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Abstract: Activity monitoring of a person for a long-term would be helpful for controlling 
lifestyle associated diseases. Such diseases are often linked with the way a person lives.  
An unhealthy and irregular standard of living influences the risk of such diseases in the 
later part of one’s life. The symptoms and the initial signs of these diseases are common to 
the people with irregular lifestyle. In this paper, we propose a novel healthcare framework 
to manage lifestyle diseases using long-term activity monitoring. The framework 
recognizes the user’s activities with the help of the sensed data in runtime and reports the 
irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed 
framework is a hierarchical structure that consists of three modules: activity recognition, 
activity pattern generation and lifestyle disease prediction. We show that it is possible to 
assess the possibility of lifestyle diseases from the sensor data. We also show the viability 
of the proposed framework. 

Keywords: sensor system; ubiquitous healthcare system; activity recognition; lifestyle 
disease; framework 
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1. Introduction 

Advancements in sensor technologies give us the opportunity to recognize activities of daily living 
(ADLs) [1] for a long-period of time. Long-term activity monitoring could be helpful for the 
caregivers or doctors to monitor user’s unhealthy and irregular activity patterns. This not only can 
reduce of the cost of healthcare but also can avoid unwanted consequences. 

Lifestyle diseases such as Alzheimer’s disease, atherosclerosis, asthma, cancer, chronic liver disease 
or cirrhosis, chronic obstructive pulmonary disease, type 2 diabetes, heart disease, metabolic syndrome, 
nephritis or chronic renal failure, osteoporosis, acne, stroke, depression and obesity, appear to become 
ever more widespread as countries become more industrialized. These are now one of the main focuses 
of the researchers due to their high mortality rate [2]. Researchers from all over the world are working 
for early detection and prevention of such diseases. 

A lifestyle disease is associated with the manner a person lives [3]. Lifestyle diseases are different 
from other diseases because these are potentially preventable, and can be lowered with changes in diet, 
lifestyle and environment. In particular, an unhealthy and irregular life pattern may increase the risk of 
lifestyle diseases in the later part of life [3,4].  

Monitoring a person’s lifestyle over a long period of time can be helpful for the following purposes: 

- Early identification of the lifestyle: A person is generally at risk of a lifestyle disease when 
he/she lives his/her life in a certain style. Moreover, initial signs and symptoms of such 
diseases appear in people with irregular life patterns [5,6]. By long term activity monitoring, it 
would be possible to identify such styles (e.g., irregular and unhealthy) and determine the risk 
of the disease before the actual disease appears. 

- Prevention of lifestyle diseases: It would be possible to prevent a disease at the first place 
with the identification of the lifestyle. A healthy lifestyle and physical activity help prevent 
obesity, heart disease, hypertension, diabetes, colon cancer, and premature mortality [7].  
A person can assess his/her lifestyle and become aware of any irregular patterns though 
monitoring daily activity patterns. 

- Management of lifestyle diseases: A person who has a lifestyle disease should make changes 
to assure a healthy lifestyle. For example, there is no cure for type 2 diabetes, but it can be 
effectively controlled by maintaining normal blood-glucose levels. This can be achieved 
through weight control by following a nutritious and balanced diet, along with regular and 
stringent exercise [8].  

In this paper, we propose a framework for supervising lifestyle diseases with the help of long-term 
activity monitoring. The framework can produce a significant amount of information to assist the 
medical practitioners in not only diagnosing a lifestyle disease but also to prevent it. The key idea of 
the framework is that we monitor target activities that reflect the initial signs and symptoms of lifestyle 
disease. Since lifestyle diseases appear in people with irregular life patterns, we can predict the risk of 
the diseases by monitoring the target activities for a long-period of time.  

The framework has a hierarchical structure that consists of four layers: (1) activity classification 
layer, (2) activity pattern generation layer, (3) disease inferring layer and (4) application layer. In the 
activity classification, target activities are recognized using an activity recognition technique. In the 
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activity pattern generation layer, a regular pattern of each target activity is generated by adopting a 
statistical modeling approach. Finally, in the disease inferring layer, the risk of lifestyle disease is 
measured based on the similarity between the daily activity pattern and a predefined disease symptom 
pattern. In the web-based application layer, the user’s current activity, activity pattern, and risk of 
disease are reported to medical practitioners. 

