller element bearing are the outer-race defect, the inner-race defect, 

and the roller element defect. These fault bearings are shown in Figure 3 and were created artificially 

using a wire-cutting machine. The bearings that were utilized, and specifications of the test bearing, 

the size of the faults, and other necessary information is listed in Table 1. 

Figure 2. Experimental setup for rolling bearing fault diagnosis. 
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Figure 3. Bearing defects. (a) Outer-race defect; (b) Inner-race defect; (c) Roller defect. 
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Table 1. Bearing information for verification. 

Contents Parameters 

Bearing outer diameter  52 mm 

Bearing inner diameter  25 mm 

Bearing width 15 mm 

Bearing roller diameter 7 mm 

The number of the rollers  11 

Contact angle 0 rad 

Outer-race defect 0.3 × 0.25 mm (width × depth); Early stage 

Inner-race defect 0.3 × 0.25 mm (width × depth); Early stage 

Rolling element defect 0.3 × 0.25 mm (width × depth); Early stage 

In this work an accelerometer (PCB MA352A60) with a bandwidth from 5 Hz to 60 kHz and  

10 mV/g output was used to measure the vibration signals of the vertical direction in the normal (N), 

the outer-race defect (O), the inner-race defect (I), and the roller element defect (R) states, 

respectively. The vibration signals measured by the accelerometer were transformed into a signal 

recorder (Scope Coder DL750) after being magnified by a sensor signal conditioner (PCB ICP Model 

480C02). The original vibration signals in each state are measured at a constant speed (1,500 rpm), and 

a 150 kg load is also transported on the rotating shaft by the loading equipment (RCS2-RA13R) while 

the vibration signals are being measured. A high-pass filter with a 5 kHz cut-off frequency was used to 

cancel noise in the vibration signals for fault diagnosis. Examples of vibration signals measured in 

each state after filtering are shown in Figure 4. The sampling frequency of the signal measurement is 

50 kHz, and the sampling time is 20 s.  

Figure 4. Vibration signals of bearings after filtering. 
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3. Non-Dimensional Symptom Parameters and Sensitivity Evaluation 

3.1. Non-Dimensional Symptom Parameters for Fault Diagnosis 

When a computer is used for condition diagnosis of plant machinery, symptom parameters (SPs)  

are required to express the information indicated by a signal measured for diagnosing machinery  

faults. A good symptom parameter can correctly reflect states and the condition trends of plant  

machinery [10–12]. Many symptom parameters have been defined in the pattern recognition field [13]. 

Here, eight NSPs in the time domain, commonly used for the fault diagnosis of plant machinery, are 

considered: 
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where xpi is the peak value of xi. px  and p are the mean value and standard deviation of xpi, 

respectively. Np is the number of xpi: 
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where xvi is the valley value of xi. vx  and 
v are the mean value and standard deviation of xvi, 

respectively. Nv is the number of xvi. 

3.2. Detection Index  

Supposing that x1 and x2 are values of a symptom parameter (SP) calculated from the signals 

measured in state 1 and state 2, respectively, and conforming respectively to the normal distributions 

N(μ1,σ1) and N(μ2,σ2). Here, μ and σ are the average and the standard deviation of the SP. The larger 

the value of 12 xx   is, the higher the sensitivity of distinguishing the two states by the SP. Because  

z = x2 − x1 also conforms to the normal distribution N(μ2 − μ1,σ1 + σ2), there is the following density 

function about z: 
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where, μ2 ≥ μ1 (the same conclusion can be drawn when μ1 ≥ μ2). The probability can be calculated 

with the following formula: 

0

0 ( ) zP f z d   (10)  
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into Equations (9) and (10), the P0 can be obtained by: 
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where, the DI (Detection Index) is calculated by: 
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It is obvious that the larger the value of the DI, the larger the value of the “Discrimination Rate  

(DR = 1 − P0)” will be, and therefore, the better the SP will be. Thus, the DI can be used as the index 

of the quality to evaluate the distinguishing sensitivity of the SP. The number of symptom parameters 

used for the diagnosis and fault types are M and N, respectively, and the synthetic detection index 

(SDI) is defined as follows: 
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Table 2 lists the diagnosis sensitivity standard for condition diagnosis. 

