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Alcalá de Henares 28871, Madrid, Spain; E-Mails: pedro.fernandez@depeca.uah.es (P.F.);
felipe@depeca.uah.es (F.E.)

* Author to whom correspondence should be addressed; E-Mail: lazaro@depeca.uah.es;
Tel.: +34-918-856-540; Fax: +34-918-856-591.

Received: 15 March 2012; in revised form: 9 April 2012 / Accepted: 13 April 2012 /
Published: 3 May 2012

Abstract: In this study, a camera to infrared diode (IRED) distance estimation problem
was analyzed. The main objective was to define an alternative to measures depth only
using the information extracted from pixel grey levels of the IRED image to estimate the
distance between the camera and the IRED. In this paper, the standard deviation of the pixel
grey level in the region of interest containing the IRED image is proposed as an empirical
parameter to define a model for estimating camera to emitter distance. This model includes
the camera exposure time, IRED radiant intensity and the distance between the camera and
the IRED. An expression for the standard deviation model related to these magnitudes was
also derived and calibrated using different images taken under different conditions. From
this analysis, we determined the optimum parameters to ensure the best accuracy provided
by this alternative. Once the model calibration had been carried out, a differential method to
estimate the distance between the camera and the IRED was defined and applied, considering
that the camera was aligned with the IRED. The results indicate that this method represents
a useful alternative for determining the depth information.



Sensors 2012, 12 5688

Keywords: standard deviation; distance estimation; infrared; differential method;
artificial vision

1. Introduction

The geometrical camera model uses a mathematical correspondence between image plane coordinates
and real word coordinates by modeling the projection of the real world onto the image plane [1,2]. If
only a camera is used to estimate the coordinates of a point in space, then the geometrical model will
provide two equations; thus, an ill-posed mathematical problem will be obtained. For this reason, an
additional camera is used to perform 3-D positioning [3–5].

This problem is known as depth estimation. A general approach to solving this problem is to introduce
additional constraints into the mathematical system. These constraints can be obtained from other sensor
devices (cameras, laser, etc.) [1,6,7].

In addition, the geometrical model only uses the image coordinates as the principal source
of information, and image gray level intensities are only used to ensure correspondence among
images [8–11].

In references [8–11] it has been demonstrated that only using the pixel gray level intensities of an
IRED image, a measurement of depth can be obtained under certain specific conditions, such as:

• Images must be formed by the energy emitted by the IRED. The rejection of background
illumination is obtained using an interference filter centered on 940 nm with 10 nm of bandwidth.
This implies to using a 940 nm IRED.

• The IRED must be biased with a constant bias current. This guarantees constant IRED
radiant intensity.

• The IRED and the camera must be aligned. This means that the radiant intensity as a function of
the IRED orientation angle is also constant.

Under these conditions, the distance between the camera and the IRED can be obtained from relative
accumulated energy [10] or from the zero-frequency component of the image FFT [11]. Both of the
models proposed in [10] and [11] depend on camera exposure time, IRED radiant intensity and distance
between the camera and the IRED. They also depend on IRED orientation angle, but this has not yet
been taken into account.

Strategically, it would be advantageous to find another parameter and relate it to camera exposure
time, IRED radiant intensity and camera to IRED distance. This process would increase the number of
constraints extracted from images, thus improve the algorithm in future implementations.

By strategically, we mean that, if [10] and [11] are applied together, then each image will provide
two equations; however, the problem has three degrees of freedom: the distance between the camera and
the IRED, the radiant intensity of the IRED and the IRED orientation angle.

The distance between the camera and the IRED is the main unknown, but in a future implementation
the radiant intensity and the IRED orientation angle will need to be estimated or excluded from the final
distance estimation alternative.
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Regarding the IRED characteristic, the IRED radiant intensity is fixed by the bias current and varies
with temperature, material aging, and other factors. Thus, radiant intensity will introduce drift into the
distance measurement alternative.

To solve the ill-posed problem, at least one other parameter must be considered to define the final
non-geometrical alternative for measuring the distance between the camera and an IRED.

2. Background

Figure 1 shows the distribution of the gray level intensity I(x, y) of an IRED image, with x and y

representing the image rows and columns, respectively.