The contributions of this paper are summarized as follows: We propose a healthcare framework for 
supervising the possibility of lifestyle diseases using long-term activity patterns. These patterns are 
generated by monitoring ADLs. The current version of the framework is applicable to (but not limited 
to) a home environment. We consider a set of sensors that are embedded with the daily-life objects (of 
the environment) such that it is possible to determine the state of an object when it is used.  
We performed two experiments to validate the performance of the framework. Apart from supervising 
the lifestyle diseases, the proposed framework has lot of other applications such as elderly monitoring, 
ADLs pattern analysis and regular lifestyle management. To the best of our knowledge this is the first 
framework for activity based lifestyle disease prediction.  

The remainder of this paper is organized as follows: in the next section, we discuss related works 
and the study background. In the third section, we explain the details of the proposed healthcare 
framework. We discuss the experimental results in Section 4 and, finally, present our conclusions and 
describe our future work in the final section. 

2. Background and Related Works 

Long-term activity monitoring can be regarded as observing human activities on a daily basis for a 
long period of time. It has lots of applications, especially in healthcare. Based on the application, the 
long-term activity monitoring systems can be categorized into two types [9]: disease management and 
health monitoring systems. 

Disease management systems use the physiological and psychological data of real-life for managing 
chronic disorders or health problems, diabetes [10] and obesity [11,12]. Such systems require the user 
to measure his/her health status (such as blood sugar level or weight) by his/herself and respond to any 
feedback received. Although such a system can provide good quality service, it could not be  
general-purpose. It would be difficult for many users to provide self-reported data. 

Health monitoring systems [13–17] on the other hand automatically monitor and report the user’s 
health and daily life patterns. For this purpose, such a system uses embedded sensors and/or wearable 
sensors for accumulating the user’s information. Modern day home healthcare systems are mostly 
health monitoring systems.  

Activity-based lifestyle supervising is a type of a health monitoring system. In such systems, 
lifestyle patterns are measured with the help of statistical data of daily living. In [13,14], Virone et al. 
installed infrared (IR) motion sensors in houses for collecting users’ movement data. He then estimated 
circadian activity rhythm based on the average amount of time a resident spent in each room, and also 
on the activity level given by the average number of motion events per room. Large deviations from 
this average time or number are considered as abnormal patterns. The system proposed by Ohta et al. 
in [15] is based on a similar concept with [14], except that the average time spent in each room is 
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estimated for each day. They also included the average movements of a user for detecting any 
abnormalities.  

In [16], Cardinaux et al. collected user activity data by installing bed and chair occupancy sensors, 
passive infra-red movement detectors door contact monitors, and electrical usage sensors in a house. 
He recognized two activities (sleeping and watching TV) based on a rule-based algorithm. For 
example, a sleeping period is detected when a bed sensor is fired followed by a sensor “out” event. 
Then, he modeled normal activity pattern with Gaussian mixture model and detect abnormal activity 
patterns for each activity. Shin et al. [17] extracted three different feature values [activity level, 
mobility level, and non-response interval (NRI)] by using IR sensors. The activity level represents how 
many times subject’s motion was captured. The mobility level represents subject’s movement. The 
NRI represents a time between the subject’s motions. The support vector data description (SVDD) 
method was used to classify normal behavior patterns and to detect abnormal behavioral patterns based 
on the three features. Since they consider three features, they can detect more detail abnormal 
behavioral patterns such as weakness, seizures, falls and severe pain, etc. 

The above systems deal only with the abnormalities of one or more activities. These systems do not 
have the ability to determine what or how the abnormalities could affect him/her in the later part of the 
life. In other words, these systems monitor the user activities for short term and detect any anomalies.  

In this paper, we propose a healthcare framework for supervising lifestyle diseases using long-term 
activity monitoring. We show how long-term activity monitoring technique can be applied for 
managing lifestyle diseases. Moreover, we adopt activity recognition technique for modeling user 
activity pattern with various activities such as eating, sleeping, showering, etc. The framework does 
not require any self-reported biomedical data from the user. It is therefore applicable in almost all 
environments. To the best of our knowledge this is the first approach to monitor lifestyle diseases with 
the help of long-term activity monitoring. 