Table 2. Diagnosis sensitivity for condition diagnosis. 

Detection Index Discrimination Rate Sensitivity 

<0.85 <80% Low  

0.85–1.30 80%–90% Slightly low 

1.30–1.65 90%–95% Middle  

1.65–2.33 95%–99% High  

>2.33 >99% Very high 

4. Synthesizing Symptom Parameter by Least Squares Mapping  

In order to raise the diagnosis sensitivity of the symptom parameter, a method for obtaining the new 

synthetic symptom parameter is proposed as follows. The least squares mapping (LSM) technique 

aims to increase class separability and consists of the transformation of pattern vectors around arbitrary 

pre-selected points in the R
C
 space (where C is the number of states), called the decision space, in such 

a way that the least squares transformation error is minimized [14,15]. In this section, we propose a 

method used to raise the diagnosis sensitivity by projecting the SPs into discrimination space using 

least squares mapping. The type number of SPs (Yk) is K, and the category number of states is M. In 

the coordinate space of K dimension, the endpoint of the vector Yij expresses state i . Yij is shown as 

follows: 

1 2{ , , , | 1 ~ , 1 ~ }T

ij ij ijKy y y i M j N   ijY  (15)  

where, N is the number of SPs, and the number of SPs in each state is same. 

Yij can be projected into a new space L, and the new vector Lij in the space L can be calculated  

as follows: 

 ij ijL AY  
(16)  

where:  

1 2{ , , , | 1 ~ , 1 ~ }T

ij ij ijKl l l i M j N   ijL  
(17)  

The transformation matrix A is defined by means of minimizing the least squares error () between 

vectors Lij and Vi for all states, where Vi is an arbitrary selected vector point in the L space. The 

selection of vector Vi is critical to enhance sensitiveness of the synthetic symptom parameter. In the 

present work, Vi is determined as a unit orthogonal vector by experience. 

Figure 5 shows an illustration of the projection by the LSM, where K = 2 and M = 2. Namely, the 

two states (state 1 and state 2) should be classified using two SP series. 

The error vector is: 

1
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 minimization is performed by solving the following equation over A: 

0  
A  (19)  

which, in conjunction with (18), leads to: 
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For diagnosis, the new synthetic symptom parameter can be obtained as follows: 

SPASSP   (22)  

where SP indicates symptom parameter (here P1~P8). 

According to the projected results shown in Figure 5(b), the points in state 1 and state 2 are 

congregated to vector V1 and V2, respectively. The two states in the space L can be distinguished more 

easily than in the space Y. 

 

Figure 5. Projected example by the LSM (a) before projection; (b) after projection. 

 

   

 

To explain the efficiency of the LSM method, some examples are given. In the present example, we 

used two symptom parameters (P1 and P2) to distinguish the inner race defect (I) and roller element 

defect (R) states of the bearing. SSP1 and SSP2 are the new synthetic parameter obtained by the LSM. 

Tables 3 and 4 show the parameters and the values of the DI and the DR before projection and after 

projection by the LSM, respectively. According to those examples, the states can be clearly 

distinguished by the SSPs. It is obvious that the sensitivity of the SSPs obtained by the LSM is higher 

than the original SPs. In Tables 3 and 4, μp1, μp2, μssp1 and μssp2 are the mean values of P1, P2, SSP1  

and SSP2, respectively. σp1, σp2, σssp1 andσssp2 are the standard deviations of P1, P2, SSP1 and  

SSP2, respectively. 
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Table 3. Values of DR and DI before projection. 

 P1 P2 

State μp1 σp1 DIP1 (DRP1) μp2 σp2 DIP2 (DRP2) 

I 2.38 0.35 
1.12 (86.9%) 

0.72 0.17 
1.19 (87.3%) 

R 3.12 0.56 0.435 0.168 

 

Table 4. Values of DR and DI after projection. 

