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Abstract: Failure detectors are one of the fundamental components for building a 
distributed system with high availability. In order to maintain the efficiency and scalability 
of failure detection in a complicated large-scale distributed system, accrual failure 
detectors that can adapt to multiple applications have been studied extensively. In this 
paper, an new accrual failure detector—LA-FD with low system overhead has been 
proposed specifically for current mobile network equipment on the Internet whose 
processing power, memory space and power supply are all constrained. It does not rely on 
the probability distribution of message transmission time, or on the maintenance of a history 
message window. By simple calculation, LA-FD provides adaptive failure detection service 
with high accuracy to multiple upper applications. The related experiments and results 
have also been presented. 
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1. Introduction 

Failure detector is one of the fundamental components for building a distributed system with high 
availability [1]. By providing the processes’ failure information to the system, it supports the solution 
of many basic issues (such as consensus and atomic broadcasting, etc.) in an asynchronous system. 
Failure detection was proposed and formally defined by Chandra and Toueg [2] as an effective way to 
enhance the asynchronous system computational model. With the increasing demands on capability in 
distributed systems, failure detectors have been widely applied to many fields including grid 
computing [3], cluster management [4] and peer-to-peer networks [5]. As a fundamental component, 
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more and more challenges to the efficiency and scalability [6] of failure detectors have been posed by 
the expanding system scale and increasingly complex distributed applications. How to achieve good 
detection speed and accuracy with low detection load has become a hot research topic in this field. 

Adaptive failure detectors have been proposed as an important approach to solve this problem. They 
adjusts the detector’s parameters automatically so that the system’s requirement on the indicator of 
effectiveness can be met with low load under different network environments. Chen [7] and Bertier [8] 
proposed a series of QoS-based adaptive failure detection algorithms based on a probability network 
model. These algorithms have achieved adaptive adjustment in the quantitative control of detector 
parameters and greatly improved the detector’s control accuracy and effectively reduced detection load. 
However, with the development of various network applications, multiple applications are often 
running simultaneously in large-scale systems such as grid, P2P and cloud computing. They have 
different failure detection QoS requirements. Taking into account the impact of load on scalability, we 
can’t supply separate failure detectors for each application. Therefore, here comes another requirement 
for adaptive failure detectors, that is, that they can adapt to different QoS requirements demanded by 
multiple applications. This has become an important issue in the research of failure detection in  
large-scale distributed systems [6]. 

Hayashibara [9] first launched the research in this area and proposed the concept of accrual detector. 
It allows a complete decoupling between monitoring and interpretation in traditional models of failure 
detection. By outputting a continuous value associated with the status of a process rather than a binary 
value simply representing success or failure, upper applications can interpret detection results 
according to their own QoS requirements. Therefore, multiple applications can share the same detector 
and the failure detection load can be effectively reduced in large-scale distributed systems. Currently 
many implementations of accrual detectors have been proposed and applied satisfactorily to some 
well-known systems, such as Facebook [10]. However, with the development of applications in the 
Internet of Things and cloud computing, network access equipment has become diversified. Mobile 
terminals like cell phones and tablet PCs are being used more widely. The majority of such equipment 
are embedded systems whose processing power, memory space and power supply are all constrained, 
but the previously proposed accrual detectors require the probability distribution model for message 
transmission delay. For example, the ϕ-detector uses normal distribution [11], Cassandra uses 
exponential distribution [10], and Benjamin uses gamma distribution [12]. Furthermore, those 
detectors need a certain memory space to save a large history message window. At each detection 
cycle, a large amount of calculation is needed to compute the probability distribution parameters and 
detector parameters. For most mobile terminals, these system overheads for failure detection have an 
important impact on system performance and battery consumption, and regarding failure detection 
itself, Gillen [13] has pointed out that the transmission delays caused by performance degradation 
would also have great impact on detection accuracy. 

Therefore, aiming at mobile devices with constrained resource, we have proposed an accrual failure 
detector with low system overhead. It does not rely on the probability distribution of message 
transmission delay, or on the maintenance of history message windows. Through simple calculations, it 
is able to provide an adaptive failure detection service with high accuracy to multiple upper applications. 
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2. Algorithm Description 

2.1. System Model 

We consider an asynchronous distributed system consisting of n processes, Π = {p1, p2, …, pn}. 
Because the failure detector is running as a basic component in the node, one simple topology is 
considered, and we assume that each pair of processes is connected by a communication channel that 
can be used to send and receive messages. The type of failure is crash and channels are fair-lossy 
channels. No synchronized clock is assumed.  

2.2. Basic Failure Detection Strategy 

Heartbeat is a common method to implement failure detectors. The detection modules detect each 
other’s status by sending heartbeat messages periodically at duration Δti. According to the different 
modes of implementation, there are two monitoring approaches: PUSH and PULL. For two processes 
p and q in system, where q is monitoring p, the two basic approaches are described in Figure 1. 