Figure 1. IRED image taken by the camera represented as a 3-D surface.
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In the representation shown in Figure 1, the gray level intensity profile of the IRED image was plotted
as a 3-D function. When an image of the IRED is captured by the camera, the gray level profile will
be a projection in a plane of the 3-D intensity profile of the IRED. Also, in most cases, the 3-D IRED
intensities profile can be approximated by a bidimensional Gaussian function [12].

The central peak that is shown in Figure 1 corresponds with the maximum intensity emitted by the
source, which in most cases corresponds with the energy emitted in the axial axis of the IRED emission
pattern [12].

This representation takes into account the gray level intensities of the image pixels, which were
obtained by the energies that fall on sensor surface and were accumulated by the camera during the
image capturing process.

Reference [10] proposed using the camera inverse response function [13,14] to obtain a measure of
the relative energy accumulated by the camera, in a region of interest containing the IRED image, during
the exposure time. This accumulated energy depends on the pixel gray level in the IRED image and
decreases with the squared distance between the camera and the IRED.

To estimate the relative accumulated energy, the camera inverse response function must be used. This
function establishes a correspondence between pixel gray level intensity at the camera output and the
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energy accumulated by the camera during the exposure time [13,14]. This energy is the exclusive cause
of the light that is emitted by the IRED and falls on the pixel surface.

In [11] only the gray level intensity distribution of the IRED image was used to obtain the FFT, based
on the fact that image gray level distribution will change when distance between camera and IRED,
exposure time or IRED radiant intensity are changed.

Comparing the parameters proposed in [10] and [11], changes in distance, IRED radiant intensity
or camera exposure time produce more evident changes in accumulated energy than the zero-frequency
component of image FFT. Nevertheless, in both cases, changes in these magnitudes affect pixel gray level
distribution, as reported in [11], and these changes will be evidenced in statistical parameters extracted
from images.

Therefore, similar to the procedure followed in [10,11], a statistical parameter is extracted from pixel
gray level distribution of IRED images and relate it to the distance between the camera and the IRED,
the IRED radiant intensity and camera exposure time.

In this case, the standard deviation of the image gray level intensities that were included in the region
of interest and contained the IRED image is proposed as the empirical parameter to be extracted from the
IRED image. Note that the standard deviation depends exclusively on the pixel gray level distribution,
rather than on the pixel position that is used in projective models [1].

The standard deviation (Σ) provides a measure of the dispersion of image gray level intensities and
can be understood as a measure of the power level of the alternating signal component acquired by the
camera. Therefore, a relationship would exist between the standard deviation and the camera exposure
time, IRED radiant intensity and distance, assuming that the IRED and the camera are aligned.

To use Σ in order to derive an alternative for measuring the distance between the IRED and the
camera, a model for the standard deviation must be obtained. In other words, an expression for z in
Equation (1) must be obtained, bearing in mind that z depends on camera exposure time (t), the IRED
radiant intensity (Ip) and the distance between the camera and the IRED (d).

Σ = z(t, Ip, d) (1)

To estimate the function z, the individual behavior of Σ with d, t and Ip were measured.
In all cases, a region of interest containing the IRED image is selected in the processed image. For

example, Figure 1 shows a 3-D representation of this region of interest. The region was converted into
a vector column-wise or row-wise. There is no difference in the calculation of the standard deviation.
Thus, the standard deviation of pixel gray level is obtained by:

Σ =

(
1

n− 1

n∑
i=1

(gi − ḡ)2
) 1

2

(2)

where gi represents the gray value of the pixel i and ḡ = 1
n

∑n
i=1 gi is the mean value of gray level in the

image vector.

2.1. Behavior of Σ with Camera Exposure Time (t)

To characterize Σ obtained by Equation (2) with camera exposure time, images at a fixed distance
with fixed IRED radiant intensity and different camera exposure times were captured.
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For each condition, 10 images were acquired. The final value for Σ in each condition was the median
value over the 10 images acquired. The result of this behavior is shown in Figure 2.