 SSP1 SSP2 

State μssp1 σssp1 DIssp1 (DRssp1) μssp2 σssp2 DIssp2 (DRssp2) 

I 3.99 0.37 
2.34 (99.04%) 

1.025 0.0022 
2.25 (98.8%) 

R 5.13 0.32 1.032 0.0022 

 

5. Sequential Diagnosis Method Based on Fuzzy Inference and Dempster & Shafer Theory 

 

5.1. Sequential Condition Diagnosis Approach 

 

In many cases of condition diagnosis, symptom parameters are defined to reflect the features of 

vibration signals measured in each state in order to diagnose faults. However, it is difficult to find one 

symptom parameter or a few symptom parameters that can identify all of the faults simultaneously. 

However, the symptom parameters for identification of two states are easy to identify [16]. In order to 

solve these problems, a sequential diagnosis method is proposed. In the first step, the normal state (N) 

can be distinguished from abnormal states using the corresponding possibility of the symptom 

parameter. In the second step, the outer-race defect (O) can be distinguished from the other abnormal 

states using the corresponding possibility of the symptom parameter. In the last step, the inner-race 

defect (I) and the roller element defect (R) states can be distinguished using the corresponding 

possibility of the symptom parameter. Figure 6 shows the flowchart of sequential condition diagnosis 

proposed in this study. 

As mentioned in the Section 3.2, the larger the value of the DI, the better the SP will be. Therefore, 

the two best SSPs that have the high sensitivity at each diagnostic step are selected by the DI. As an 

example, parts of the DI values of each SSP and the selection results are shown in Table 5. In the first 

step, SSP1 and SSP5 can distinguish the normal (N) and the abnormal states (O, I and R) more easily 

than the other SSPs. Because all of DI values of SSP1 and SSP5 for distinguishing these states are 

larger than those of the other SSPs. Similarly, the SSPs for other diagnostic steps can also be selected. 

The other selected results of the SSPs are, SSP1 and SSP5 for the second step, and SSP1 and SSP2 for 

the last step, respectively. All of those DIs are larger than 2.12, and therefore all of the distinction rates 

approach 98.5%. 

http://www.sciencedirect.com/science/article/pii/S0360835210003207#s0025
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Figure 6. Flowchart of sequential condition diagnosis. 
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Table 5. DI values of SSPs for each sequential diagnosis step. 

DI Values of Each SSP 

 SSP1 SSP2 SSP3 SSP4 SSP5 SSP6 SSP7 SSP8 

For first step 

N:O 13.86 3.11 1.43 2.10 10.38 4.93 9.48 7.11 

N:I 2.92 2.20 1.11 2.39 3.08 2.76 2.72 2.56 

N:R 4.81 3.37 0.77 1.06 3.43 1.23 2.27 1.06 

For second step 

O:I 4.69 0.70 0.88 2.05 3.62 2.52 3.31 2.31 

O:R 3.01 2.41 1.56 0.80 2.35 1.04 1.00 0.80 

For third step 

I:R 2.34  2.12  1.22 1.63 1.03 0.70 1.45 1.11 

5.2. Fuzzy Inference by Possibility Theory 

In most cases of condition diagnosis for rotating machinery, knowledge of distinguishing faults is 

ambiguous, because the definite relationships between symptom parameters and fault types, even for a 
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single fault, cannot be easily identified. The values of symptom parameters calculated from vibration 

signals for fault diagnosis are also ambiguous because of the dispersion in the same state. Therefore, it is 

necessary to solve the ambiguous problem of fault diagnosis and to express uncertainty about the 

interpretation of the observable. 

Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is  

an alternative to probability theory. Zadeh first introduced possibility theory in 1978 as an extension  

of his theory of fuzzy sets and fuzzy logic [17]. Dubois and Prade further contributed to its  

development [18,19]. Recently, possibility theory has been used for fault diagnosis [16,20]. More 

details about possibility theory were introduced in references [21–23]. In the present work, possibility 

theory is applied to solving the ambiguous relationship between the symptom parameters and fault types. 

For fuzzy inference, membership functions of SP are necessary. These can be obtained from 

probability density functions of the symptom parameters using possibility theory. When the probability 

density function of symptom parameters conforms to the normal distribution, it can be changed to a 

possibility function P(xi) using the following formula: 
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(25)  

where σ and x are the standard deviation and the mean value of the SP, respectively, and 

 3~3  xxx . 