Figure 1. Heartbeat detection approaches. 
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Both of the approaches detect each other’s status by sending out heartbeat messages periodically at 
duration Δti. The difference is, in PUSH, the monitored process p initiatively sends a periodical 
message “I am alive” to process q, informing q that p is still alive; while in PULL, process q sends a 
probing message “Are you alive?” to the monitored process p periodically. After receiving the query 
message, the monitored process p passively replies an “I am alive!” message to indicate its status. For 
traditional failure detectors based on timeout mechanism, an appropriate time-out value Δto needs to be 
set. If no response message is received after Δto, the monitored process will be suspected as a failure. 
Obviously, the PULL approach needs twice the number of messages to achieve the same performance, 
but this does not affect its scalability. However, PULL is an initiative detection method which 
launches detection only when needed, and it does not need the assumption of a global synchronization 
clock. This is very important for current complicate large-scale distributed applications. Therefore, 
PULL employed as the basic detection strategy in this paper. 

2.3. Basic Idea of the Algorithm 

One of the key factors that affect the performance of an accrual failure detector is the calculation 
method for sl(t). Whether the value of sl(t) can give an accurate description about the actual failure 
status of a process determines the detector’s detection accuracy and delay, etc. In current 
implementations of the accrual failure detector, in order to improve the calculation precision for sl(t), 
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we usually have to rely on the prediction of the arrival time of detection messages. An accurate 
prediction model will greatly increase the detector performance. Some examples of the estimation 
methods which are used most frequently are: estimating the arrival time of detection messages using 
the distribution probability of message delay, predicting possible transmission delay by a linear 
process based on learning, etc. These methods not only cause heavy computing and storage overhead 
but also are limited to specific distributed systems. For example, Avinash’s prediction method based 
on exponential distribution is proposed according to the particular characteristics of the Facebook 
system. In order to find a prediction method with less overhead and better adaptability, we have 
observed transmission delays under two typical network conditions. The detection processes used in 
the experiment are located in Harbin, and the monitored processes are located in Beijing (China) and 
Pittsburgh (PA, USA) respectively. These two sets of experiments correspond to good (dataset 1 with 
an average delay of 82.1 ms) and poor (dataset 2 with an average delay of 1,297.8 ms) network 
conditions, respectively. We have observed for 24 h, respectively, and the results are shown in the 
figure below. 

Figure 2. Experimental results for transmission delay. 

 
(a) Dataset 1 

 
(b) Dataset 2 

From Figure 2, we can see that in the two different network environments, transmission delay 
shows a continuity (in Figure 2(a), data is centralized on 50, 80 and 100 ms, and in Figure 2(b), data is 
centralized on 1,200 and 1,400 ms). Only a very small number of detection messages have a large 
deviated transmission delay due to network congestion or message loss, etc. Furthermore, from the 
statistical data in Figure 2(a), we can get: 

1    ,%1.73]0)[( 10 >=≤− − idelaydelayP ii  (1) 
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Even in Figure 2(b) for a poor network environment, 0P has also reached 56.3%. Therefore, the 
transmission time delayi for most detection messages is less than or close to the transmission time of 
previous message delayi-1. delayi-1 can be used as the predicted value for delayi to support failure 
detection, which means the predicted value of the i-th detection message is preki = delayi-1. This 
method does not cause overhead for modeling and recording a large amount of historical data, and it’s 
adaptive to different network environments. However, we can see from P0 that the accuracy of  
this method is not high, especially for the case of a poor network environment. Therefore, we refer to  
the evaluation method proposed by Jacobson [14] and add consideration of a safety margin to the 
predicted value: 

1    ),( 1111 >−−+= −−−− imargindelayprekmarginmargin iiiii α  (2)  

Let α = 0.25, for data in Figure 2(a), we have Pm[delayi ≤ delayi-1 + margini-1] = 98.9%. For  
Figure 2(b), Pm has also reached 98.4%. Therefore, this new prediction method has greatly improved 
the prediction accuracy and met the needs for most failure detections. Based on this method, we have 
proposed the LA-FD failure detector. 

2.4. LA-FD Failure Detector 

LA-FD employs the PULL approach as the basic failure detection strategy. To simply the 
description, suppose the system consists of only two processes p and q, where q is monitoring p. The 
detection algorithm is shown in Figure 3. 

Figure 3. LA-FD failure detector. 

1. For process q: 
2. detector_module: 
3. for all i > 0, at time i⋅Δti, send mqi to p; 
4. upon receive mai from p do 
5. if currentsni ≥  then 

6. )_( margintimelastΔtitmarginmargin icurrent −−⋅−+← α ; 

7. last_time←tcurrent−i⋅Δti; 
8. sncurrent←i+1; 
9. query_module: 
10. Te←tcurrent−sncurrent⋅Δti; 
11. if 0>eT  then 

12. )1
_

exp( −
+

←
margintimelast

Te
qpρ ; 

13. else ρqp←0; 
14.  
15. For process p: 
16. upon receive mqi from q do 
17 send mai to q; 

Figure 3 shows that the LA-FD failure detector consists of a detection module and a query module. 
The detection module located on process q sends probing message mqi to the monitored process q at 
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It can be seen from the Figure 5 that the CPU overhead is the heaviest in the ϕ-detector based on 
normal distribution and it grows the fastest as the window size changes. This is because the workload 
for calculating parameters of the normal distribution model is the most, and every time it needs the 
statistical data from the entire window. The overhead of LA-FD is the least (about 0.08%), and it isn’t 
affected by window size. Each process in the experiment shown in Figure 5 only maintains five 
connections. In large-scale P2P systems, in order to maintain a high locating efficiency, each process is 
generally required to maintain logN (N is the number of processes in the system) connections. 
Therefore, the fact that LA-FD can reduce CPU overhead is more significant in real systems. 