3. Home Healthcare Monitoring Framework 

In this section, we explain the proposed framework in detail and show how the risk of lifestyle 
disease is inferred from the sensor data. The main idea behind the disease inference is to observe the 
irregularities of the user’s daily activities. There could be different types of irregularities of the activity 
patterns, for example, the frequency of doing an activity is more or less than the usual, the means of 
doing an activity is not appropriate, or there exists a mismatch of the sequence of activities.  
For this version of the framework, we have used the frequency of an activity as the primary source for 
disease inference.  

The overall architecture of the proposed framework is illustrated in Figure 1. It consists of three 
hierarchically connected modules: activity classification, activity pattern generation and lifestyle 
disease prediction. The activity classification module is used to recognize the user activity in real-time 
and provides its output to the activity pattern generation module. The activity pattern generation then 
determines various parameters such as, daily activity frequency, regular activity frequency, graded 
activity frequency and daily activity pattern and provides output to the lifestyle disease prediction 
module. The lifestyle disease prediction module then determines the risk of a lifestyle disease.  
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Figure 1. Overall architecture of the proposed healthcare framework. 

 

The results of the lower level modules are the inputs to the higher level modules. The output of each 
module are stored in the activity database for providing various healthcare information such as 
current/last activity, activity frequency and duration, activity pattern, and disease probability. The 
framework also provides a web-based healthcare application for the clinician and caregiver to monitor 
the activity database remotely. 

3.1. Environment 

The current version of the framework is applicable to a home environment, however not limited to. 
The arrangements we need for the framework are follows: a set of lifestyle diseases, the set of disease 
related activities to monitor, and a set of sensors which are embedded with the home appliances in a 
way such that it is possible to determine the state of an appliance when it is used.  

A set of activities are chosen based on the type of lifestyle diseases we would like to manage.  
We define such activities as: 

Definition 1. Disease Influenced Activity (DIA): This is an activity that is influenced  
by the initial signs and symptoms of a specific disease. It is denoted by ܣܫܦሺ݀ሻ ൌ ሼܽௗభ,ܽௗమ,. . . , ܽௗ೙ሽ for disease d with n kinds of DIA. 

A set of DIAs per lifestyle disease are shown in Table 1. For example, depression is a serious 
medical condition that not only affects the mood of a person but also the daily life activities [4]. It has 
DIAs such as, activity in mild illumination, less sleeping and less talking. 

After selecting the activities, the next thing we need is to deploy the sensors to the environment. 
The sensors are considered to be embedded with the set of home appliances (or objects) which are 
related to the DIAs. We choose to use binary sensors [16–18], since they have many advantages over 
the other types of sensors, such as, providing privacy and being inexpensive [18,19]. 

Figure 2 shows an interface of the disease and DIA registration in the healthcare framework.  
A disease is registered first, DIAs for the registered disease then are selected for monitoring. For 
example, the DIAs, eating, toileting, sleeping, movement, and weight are selected for the diabetes. 
Since the DIA, “activity in mild illumination”, is not the initial sign and symptom for the diabetes, 
“light” is not selected. 
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Table 1. Example of DIAs of Diabetes and Depression. 

Lifestyle Disease Initial Signs and Symptoms DIAs 

Depression 

Down feeling Activity in mild illumination 

Loss of interest in daily activities 
infrequent traversal or leaving house, 
unhygienic activity, less talking,  

Sleep changes 
(oversleeping is less common) 

Sleeping disorder 

Appetite or weight changes 
less eating  
weight loss 

Diabetes 

increased thirst frequent drinking 
increased hunger frequent eating 
fatigue frequent sleeping 
increased urination frequent toileting 
unintended weight loss low weight 

Figure 2. Registration of Disease and DIA. 

 

3.2. Activity Classifier 

The activity classifier is an important component of the system. The accuracy of the disease 
prediction largely depends on the accuracy of this component.  

A set of activity classifiers [18–30] have already been proposed. We choose to use one of these 
instead of developing our own. Although it is possible to use any type of activity classifiers, we have 
decided to use embedded sensors-based activity classifier due to its capability of providing privacy, 
security and inexpensiveness [19–22,29,30]. For the version of the framework, we have employed a 
C4.5 decision tree based activity classifier because of its high popularity [18,23–25]. 