Figure 7 shows an illustration of the possibility function and the probability density function.  

Figure 8 shows the matching examples of possibility function. In the present example, we used the 

symptom parameter (xi) to distinguish state1, state 2 and unknown state. P1(xi) and P2(xi) are 

possibility functions for state 1 and state 2, respectively. The possibility function of unknown state can 

be calculated as follows, 

  )()(1,0max)( 21 iiiun xPxPxP   (26)  

If xt is the symptom parameter calculated from the data in the state to be diagnosed, the matching 

degrees with a relevant level are calculated as follows: 

State 1 level: 
ti xxPW  )(11
 (27)  

State 2 level: 
ti xxPW  )(22  (28)  

Unknown state level: 
tiunun xxPW  )(  (29)  

Where W1, W2 and Wun express the possibilities of state 1, state 2 and unknown state, respectively. 

These degrees are normalized by 

121  unWWW  (30)  

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Lotfi_Zadeh
http://en.wikipedia.org/wiki/Fuzzy_sets
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Didier_Dubois
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Figure 7. Possibility function and the probability density function. 
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Figure 8. Matching examples of possibility function. 
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Fuzzy systems rely on a set of rules. In this study, to correctly and effectively identify the  

condition and the fault type of rotating machinery, we have obtained the following “if-then” rules for 

condition diagnosis.  

Rule 1: 1,0,033 212211  uniiii WWWthenxxandxxIf  ; 
 

Rule 2:
 

1,0,033 212211  uniiii WWWthenxxandxxIf  ; 
 

Rule 3: 10,10,1033 211111  uniii WWWthenxxxIf  ; 
 

Rule 4: 10,10,1033 212222  uniii WWWthenxxxIf  ; 
 

where ix1  and ix2  are mean values of symptom parameter xi in states 1 and 2, respectively; σ1 and σ2 

are standard deviations of symptom parameter xi in states 1 and 2, respectively. In the rules 3 and 4, the 

possibilities W1, W2 and Wun can be obtained by Equations (27–29), respectively. 

5.3. Dempster & Shafer Theory  

Dempster & Shafer theory (DST) provides a rational inference mechanism for the combination 

relation in the diagnosis problems with uncertainty [24–28]. To obtain the results of the condition 

diagnosis by fuzzy inference, the combination functions of the symptom parameters are necessary. In 
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the present work, the combining possibility function of the symptom parameters (SPi and SPj) can be 

obtained by the Dempster & Shafer theory (DST). 

Supposing Wi(Am) is possibility of SPi in state Am; Wj(Ak) is possibility of SPj in state Ak, here, Am 

and Ak are state sets, and m = k = {1,2,…n}. W(S)
’
 is the combination possibility function of SPi and 

SPj, and S ∈ Am and Ak . Thus, W(S)
’
can be obtained by: 















km

km

AA

kjmi

SAA

kjmi

AWAW

AWAW

SW
)()(1

)()(

)( '  (31)  

where Φ expresses an empty set.  

As mentioned above, the combination possibility functions of SSPs in each sequential diagnosis step 

are obtained as follows. In the first step of the sequential diagnosis, the normalized combination 

possibility functions of the normal state possibility W(N)’, bearing fault state possibility W(B)’ and 

unknown state possibility W(U)’ can be obtained through the possibilities Wi(…) and Wj(…) of SSPi 

and SSPj (here i = 1, and j = 5), respectively, as follows: 
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where Wi(N), Wi(B) and Wi(U) are possibilities of normal state (N), bearing fault state (B) and 

unknown state (U) obtained by SSPi, respectively. Wj(N), Wj(B) and Wj(U) are possibilities of normal 

state (N), bearing fault state (B) and unknown state (U) obtained by SSPj, respectively. 