Figure 2. Behavior of Σ with camera exposure time (t) obtained for different IRED radiant
intensities (Ip) with a distance between the camera and the IRED of 440 cm.
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The 10 images for each condition were used to perform a statistical model and also ensure the
reduction of noise in the behavior of Σ in the model characterization process. Nevertheless, the
consistency of the Σ parameter was measured before the behaviors were obtained. Figure 3 shows
the result of the measurement of Σ’s consistency.

Figure 3. Consistency of the Σ parameter extracted from the IRED images. The
maximum dispersion over the 30 images was lower than a 0.5% of the mean value for each
considered condition.
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Figure 3 means that in 30 images, the Σ parameter is kept almost constant; specifically the dispersion
of the Σ in this experiment was lower than 0.5%. This demonstrates that it is not necessary to perform
a more rigorous statistical average to obtain lowest error in the modeling process. That is why only 10
images were used to perform the average to reduce the noise in Σ.

As can be seen in Figure 2, total behavior can be modeled with a non-linear relationship with camera
exposure time. However, the range of exposure times (t) was limited from 2 ms to 18 ms. In Figure 4,
the values of Σ over the range of considered exposure times are shown, and this range was used to define
the behavior of Σ with t.

Figure 4. Behavior of Σ with t over the range from 2 ms to 18 ms, considering different
radiant intensities at a fixed distance between camera and IRED.
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Under these conditions, Σ can be modeled by a linear function of camera exposure time.
Mathematically it can be written as:

Σ = ζ (Ip)× δ
(
d−2
)
× (τ1t+ τ2) (3)

where ζ is the function used to model the behavior of Σ with IRED radiant intensity Ip, δ is the function
to model the behavior with distance d between the camera and the IRED, and τ1 and τ2 are the coefficients
to model the linear relationship between t and Σ.

The non-linear behavior of Σ with the exposure time shown in Figure 2 could be associated with pixel
saturation. For example, when t increases, the energy falling on the sensor surface also increases and
produces pixel saturation. From an energy point of view, a saturated pixel produces loss of information,
because when gray level intensity is used (255 for an 8 bit camera), the recovered energy value is always
lower than the real energy value. For this reason, it is advisable to restrict the dynamic range of exposure
times to guarantee non-saturated pixels.

2.2. Behavior of Σ with IRED Radiant Intensity (Ip)

IRED radiant intensity can be controlled by the IRED bias current, as is shown in Figure 5.
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Figure 5. Relationship between IRED radiant intensity and the bias current.

Figure 5 shows the behavior of IRED radiant intensity with the bias current. This behavior can be
modeled by a linear function. Therefore, changes in IRED radiant intensity can be obtained by changes
in IRED bias current.

To characterize the behavior of Σ with the IRED radiant intensity, images captured with different bias
currents were used. Figure 6 gives the standard deviation values, calculated by Equation (2) considering
different IRED radiant intensities.

Figure 6. Values of Σ obtained for a distance between the camera and the IRED of 520 cm,
for different exposure times (6, 7, . . . , 16 ms) and for different IRED bias currents.
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Figure 6 was obtained using a fixed distance between the camera and the IRED, ten different exposure
times and different IRED bias currents. The behavior of Σ with Ip was considered as a linear function.
Thus, the function ζ shown in Equation (3) can be written as:
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ζ(Ip) = ρ1Ip + ρ2 (4)

where, ρ1 and ρ2 are the coefficients used to model a lineal relationship between Σ and Ip.

2.3. Behavior of Σ with the Distance between the Camera and the IRED

To include the distance between the camera and the IRED in Equation (1), the behavior of Σ with
distance was also measured. The result of this behavior is shown in Figure 7.

Figure 7. Values of Σ obtained for Ip = 8 mA, with t = 6, 7, . . . , 11 ms and considering
distances from 440 to 800 cm.
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To obtain the result shown in Figure 7, exposure times were varied from 6 to 11 ms, the Ip was 8 mA
and the distance was varied from 440 to 800 cm. It can be seen in this figure that a relationship exists
between the distance and Σ.

However, distance behavior was considered quadratic, rather than linear as in references [10,11].
Figure 8 was generated in order to demonstrate that considering behavior quadratic rather than linear is
more accurate.