The goal of the activity classifier is to recognize a user’s activity, L, depending on the set of objects 
(embedded with sensors), s1, s2, …, sm, he/she used for a given period of time, T. For example, let us 
consider a scenario in which a user is doing an activity by using the following three objects (with 
embedded sensors), “Cabinet”, “Water glass” and “Purifier” within the last 2 min. The goal of the 
classifier is to recognize the user’s activity (in this case “Taking medication”). Figure 3 shows the 
scenario of how the classifier classifies the activity. 
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Figure 3. Activity recognition example. 

 

Figure 4 shows the processing steps of the activity classification module. The data gathering 
module collects the activated sensor (a sensor activates if the object in which it is embedded is used) 
data for a given time. The sensor data is parsed and stored into the related tables in the activity 
database. The feature extraction module generates features using the stored sensor data in every 
predefined time window (e.g., 2 min). The activity classifier classifies the corresponding activity using 
these features. 

Figure 4. Processing steps of activity classification. 

 

Figure 5 shows the activity recognition result in the web-based healthcare application. The recognized 
activity and location are displayed in real-time and also storied in the activity database. The activity 
recognition allows families to take care of their elderly who lives alone. For example, a family member 
can check whether a father sleeps well or stays too long in the same place. 

Figure 5. Activity recognition results. 

 

3.3. Activity Pattern Generation 

The purpose of this module is to generate the activity pattern for each day. The initial signs and 
symptoms are represented as the frequencies of DIAs such as frequent drinking in Table 1. Therefore, 
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the activity pattern is modeled by the statistical activity frequency in our work. Before describing more 
details, we define the following terms related to the activity pattern modeling: 

Definition 2. Daily Activity Frequency (DAF): is defined as a DIA in a day. This is 
denoted as ܨܣܦௗሺܽ௜ሻ, for a DIA, ܽ௜, on day, d. For example, if a certain user takes three 
meals on day 7, then the DAF of that day is denoted as, ܨܣܦ଻ሺ݁ܽ݃݊݅ݐሻ, whose value is 3.  

A DAF is determined during the training period. Figure 6 shows the text- and graphics-based DAFs 
for the subject’s dataset of an activity recognition study [22]. DAF for each activity is calculated by 
aggregating the recognized activity in activity DB once a day. Each entry in the table represents DAF 
of each DIA. The symbols, ▲ and ▼ represent the increased and decreased daily activity frequency 
(DAF) respectively, compared to an average DAF. For example, “2(▲ 1)” represents the DAF has 
increased by 1 for a day. From these results, a doctor or a family member can monitor the subject’s 
daily activity frequency. For example, using this web application, a doctor can monitor an increase or a 
decrease in the frequency of food consumption per day. 

Figure 6. Text- and graphics-based the activity monitoring.  
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Definition 3. Regular Activity Frequency (RAF): is defined as the mean value of a DAF 
in the training dataset. This is denoted as, ܴܨܣሺܽ௜ሻ of an activity ܽ௜, and calculated as: 

ሺܽ௜ሻܨܣܴ  ൌ ෍ ஽ܦௗሺܽ௜ሻܨܣܦ
ௗୀଵ  (1) 

where, D is the total days of training. For example, if a user performs “Cooking” for 20 times during 
the training period that lasts for 25 days, then the ܴܨܣሺܿ݃݊݅݇݋݋ሻ will be 0.8. 

Definition 4. Graded Activity Frequency (GAF): is defined as a deviation of the DAF 
from RAF. It is denoted as, ܨܣܩௗሺܽ௜ሻ, for a DIA, ܽ௜, on day, d. The GAF has an integer 
value ranging from −2 to 2 depending on the degree of the deviation from RAF. 

Definition 5. Daily Activity Pattern (DAP) is defined as the set of all GAFs in a day. It is 
denoted as, ܣܦ ௗܲ ൌ ሺܨܣܩௗሺܽଵሻ, ,ௗሺܽଶሻܨܣܩ . . . ,  ௗሺܽ௜ሻ is the GAF in theܨܣܩ ௗሺܽ௡ሻሻ whereܨܣܩ
dth day of a DIA, ܽ௜, and n is the total number of DIAs considered. 