In the second step of the sequential diagnosis, the normalized combination possibility functions of 

the outer-race defect possibility W(O)’, other bearing defects possibility W(IR)’, and the unknown state 

possibility W(U)’can be obtained through the possibilities Wi(…) and Wj(…)of SSPi and SSPj (here,  

i = 1, j = 5), respectively, as follows: 
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(37)  

where Wi(O), Wi(IR) and Wi(U) are possibilities of outer-race defect (O), other bearing defects (IR) and 

unknown state (U) obtained by SSPi, respectively. Wj(O), Wj(IR) and Wj(U) are possibilities of outer-

race defect (O), other bearing defects (IR) and unknown state (U) obtained by SSPj, respectively. 
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The last step of the sequential diagnosis, the normalized combination possibility function of the 

inner race defect possibility W(I)’, rolling element defect possibility W(R)’, and unknown state 

possibility W(U)’ can be obtained through the possibilities Wi(…) and Wj(…) of SSPi and SSPj  

(here, i = 1, j = 2), respectively, as follows: 
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where Wi(I), Wi(R) and Wi(U) are possibilities of inner race defect (I), rolling element defect (R) and 

unknown state (U) obtained by SSPi, respectively. Wj(I), Wj(R) and Wj(U) are possibilities of inner race 

defect (I), rolling element defect (R) and unknown state (U) obtained by SSPj, respectively. 

6. Fuzzy Neural Network for Fault Diagnosis 

The main mathematic symbols used in Section 6 are: 

Nm: the neuron number of the m­th layer of an NN, Mtom 1 . 

}{
),1()1( j

iXX  : the pattern input to the 1st layer. Here, ),1( j

iX  is the value input to the j­th neuron in the 

input (1st) layer, 
11,1 NtojPtoi  . 

}{
),()( kM

i

M XX  : the training (teaching) data for the last layer (M­th layer). Here, ),( kM

iX  is the output 

value of the k­th neuron in the output (M­th) layer; 
MNtok 1 . 

}{
),1()1(  

j

iXX  and }{
),()(  

kM

i

M XX : new data that has not yet been learnt by the NN. 
),( tm

iX : the value of the t­th neuron in the hidden (m­th) layer; 
mNtot 1 . 

)(m

uvW : the weight between the u­th neuron in the m­th layer and the v­th neuron in the (m+1)­th 

layer, 
11;1;11  mm NtovNtouMtom . 

The fuzzy neural network is applied to diagnose the fault types of a rolling bearing by the sequential 

diagnosis algorithm, and realized with a developed back propagation neural network called as “the 

partially-linearized neural network” (PLNN). A back propagation neural network is only used for 

training the data, and the PLNN is used for testing the learned NN. Here, the basic principle of the 

PLNN for the fault diagnosis is described as follows. 

The neuron number of the m­th layer of an NN is Nm. The set }{
),1()1( j

iXX   represents the pattern 

input to the 1st layer and the set }{
),()( kM

i

M XX   is the training data for the last layer (M­th layer). Here, 

11,1 NtojPtoi  , 
MNtok 1 , and, ),1( j

iX : the value input to the j­th neuron in the input (1st) 

layer; ),( kM

iX : the output value of the k­th neuron in the output (M­th) layer, 
MNtok 1 . 

Even if the NN converges by learning )1(X  and )(MX , it cannot adequately deal with the ambiguous 

relationship between the new )*1(X  and *)(M
X , which has not been learnt. In order to predict *)(MX  

according to the probability distribution of )*1(X , partial linear interpolation of the NN is introduced as 

shown in Figure 9. 
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Figure 9. The partial linearization of the sigmoid function. 

 

In the NN that has converged with the data )1(X  and )(MX , the following symbols are used: 
),( tm

iX : the value of the t­th neuron in the hidden (m­th) layer, mNtot 1 ; 

)(m

uvW : the weight between the u­th neuron in the m­th layer and the v­th neuron in the (m+1)­th 

layer, 
11;1;1  mm NtovNtouMtom . 

If all these values are memorized by the computer, when new values *),1( u
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are input into the first layer, the predicted value of the v­th neuron (v=1 to Nm) in the (m+1)­th layer  

(m = 1 to M ­ 1) can be estimated by: 
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(41)  

Using the operation above, the sigmoid function is partially linearized, as shown in Figure 9. If a 

function must be learned, the PLNN will learn the points indicated by the ● symbols shown in Figure 8. 

When new data (s1', s2') are input into the converged PLNN, the values depicted by the ■ symbols 

corresponding to the data (s1', s2') will quickly be identified as Pe. Thus, the PLNN can be used to deal 

with ambiguous diagnosis problems. 