4. Conclusions 

Accrual failure detector can adapt to the changes in network conditions and on this basis, it can 
satisfy the different QoS requirements of multiple applications. The accrual failure detector is a 
fundamental component to ensure the efficiency and scalability of applications in large-scale 
distributed systems. Aiming at the characteristics that resources is constrained in mobile network 
equipment like cell phones and tablet PCs, LA-FD has been proposed as an accrual failure detector of 
class ◊Pac [9] in this paper. It does not need the probability distribution for message transmission time 
and the maintenance costs for message history window. LA-FD can provide adaptive detection service 
to multiple applications with very low overhead. Experimental analysis has shown that compared to 
several other implementations of accrual detectors, LA-FD maintains a high detection accuracy while 
effectively reducing system overhead and it meets the needs of major distributed applications.  

Acknowledgments 

This project was supported by National Natural Science Foundation of China under (No. 
61100029), Development Program for Outstanding Young Teachers in Harbin Institute of Technology  
(No. HITQNJS.2009.053) and International Science & Technology Cooperation Program of China  
(No. 2010DFA14400). 

References 

1. Dixit, M.; Casimiro, A. Adaptare-fd: A Dependability-Oriented Adaptive Failure Detector.  
In Proceedings of IEEE Symposium on Reliable Distributed Systems, New Delhi, India,  
1–3 November 2010. 

2. Chandra, T.D.; Toueg, S. Unreliable failure detectors for reliable distributed systems. J. ACM 
1996, 43, 225–267. 

3. Horita, Y.; Taura, K.; Chikayama, T. A Scalable and Efficient Self-Organizing Failure Detector 
for Grid Applications. In Proceedings of the 6th IEEE/ACM International Workshop on Grid 
Computing, Tokyo, Japan, 13–14 November 2005. 

4. Lavinia, A.; Dobre, C.; Pop, F.; Cristea, V. A Failure Detection System for Large Scale 
Distributed Systems. In Proceedings of 2010 International Conference on Complex, Intelligent 
and Software Intensive Systems (CISIS), Krakow, Poland, 15–18 February 2010. 



Sensors 2012, 12 5823 
 
5. Chen, H.; Xu, H.; Zhou, Y.; Song, M.; Song, J. A service delivery platform based on p2p 

technology for converged networks. J. Comput. Inf. Syst. 2009, 5, 655–663. 
6. Pasin, M.; Fontaine, S.; Bouchenak, S. Failure Detection in Large Scale Systems: A Survey.  

In Proceedings of IEEE Network Operations and Management Symposium Workshops,  
Bahia, Brazil, 7–11 April 2008. 

7. Wei, C.; Toueg, S.; Aguilera, M.K. On the quality of service of failure detectors. IEEE Trans. 
Comput. 2000, 51, 561–580. 

8. Bertier, M.; Marin, O.; Sens, P. Implementation and Performance Evaluation of an Adaptable 
Failure Detector. In Proceedings of International Conference on Dependable Systems and 
Networks, Washington, DC, USA, 23–26 June 2002. 

9. Defago, X.; Urban, P.; Hayashibara, N.; Katayama, T. Definition and Specification of Accrual 
Failure Detectors. In Proceedings of International Conference on Dependable Systems and 
Networks, Yokohama, Japan, 28 June–1 July 2005. 

10. Lakshman, A.; Malik, P. Cassandra: A decentralized structured storage system. ACM SIGOPS 
Oper. Syst. Rev. 2010, 44, 35–40. 

11. Hayashibara, N.; Defago, X.; Yared, R.; Katayama, T. The φ Accrual Failure Detector. In 
Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems, 
Florianopolis, Brazil, 18–20 October 2004. 

12. Satzger, B.; Pietzowski, A.; Trumler, W.; Ungerer, T. Variations and Evaluations of an Adaptive 
Accrual Failure Detector to Enable Self-Healing Properties in Distributed Systems. In 
Proceedings of the 20th International Conference on Architecture of Computing Systems, Zurich, 
Switzerland, 12–15 March 2007. 

13. Gillen, M.; Rohloff, K.; Manghwani, P.; Schantz, R. Scalable, Adaptive, Time-Bounded Node 
Failure Detection. The Proceedings of the 10th IEEE High Assurance Systems Engineering 
Symposium, Dallas, TX, USA, 14–16 November 2007. 

14. Jacobson, V. Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 1988, 
18, 314–329. 

15. Satzger, B.; Pietzowski, A.; Trumler, W.; Ungerer, T. A New Adaptive Accrual Failure Detector 
for Dependable Distributed Systems. In Proceedings of ACM Symposium on Applied Computing 
(SAC ’07), Seoul, Korea, 11–15 March 2007.  

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