Finally, the behavior of Σ with the distance between the camera and the IRED were considered as a
quadratic function. Therefore, in the Equation (1) the function δ(d) yields:

δ(D) = γ1D
2 + γ2D + γ3 (5)

where, D = 1
d2

and γi with i = 1, . . . , 3 are the coefficients used to model the behavior of Σ with the
distance between the camera and the IRED.
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Figure 8. The standard deviation as a function of d−2. From the behavior of Σ with d it can
be stated that considering quadratic behavior is more accurate than linear behavior.
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3. Model of Standard Deviation to Estimate Distance

The behaviors measured and presented in Sections 2.1, 2.2 and 2.3 were integrated into a model that
theoretically characterized the standard deviation of pixel gray level in the region of interest containing
the IRED image.

Taking into account the Equation (3) and substituting ζ for the Equation (4) and δ for the Equation (5),
Σ can be written as:

Σ = (τ1t+ τ2)× (ρ1Ip + ρ2)× (γ1D
2 + γ2D + γ3) (6)

After parenthesis elimination, the standard deviation yields:

Σ = [κ1tIpD
2+κ2tIpD+κ3tIp+κ4IpD

2+κ5IpD+κ6Ip+κ7tD
2+κ8tD+κ9t+κ10D

2+κ11D+κ12] (7)

where D = 1
d2

and κi with i = 1, 2, . . . , 12 are the model coefficients that can be obtained in a
calibration process.

3.1. Model Calibration

To calibrate the model proposed in Equation (7), images taken with different radiant intensities,
different exposure times and different distances were required. In this case, orientation angles were
not taken into account since the camera and the IRED were considered aligned facing one another.

The data used to obtain the values for the model coefficients are summarized in Table 1. Note that
IRED radiant intensity are fixed by the IRED bias current.

For each distance, five IRED bias currents were considered. For each distance and IRED bias current,
16 images with different exposure times were used; therefore Neqns = 192 equations were formed to
obtain 12 model coefficients, which are the unknowns.
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Table 1. Data used in the calibration process.

Magnitude Value

Distance [cm] 440, 560, 680 and 720

Exposure time [ms] 2, 3, 4, . . . , 17

IRED’s bias current [mA] 7, 8, 9 and 10

From each of the equations, the error between the modeled and measured standard deviation can be
defined. Thus:

ϵ =

Neqns∑
i=1

[Σmeasured
i − Σmodeled

i ]2 (8)

where Σmodeled are obtained by Equation (7) and Σmeasured are extracted from each image by using the
Equation (2).

The values for the model coefficients were calculated to minimize the error stated in Equation (8).
The coefficients k can be calculated by k = M+ × S, where M+ = (Mt ×M)−1 ×M is the

pseudo-inverse matrix of M, which is formed with the calibration data summarized in Table 1 and S

is the vector of all measured Σi. The results of the calibration process are shown in Figure 9.

Figure 9. Result of the calibration process.
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In Figure 9(a), the blue squares represent the measured Σ and the asterisks represent the modeled one.
The relative error in the calibration process described, which is shown in Figure 9(b), has peak values

lower than 13% for some images. These images, as can be seen in Figure 9(a), corresponded to higher
bias currents and higher camera exposure times. However, the mean error was lower than 2%, as is
shown in Figure 9(b).
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3.2. Using the Standard Deviation to Estimate the Distance Between the Camera and the IRED

Once the coefficients had been obtained, the model proposed in Equation (7) could be used to estimate
the distance between the camera and the IRED. Similar to references [9–11], a differential methodology
was used to estimate the distance.

The differential method used two images captured with different exposure times. Consider two images
(Ij and Ir) taken with times tj and tr , respectively; △Σ is the difference between Σj and Σr, which are
the standard deviation extracted from the images Ij and Ir, respectively. Analytically, △Σ would yield:

△Σ = κ1IpD
2△t+ κ2IpD△t+ κ3Ip△t+ κ7△tD2 + κ8△tD + κ9△t (9)

where △t = tj − tr.
From the Equation (9), the distance can be written as a quadratic function. That is:

(κ1Ip△t+ κ7△t)×D2 + (κ2△tIp + κ8△t)×D + (κ3△tIp + κ9△t−△Σ) = 0 (10)

Then, the distance estimation can be obtained from the positive real root of Equation (10), considering

that d =
√

1
D

.
As can be seen from Equation (10), the differential method reduced the number of coefficients used

for distance estimation and, as was demonstrated in reference [10], also ensured better performance than
the direct distance estimation method.