As shown in Figure 10, the new data (s1', s2') input into the converged PLNN, and which are not 

learnt by the PLNN for recognizing, must satisfy the following condition: 

(max)22(min)2(max)11(min)1 'and' ssssss   (42)  

where s1(min), s2(min) and s1(max), s2(max) are the minimum values and the maximum values of s1 and s2, 

respectively, which have been learned by the PLNN. Therefore, in this work, the values (Pi
*
 and Pj

*
) of 

symptom parameters input to the PLNN for fault diagnosis must satisfy the following condition: 

where Pi(min), Pj(min) and Pi(max), Pj(max) are the minimum values and the maximum values of Pi and Pj, 

respectively. 

* *

(min) (max) (min) (max)andi i i j j jP P P P P P     (43)  
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Figure 10. Interpolation by the PLNN. 

 

7. Diagnosis and Verification 

Figure 11 shows the PLNNs constructed for the condition diagnosis, which consists of the first 

layer, the hidden layer and the last layer. The SSPs selected by DI are input into the neurons in the first 

layer. The number of neurons in hidden layer is eighty. The outputs in the last layer are W(N)’, W(B)’, 

W(O)’, W(IR)’, W(I)’, W(R)’and W(U)’, which mean the possibility grades of normal state, bearing 

fault state, outer race defect state, other bearing defect, inner race defect, rolling element defect and 

unknown states, respectively. 

Figure 11. Partially-linearized neural network for condition diagnosis. 
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In this study, the diagnosis knowledge for training of the PLNN is acquired by the possibility theory 

and the Dempster & Shafer theory (DST). The possibility functions of the SSPs used for each 

diagnostic step, as examples, are shown in Figures 12–14, respectively. 

In Figure 12 P(N), P(B) and P(U) are the possibility functions of the normal, bearing defect and the 

unknown states, respectively. Using the matching method explained in Section 5.2, W1(N), W1(B) and 

W1(U) that the possibilities of SSP1 in the normal, the bearing defect and the unknown states can be 

obtained, respectively; W5(N), W5(B) and W5(U) that the possibilities of SSP5 in the normal, the bearing 

defect and the unknown states can also be obtained, respectively. 

In Figure 13 P(O), P(IR) and P(U) are the possibility functions of the outer-race defect, other 

bearing faults (the rolling element defect and the inner-race defect), and the unknown states, 

respectively. Using the matching method explained in Section 5.2, W1(O), W1(IR) and W1(U) that the 

possibilities of SSP1 in the outer-race defect, other bearing faults and the unknown states can be 
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obtained, respectively; W5(O), W5(IR) and W5(U) that the possibilities of SSP5 in the outer-race defect, 

other bearing faults and the unknown states can also be obtained, respectively. 

Figure 12. Possibility functions of (a) SSP1 and (b) SSP5for first diagnostic step. 
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Figure 13. Possibility functions of (a) SSP1 and (b) SSP5for second diagnostic step. 
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In Figure 14 P(I), P(R) and P(U) are the possibility functions of the inner-race defect, the rolling 

element defect and the unknown states, respectively. Using the matching method explained in  

Section 5.2, W1(I), W1(R) and W1(U) that the possibilities of SSP1 in the inner-race defect, the rolling 

element defect and the unknown states can be obtained, respectively; W2(I), W2(R) and W2(U) that the 

possibilities of SSP2 in the inner-race defect, the rolling element defect and the unknown states can 

also be obtained, respectively. 

Figure 14. Possibility functions of (a) SSP1 and (b) SSP2 for third diagnostic step. 
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After obtaining the possibilities of the SSPs for each diagnostic step, the combination possibility 

function of each state W(N)’, W(B)’, W(O)’, W(IR)’, W(I)’, W(R)’ and W(U)’ can be obtained by the 

Dempster & Shafer theory. As an example, parts of training data for each diagnosis step are shown in 

Tables 6–8. 

Table 6. Training data for first step of sequential diagnosis. 