This module generates the DAP each day. For this purpose it first determines the regularities and 
irregularities of the GAF. We call a GAF to be regular if the standard deviation of a DAF from RAF is 
1 (i.e., −1≤ σ ≤ 1). It is to be noted here that we assume that the DAF follows a normal distribution (or 
bell curve). Figure 7 shows an example of normal distribution of a DAF. We grade each of the 
activities into 5 bands (as shown in the Figure 5): “very low”, “low”, “regular”, “high” and “very high”. 

Figure 7. An example of a normal distribution of DAF. 

 

3.4. Lifestyle Disease Prediction 

The role of this module is to infer the risk probability of a lifestyle disease per day. It determines the 
probability of a lifestyle disease from the given disease pattern, DAPdisease, and the performed pattern, 
DAPd, of a DIA. DAPd is determined in the activity pattern generation module, while DAPdisease is 
determined from the disease symptoms. A doctor decides the disease pattern based on his/her medical 
knowledge. For example, if diabetes has five kinds of initial signs and symptoms from Table 1, such as 
frequent liquid intake, frequent eating, frequent sleeping, frequent toileting and low weight, the disease 
pattern of diabetes could be set as ܣܦ ௗܲ௜௔௕௘௧௘௦ = (very high, very high, very high, very high, very low) 
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or (2, 2, 2, 2, −2). The probability of a lifestyle disease, ܴௗ௜௦௘௔௦௘ሺܣܦ ௗܲ௜௦௘௔௦௘, ܣܦ  ௗܲሻ, is measured by the 
similarity between the ܣܦ ௗܲ and the ܣܦ ௗܲ௜௦௘௔௦௘ on the dth day. For this purpose we adopt the Euclidean 
distance between ܣܦ ௗܲ௜௦௘௔௦௘ and ܣܦ ௗܲ in Equation (2): ܴௗ௜௦௘௔௦௘ሺܣܦ ௗܲ௜௦௘௔௦௘, ܣܦ  ௗܲሻ ൌ 1 െ ቆݕݐ݅ݎ݈ܽ݅݉݅ݏሺܣܦ ௗܲ௜௦௘௔௦௘, ܣܦ ௗܲሻܺܣܯ஽௜௦௧௔௡௖௘ ቇ  

 ൌ 1 െ ඨ∑ ሺ௡௜ୀଵ ௗ௜௦௘௔௦௘ሺܽ௜ሻܨܣܩ െ ெ஺௑ܨܣܩௗሺܽ௜ሻሻଶሺܨܣܩ െ ெூேሻଶܨܣܩ ൈ ݊  
(2) 

where, MAXdistance is the maximum distance between DAPdisease  and ܣܦ ௗܲ, ܨܣܩெ஺௑ and ܨܣܩெூே are the 
maximum and the minimum values of the GAF, respectively, and n is the total number of given DIAs 
of the disease. The lifestyle disease prediction module determines the probability of a disease each day 
and sends the report to the caregiver or doctor if the probability exceeds a certain threshold provided 
by the doctor. 

4. Experiments 

The objective is to validate the performance of the framework. We have performed two experiments 
to see how the proposed framework would work for predicting lifestyle diseases using long-term 
activity monitoring. First, we evaluate the performance of the activity recognition algorithm. Second, 
we evaluate how the framework would work for disease prediction. 

4.1. Experiment Setup 

In order to evaluate the performance of the framework, the ideal case scenario would be to use a 
real-world activity dataset which has associated lifestyle diseases. However, to the best of our 
knowledge there exist no such datasets that particularly show such association. Therefore, we have 
presumed the relationship between an activity and a lifestyle disease from activity datasets.  

In this paper, we have chosen two well-known lifestyle diseases, diabetes and depression. The 
corresponding DIAs are shown in Table 2. The relationship between the diseases and the activities are 
shown in Figure 8. 

Table 2. The lifestyle diseases and the corresponding DIAs. 

Lifestyle Disease DIAs 

Depression 

Activity in mild illumination 
infrequent traversal or leaving house,  
unhygienic activity, less talking,  
Sleeping disorder 
less eating, weight loss 

Diabetes 

frequent drinking 
frequent eating 
frequent sleeping 
frequent toileting 
low weight 
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Figure 8. Symptoms of lifestyle disease inference model. 