Another question must be considered; for example, the Equation (10) was defined considering only
a △t extracted from two images. When more images are used for distance estimation, more distance
values will be obtained. This means that the number of distance estimation will be the same as the △t

considered in the measurement process. Thus, the problem could be stated as: which time differences
must used for distance estimation?

In reference [15], an analysis of error in measurement process was carried out and it was demonstrated
that a relationship existed between accuracy in distance estimation and difference of exposure times used
in the measurement process. By plotting the distance estimation error, the resulting curve resemble a
bathtub curve. Furthermore, in reference [15], it was demonstrated that optimum exposure times can be
determined in the calibration process.

Using the calibration data summarized in Table 1 and applying the method proposed in reference [15]
it is possible to obtain the performance of the model coefficient adjustment to detect the △t where the
lowest error in model fit is obtained. Evidently, the best results in distance estimation will be obtained
under those conditions where a best model fit has been obtained.

Once model coefficient had been calculated in the calibration process, the model was written in the
differential form to estimate the error in the calibration process. This process was used to evaluate the
performance of the model and to detect the values of time differences where lowest error would be
obtained for each bias current. Figure 10 shows the results of this analysis.
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Figure 10. Relative error in the calibration process as a function of exposure time
differences. In these figures different distances were considered: (a) 440 cm, (b) 560 cm,
(c) 680 cm, (d) 720 cm and (e) 800 cm. From the performance of the calibration process
it is possible to obtain the optimum exposure time differences to carry out the distance
measurement process. Optimum △t to carry out the measurement process coincides with
△t where lowest error was obtained in the calibration process.

0 5000 10000 15000
0

1

2

3

4

5

6

7

8

9
d = 440 cm

∆ t [µs]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 
I
p
  = 7 mA

I
p
  = 8 mA

I
p
  = 9 mA

I
p
  = 10 mA

(a)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
d = 560 cm

∆ t [µs]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 
I
p
 = 7 mA

I
p
 = 8 mA

I
p
 = 9 mA

I
p
 = 10 mA

(b)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
d = 680 cm

∆ t [µs]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 
I
p
 = 7 mA

I
p
 = 8 mA

I
p
 = 9 mA

I
p
 = 10 mA

(c)

0 5000 10000 15000
0

1

2

3

4

5

6

7
d = 720 cm

∆ t [µs]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 
I
p
 = 7 mA

I
p
 = 8 mA

I
p
 = 9 mA

I
p
 = 10 mA

(d)

0 5000 10000 15000
0

1

2

3

4

5

6

7
d = 800 cm

∆ t [µs]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 
I
p
 = 7 mA

I
p
 = 8 mA

I
p
 = 9 mA

I
p
 = 10 mA

(e)



Sensors 2012, 12 5699

From Figure 10, the differences of exposure times where best model fit is obtained can be extracted.
To generate these figures, tr = 2 ms and tj = 3, 4, . . . , 17 ms; the exposure time differences would
yield: △t = 1, 2, . . . , 15 ms. For each IRED bias current, we estimated the optimum exposure time
difference for each calibration distance. The obtained values were: 1, 2, 3, 5, 7, 10, 11, 12, 13, 14 and
15 ms. Subsequently, 13 ms was selected as the final optimum exposure time difference to be used in the
measurement process, because it was the most frequently repeated value for all considered bias currents
and distances.

In addition, in Figure 10 it can be seen that relative error in the calibration process for most distances
was lower than 4%. The relative error curves shown in Figure 10 provide information about the future
performance of distance estimation methodology; therefore, the errors in distance estimation can be
predicted and they will be lower than 4%.