SSP1 SSP5 W(N)’ W(B)’ W(U)’ 

1.245 0 0 0 1 

2.76 38.7 0.5 0.02 0.48 

5.35 0.665 0.333 0.38 0.287 

4.52 6.18 0 1 0 

… … … … … 

Table 7. Training data for second step of sequential diagnosis. 

SSP1 SSP5 W(O)’ W(IR)’ W(U)’ 

3.15 6.17 0 0 1 

4.13 6.42 0.333 0.333 0.333 

6.08 6.5 0.978 0 0.022 

5.04 15.1 0 1 0 

… … … … … 

Table 8. Training data for third step of sequential diagnosis. 

SSP1 SSP2 W(I)’ W(R)’ W(U)’ 

2.5 1.01 0 0 1 

3.835 1.021 0.75 0 0.25 

5.332 1.021 0.333 0.333 0.333 

5.66 1.032 0.057 0.943 0 

… … … … … 

In order to verify the diagnostic capability of the PLNN, we used the data measured in each state 

had not been learned by the PLNN. When inputting the test data into the learnt PLNNs, they can 

correctly and quickly diagnose those faults with the possibility grades of the corresponding states. The 

diagnosis results are shown in Tables 9–11. 

Table 9. Verification result of first step. 

SSP1 SSP5 W(N)’ W(B)’ W(U)’ Judge 

3.025 1.854 0.811 0.112 0.105 N 

2.882 1.615 0.796 0.157 0.138 N 

4.260 26.05 0.0002 0.8405 0.1691 B 

4.961 15.53 0.0002 0.8561 0.1462 B 

1.579 30.56 0.036 0.0928 0.9075 U 

… … … … … … 
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Table 10. Verification result of second step. 

SSP1 SSP5 W(O)’ W(IR)’ W(U)’ Judge 

6.10 6.33 0.8607 0.0021 0.1511 O 

6.104 6.84 0.9105 0.0059 0.1023 O 

4.22 18.44 0.1265 0.8365 0.0732 I or R 

5.36 9.93 0.0671 0.8012 0.1747 I or R 

2.01 25.5 0.1011 0.0936 0.8228 U 

… … … … … … 

Table 11. Verification result of third step. 

SSP1 SSP2 W(I)’ W(R)’ W(U)’ Judge 

3.81 1.025 0.9541 0.0035 0.1231 I 

4.09 1.029 0.9027 0.0071 0.1096 I 

5.26 1.031 0.0082 0.8974 0.1217 R 

4.73 1.033 0.0047 0.9127 0.1056 R 

6.69 0.83 0.0767 0.0458 0.9279 U 

… … … … … … 

According to the diagnosis results above, the normal (N), the outer-race defect (O), the inner-race 

defect (I), and the roller element defect (R) states of roller bearing can be automatically and correctly 

identified using the diagnosis methods proposed in this paper. 

8. Conclusions 

In order to solve the problem of ambiguity between the symptom parameters and fault types, 

effectively diagnose faults and automatically identify the condition of a rotating machine, an intelligent 

diagnosis method was proposed on the basis of the least squares mapping (LSM) and a fuzzy neural 

network. The main conclusions can be summarized as follows: 

1. A sequential diagnosis method was proposed through which the fuzzy neural network realized 

by the partially-linearized neural network (PLNN) could sequentially distinguish fault types. 

2. Knowledge for training the PLNN was acquired by possibility theory and the Dempster & Shafer 

theory (DST). The method of establishing the membership function by converting the probability 

distribution function of symptom parameters into a possibility function by the possibility theory 

was proposed, and the combination possibility functions of several symptom parameters were 

obtained by the DST. 

3. The eight non-dimensional symptom parameters in the time domain were defined for reflecting 

the features of vibration signals measured in each state. To raise the diagnosis sensitivity of the 

symptom parameters, the new synthetic symptom parameters (SSPs) were obtained by the LSM 

method.  

4. The detection index (DI) on the basis of statistical theory was also defined to evaluate the 

applicability of the SSPs. The DI can be used to select better SSPs for the PLNN. 
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5. The practical examples of faults diagnosis of a roller bearing verified the effectiveness of the 

proposed method. The diagnosis results showed that the faults were sequentially and 

automatically diagnosed on the basis of the possibilities of the symptom parameters.  
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