 

We use three real-world activity datasets gathered for two different activity recognition  
studies [19,22]. Both of these studies have considered a home environment in which a set of sensors 
are tagged with daily life objects. The sensors were installed in everyday objects such as drawers, 
refrigerators, and containers to record activation/deactivation events (opening/closing events) as the 
subject carried out everyday activities. Kasteren et al. [22] have chosen an apartment of a 26-year-old 
man, deployed 14 sensors, and attached these to doors, cupboards, a refrigerator, and a toilet flush. 
They have collected data for 28 days. We refer this dataset as Subject 1. Tapia et al. [19] have used a 
similar setting. Tapia et al. [19] have collected data in two different single-person apartments.  
They have used 77 and 88 sensors respectively. They have collected data for 14 days in each apartment. 
We refer to these datasets as Subject 2 and Subject 3. 

From these datasets, we have selected the following activities, “going out”, “toileting”, “showering”, 
“sleeping” and “eating” as a set of DIAs. We have also measured a DIA, “Movement”, from the 
distance traveled by a subject in a house. Additionally, the “weight” and “lighting” values are 
artificially generated from the average weight in the United States [31] and the Illuminating Engineering 
Society (IES) recommended indoor luminance [32] respectively. For example, for the Subject 1, 
weight and lighting values are set 189.8 pounds and 300 lux respectively based on the average weight 
of an adult male and the recommended indoor luminance. 

We have used Leave-one-out cross-validation for measuring the activity recognition accuracy as well 
as for the disease prediction. Cross-validation permits such measurement even on small datasets [19]. 
We have used the window size of 60 s (1 min) for activity recognition since it is sufficiently long to be 
discriminative and short enough to provide high accuracy [22]. Additionally, we have used  
600 s (10 min) to see the variation of accuracies. 

4.2. Experimental Results 

4.2.1. Activity Classification 

The purpose of this experiment is to see how accurate the activity classifier is in classifying the 
activities. For classification algorithm, we have adopted J48 decision tree in Weka [33]. 
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Figure 9 shows the accuracy of activity recognition. The accuracies with 1min-window for Subject 
1, 2, and 3 are 86.5%, 84.6%, 81.4%, respectively. The accuracies with 10 min-window for Subject 1, 
2, and 3 are 83.4%, 88.6%, 86.4%, respectively.  

Figure 9. Activity recognition results. 

 

It is observed that the lower the number of sensors used in an environment the shorter the window 
size is required. For example, the accuracy for Subject 1 of 10 min window size is lower than that of  
1 min window size since they have used 14 sensors. On the other hand the accuracy for Subject 2 and  
3 of 10 min windows size is higher than the 1 min window size since they have used more than  
70 sensors. In comparison with Subject 2 and 3, in the Subject 1’s environment only the key objects 
(frequently used for an activity) were embedded with sensors. If the window size is small, the chances 
of using less number of sensors (usually key sensors) are high and therefore the classifier would make 
less confusion. However, the scenario is opposite for the large window size. Even though, the activity 
recognition accuracies are high, however, it would be possible to improve the accuracy by introducing 
another robust classifier such as SVM. 

4.2.2. Lifestyle Diseases Prediction 

The purpose of this experiment is to evaluate how the framework would work for disease prediction. 
The disease prediction module takes the disease pattern, ܣܦ ௗܲ௜௦௘௔௦௘  and the daily activity pattern, ܣܦ ௗܲ  as input and produces a probability of a lifestyle disease, ܴௗ௜௦௘௔௦௘ሺܣܦ ௗܲ௜௦௘௔௦௘, ܣܦ  ௗܲሻ  as the 
output. The disease pattern should be set by a doctor based on his expertise. Figure 10 shows the 
settings of disease patterns for the experiments. 

Figure 10. Disease patterns for diabetes and depression. 
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Figure 11. Results of lifestyle disease prediction for Subject 1. (a) Activity recognition 
with 1 min window; and (b) Activity recognition with 10 min window. 