4. Experimental Results

In the experimental tests, an SFH4231 IRED [16] and a Basler A622f camera [17] were used. In order
to ensure the condition stated in Section 1 the following settings were considered:

• Because the IRED wavelength was 940 nm, the camera was fitted with an interference filter,
centered at 940 nm with 10 nm of bandwidth, which was attached to the optic to reduce the
influence of background illumination.

• To exclude the influence of the orientation angle, the camera and the IRED were aligned by putting
them in a line drawn in the floor. The alignment was obtained by rotating the IRED and the camera
using goniometers, until a circular IRED image was obtained. To verify this alignment, several
distances between camera and IRED were considered, and in all considered distances the images
of the IRED were located in equals image’s coordinates.

• Once camera and IRED were put in the correct position and in the considered distance, they were
raised from the floor using aluminum bars of squared-section and 1 m height to avoid the reflection
on the floor.

Starting with an energetic study, the camera resolution in the radiometric model would not affect the
performance. Note that the quantity of energy acquired by the camera will be the same in either a large
or a small number of pixels. Evidently, if more pixels could be used, more accurate measurement could
be obtained because an average could be used to reduce the spatially distributed noise. Alternatively, in
the case of lower resolution cameras, the noise reduction could be achieved by temporal average, which
implies to use more images for a single condition.

Currently, small resolutions do not constitute a strict problem from a practical point of view, because
most camera sensors have higher than 640 × 480 pixels of resolutions. However, when a higher
resolution could be used to estimate the Σ parameter, the result would be more noise-robust. Therefore,
we recommend using square-ROI higher than 30 × 30 pixels to guarantee an average with more than
900 pixels. For the experiment performed to validate the distance estimation using the Σ parameter, a
60 × 60 pixels resolution was used.

To validate the standard deviation as an alternative method for estimating the distance between the
camera and the IRED, a range of distances from 400 to 800 cm were considered. As shown in Table 1
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five distance values for this range were used for calibration purposes as stated in Section 3.1. The
measurement process used the entire range of distances; thus some distance values were present which
were not used in the calibration process.

Figure 11 shows the distance estimation considering the differential method defined in Equation (9)
for all available exposure time differences (from 1 to 15 ms).

Figure 11. Results of distance estimation process considering all available differences of
exposure time for different bias currents: (a) for Ip = 7 mA, (b) for Ip = 8 mA, (c) for
Ip = 9 mA and (d) for 10 mA. The line with square markers represents the real distance and
the colored circle represents the estimated distance. The color of the circles represents the
relative error in distance estimation.
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The blue square marker represents the real distance and the colored circles represent the estimated
distance. Circle color represents the relative error as a percentage of the distance estimation method. As
can be seen from the color of the circles, most relative errors were lower than 5%.

The results shown in Figure 11 were obtained using all available exposure time differences. Thus, if T
is the total of △t used for distance measurement, then the differential method will require T + 1 images
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to obtain T distance estimations. This implies capturing and processing several images and increases the
measurement time.

A better result and greater efficiency in distance estimation could be obtained if optimum exposure
times were used. As stated in Section 3.1 the optimum △t = 13 ms. Figure 12 shows the results of
distance estimation using optimum △t. Figure 12 is summarized in Table 2.

Figure 12. Results of distance estimation process considering the optimum difference of
exposure times (△t = 13 ms) for each of the bias currents used; (a) for Ip = 7 mA, (b) for
Ip = 8 mA, (c) for Ip = 9 mA and (d) for 10 mA. The final results are also summarized in
Table 2.

400 450 500 550 600 650 700 750 800
400

450

500

550

600

650

700

750

800

Distance [cm]

D
is

ta
nc

e 
[c

m
]

I
p
 = 7 mA

 

 
Estimated  d
Real  d

0.5

1

1.5

2

2.5

3

3.5

Relative
Error
[%]

(a)

400 450 500 550 600 650 700 750 800
400

450

500

550

600

650

700

750

800

Distance [cm]

D
is

ta
nc

e 
[c

m
]

I
p
 = 8 mA

 

 
Estimated  d
Real  d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Relative
Error [%]

(b)

400 450 500 550 600 650 700 750 800
400

450

500

550

600

650

700

750

800

850

Distance [cm]

D
is

ta
nc

e 
[c

m
]

I
p
 = 9 mA

 

 
Estimated  d
Real  d

0.2

0.4

0.6

0.8

1

1.2

Relative
Error [%]

(c)

400 450 500 550 600 650 700 750 800
400

450

500

550

600

650

700

750

800

850

Distance [cm]

D
is

ta
nc

e 
[c

m
]

I
p
 = 10 mA

 

 
Estimated  d
Real  d

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Relative
Error [%]

(d)

By using the optimum exposure time difference, the number of images used in the distance estimation
process is reduced considerably. In this case, one optimum △t was used and two images were captured
for distance estimation purposes.
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Table 2. Final distance estimation using the standard deviation of pixel gray-level
intensities in an IRED image together with a differential method using the optimum exposure
time difference.

Real distance [cm]
Estimated Distance and Relative Errors for Different Bias Currents

Ip = 7 mA [%] Ip = 8 mA [%] Ip = 9 mA [%] Ip = 10 mA [%]

440 439.3 0.2 437.3 0.6 439.3 0.2 439.6 0.1

480 478.8 0.3 474.2 1.2 471.5 1.8 468.5 2.4

520 520.1 0.0 514.5 1.1 511.7 1.6 510.2 1.9

560 561.1 0.2 554.4 1.0 556.1 0.7 553.0 1.2

600 601.3 0.2 598.2 0.3 598.6 0.2 597.3 0.4

640 639.1 0.1 635.9 0.6 638.7 0.2 639.0 0.2

680 682.2 0.3 680.5 0.1 684.7 0.7 686.0 0.9

720 718.7 0.2 721.6 0.2 724.4 0.6 728.8 1.2

760 755.4 0.6 759.3 0.1 772.2 1.6 773.6 1.8

800 790.7 1.2 800.8 0.1 813.1 1.6 820.7 2.6

As can be seen in Table 2, the relative errors in distance estimation were lower than 3%, therefore;
it can be stated that the standard deviation of pixel gray level extracted from the region of interest
containing the IRED image is a useful alternative for estimating the distance between the camera and the
IRED. In addition, it constitutes an alternative for extracting the depth lost in projective models.

5. Conclusions and Future Research

In this paper, we have analyzed the estimation of distance between a camera and an infrared emitter
diode. This proposal represents a useful alternative for recovering the depth information lost in projective
models.

The alternative proposed in this paper follows the same idea that has been described in the
references [10,11], that is: to use only the pixel gray level information of an IRED image to extract
depth information.

In addition, in this paper we have demonstrated the need to increase the number of constraints in order
to reduce the number of degrees of freedom associated with the problem of estimating camera to emitter
distance. The standard deviation alternative proposed here constitutes a helpful alternative.

The modeling process described in this paper was carried out in order to relate the standard deviation
to the same magnitudes as those used in [10] and [11]: exposure time, the IRED radiant intensity and
the distance between the IRED and the camera, assuming that the camera and the IRED were aligned.
These magnitudes were included in the standard deviation model by measuring the individual behaviors
of Σ with each of them. From the results of these behaviors, it can be stated that:

• The standard deviation is a linear function of the camera exposure times and IRED radiant
intensity.
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• The standard deviation is a quadratic function of the inverse-square distance between the camera
and the IRED.

By using these conclusions, an expression for standard deviation was derived. The model for standard
deviation had 12 coefficients, which were calculated in a calibration process.

The calibration process used images captured with different IRED radiant intensities values, camera
exposure times and distances between the camera and the IRED.

By using a differential method, the distance between the camera and the IRED was obtained, using
only the pixel gray-level information.

In addition, from data used in the calibration process and considering the differential method, an
analysis of model fit was implemented in order to obtain the optimum exposure times to implement
the measurement process. The maximum errors of distance estimations considering the optimum times
were lower than 3%. Besides, in all experiments carried out to validate the distance estimation method
proposed in this paper, the average relative errors were lower than a 1% in the range of distance from
440 to 800 cm.

The goal of this proposal was to define a useful alternative for extracting depth using only pixel gray
level information. The main disadvantage of this proposal is that the relationship between the standard
deviation and the IRED orientation angle was not considered in the modeling process.
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