(a) (b) 

Figure 12. Results of lifestyle disease prediction for Subject 2. (a) Activity recognition 
with 1 min window; and (b) Activity recognition with 10 min window. 

(a) (b) 

Figure 13. Results of lifestyle disease prediction for Subject 3. (a) Activity recognition 
with 1 min window; and (b) Activity recognition with 10 min window. 

(a) (b) 
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Figures 11, 12 and 13 show the result of disease prediction for Subject 1, Subject 2, and Subject 3 
respectively. As we can see in the figures, the proposed method has the ability to determine the 
probability of lifestyle disease. 

For example, the risk probabilities of diabetes and depression for Subject 2 and Subject 3 are 0% for 
most of the days, since the graded activity frequencies for diabetes and depression are within the range 
of regular activity frequency (RAF). However, the risk probabilities of diabetes and depression for 
Subject 1 are over than 0% for several days. In Figure 11(a), Subject 1 has 17.6% probability of 
depression on day 9. This means Subject 1 has irregular activity patterns that may lead to depression. 
Subject 1 had less movement during this day. The GAF for movement of day 9 was −1. This irregular 
pattern corresponds to initial signs and symptoms for depression such as “loss of interest in daily 
activities”. Subject 1 also has 44.7% probabilities of diabetes on day 10, 19 and 21. The GAF for 
toileting of day 10 is 2 and the GAFs for eating of day 19 and 21 were 2. These irregular patterns 
correspond to initial signs and symptoms for diabetes such as “increased urination” and “increased 
hunger.” Similar phenomenon can be observed in Figure 12 and 13. If the irregularities continue for a 
long period of time, a doctor can examine the possibility of the disease and suggests regular lifestyle. 

Activity recognition result influences lifestyle disease prediction result. As shown in Figures 11, 12 
and 13, the lifestyle disease prediction sometimes differs based on the window sizes used for activity 
recognition. This is because the incorrect activity recognition could lead to wrong GAF and DAP 
calculation. For example, in Figure 12, Subject 2 has 0% and 17.6% probabilities of depression on day 
4 depending on window size. Since activity classifier with 10min window misrecognized “eating” to 
“idle”, GAF for eating is generated as −1. Subject 1 has more difference between 1 min and 10 min 
window sizes compared with Subjects 2 and 3. This is also due to the number of sensors used in the 
environment (as discussed in the previous section).  

4.3. Discussion 

The activity recognition is the most important module of the framework. The accuracy of this module 
is the key for the performance of disease prediction. If an activity is misrecognized, the framework 
generates incorrect GAFs and DAPs which would lead to wrong disease prediction. Therefore, by 
introducing a more robust activity recognition module, it would be possible to increase the accuracy of 
prediction. 

The current version of the system works in a single user environment. However, by simply replacing 
the activity recognition module, it is possible to extend the system such that it works in a multi-user 
environment. Several algorithms [34–36] have already been proposed for activity recognition in a 
multi-user environment. We would be able to customize such an algorithm to fit in this framework. 

5. Conclusions and Future Work 

Long-term activity monitoring of a person could be helpful for managing lifestyle associated 
diseases. In this paper, we have proposed a framework for supervising lifestyle diseases using  
long-term activity monitoring. The framework is applicable to a home environment in which a set of 
sensors are embedded with the daily-life objects such that it is possible to determine the state of an 
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object at any given time. This framework is hierarchical and comprises of three modules: activity 
recognition, activity pattern modeling and disease prediction.  

The activity recognition module recognizes a user’s activity from the set of objects used in a period 
of time. The activity pattern generation module generates the activity pattern per day from the user’s 
activities. The disease prediction module evaluates the probability of a disease using the pattern 
generated by the activity generation module. We have shown that it is possible to estimate the likelihood 
of lifestyle diseases from the sensor data. We have also shown the viability of the proposed framework. 

The current version of the framework uses the frequency of an activity as the primary source for 
disease inference. However, there could be other sources of irregularities, for example, the way of doing 
an activity, and the sequence of activities. In the next version of the framework we would explore such 
irregularities as the potential sources for lifestyle prediction.  

The current version of the system does not work in a multi-user environment. Therefore, in the 
future version of the system we will be exploring different multi-user based activity recognition 
algorithms such that the system can be extended for multi-user scenarios. 
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