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Abstract: 1-[(Anthracen-9-yl)methylene] thiosemicarbazide shows weak fluorescence due 
to a photo-induced electron transfer (PET) process from the thiosemicarbazide moiety to 
the excited anthracene. The anthracene emission can be recovered via protonation of the 
amine as the protonated aminomethylene as an electron-withdrawing group that suppresses 
the PET process. Similarly, chelation between the ligand and the metal ions can also 
suppress the PET process and results in a fluorescence enhancement (CHEF). When 
solvents are introduced as the third control, a molecular 2:1 multiplexer is constructed to 
report selectively the inputs. Therefore, a molecular 2:1 multiplexer is realized in a simple 
molecular system.  
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1. Introduction 

There is increasing interesting in exploring single molecule species that could be potentially applied 
in the construction of binary logic devices and future computers at the molecular scale [1–8]. Since the 
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first molecular AND gate was reported [9], all common essential logic gates including AND, NOT, 
OR, YES, INHIBIT, XOR, NAND and NOR, which are used in conventional silicon circuitry, have 
been mimicked at the molecular level with chemical or optical signals [10–21]. With all these logic 
gates in hand, the next step is to construct molecular logic networks taking advantage of functional 
integration within a single molecule via rational chemical design. This is prior to relying on extensive 
physical connection of elementary gates. Recently, molecular-scale arithmetic has also been 
reported [21–30]. Those single molecule-based combinatorial circuits are more important because they 
are fundamental to a complex information processing system. Tian reported a fluorophore capable of 
logic memory [31]. We have systematically explored the combination of logic functions and realized  
a safe computing platform with user-identity-directed arithmetic functions to defend information 
risk [32,33]. An important function in information technology, e.g. signal multiplexing, has  
been realized based on the molecules [34–36]. The construction of molecule-based 1:2 digital  
demultiplexer was also reported [37,38]. The signal multiplexing/demultiplexing was demonstrated in 
8-methoxyquinoline and enzymes [39,40]. In spite of various logic functions mimicked at molecular 
level, however, the combination and integration of advanced functions is still in the infant stage and 
reports on this subject are rare [41–45]. 

In our previous work, up to seven binary logic gates were realized within a single molecule, in 
which redox-active tetrathiafulvalene (TTF) was utilized as a switch to control the fluorescence [46]. 
Herein, we report a molecular system which is capable of performing multiplexing function in response 
to chemical stimuli. 

In the present work, the fluorescence of anthracene in the simple molecule 1-[(anthracen-9-yl) 
methylene] thiosemicarbazide (L, Figure 1) [47,48] is tuned to realize a molecular 2:1 multiplexer with 
anthracene as a signal unit via tuning the PET process. Protonation of amine and chelation with metal 
ions can suppress the photo-induced electron transfer (PET) process. Combined with the solvents as 
control inputs to switch the fluorescent output, the ligand L can report the binary state of either one of 
these inputs or the other.  

Figure 1. The molecular structure of the ligand L. 

 
 
2. Experimental Section  

The UV-vis absorption spectra were recorded on a Shimadzu 2500 UV-VIS spectrophotometer. The 
fluorescence spectra were recorded on a Shimadzu RF-5301 spectrofluorophotometer using 5 nm input 
and 5 nm output width. 1H- and 13C-NMR (TMS) are recorded on a Bruker Avance II 500MHz 
spectrometer. The mass spectra were measured on a Waters Quattro micro TM API mass spectrometer. 
Elemental analyses were performed on a Vario EI Elementar system.  
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3. Results and Discussion  

3.1. Synthesis of the Ligand L  

When anthracene-10-carbaldehyde was treated with thiosemicarbazide in methanol, the ligand L 
was readily formed as an orange microcrystalline solid appearing in the reaction medium, and it was 
characterized with elemental analysis (EA), IR, MS, and NMR spectra data. 1H-NMR (DMSO-d6)  
δ = 7.58 (m, 2H, anthryl), 7.65 (m, 2H, anthryl), 7.73 (s,1H, NH2), 8.15 (d, 2H, anthryl), 8.32 (s, 1H, 
NH2), 8.58 (d, 2H, anthryl), 8.71 (s, 1H,CH=N), 9.34 (s, 1H, anthryl), 11.66 (s, 1H, NH). 13C-NMR 
(DMSO- d6) δ = 125.2, 125.5, 126.0, 127.8, 129.4, 129.9, 130.1, 131.4, 142.7, 178.6. IR (KBr):  
ν = 3436 (NH2), 3250 (NH), 1601 (C=N), 1285 (C=S) cm–1. ESI-MS, m/z (%): 279 [M+]. EA (%): 
C16H13N3S, calcd.: N, 15.05; C, 68.82; H, 4.66; found: N, 15.25; C, 68.61; H, 4.80. 

3.2. Photophysical Properties of the Ligand L 

The photophysical properties of the ligand L were initially examined in tetrahydrofuran (THF) and 
methanol. As shown in Figure 2, characteristic anthracene absorption bands appear in the range of 
335–500 nm in UV-Vis spectra [47]. 

Figure 2. Absorption spectra of the ligand L in THF and methanol (2.0 × 10−5 M). 

 
 
The fluorescence spectrum of the ligand in THF solution displays peaks at 412, 437 and 470 nm 

(Figure 3). The emission intensity of the ligand L is significantly reduced through a photo-induced 
electron transfer (PET) process, with the electron-transfer from the electron-donor thiosemicarbazide 
moiety to the excited anthracene. When the amine group is proton-free, it could serve as a PET donor 
(ΔGPET = −0.1 eV) [49–51]. If protons are present in sufficient concentration, the protonated 
aminomethylene behaves as an electron-withdrawing group which disturbs and suppresses the PET 
process from the thiosemicarbazide moiety, thus producing an enhancement of the fluorescent 
emission. In addition, chelation enhanced fluorescence (CHEF) is popular for chemosenors base on 
PET mechanism to sensing metal ions [52]. Two above points have been useful to design 
chemosensors based on the PET mechanism. 
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Figure 3. Fluorescence emission spectra of the ligand L with addition of H+ and/or Cu2+ in 
THF (2.0 × 10−5 M). 

 

Solvents also impact the fluorescent properties of the ligand. The ligand L exhibits a weak emission 
band centered at 470 nm in THF (Figure 3) whereas it exhibits a relatively stronger emission centered 
at 481 nm in methanol (Figure 4), with the vibration fine structure missed and the fluorescence 
maximum wavelength red-shift. This phenomenon induced by polar solvents has been reported, and it 
has been attributed to the formation of exciplexes or specific solute-solvent complexes in the excited 
state [53]. 

Figure 4. Fluorescence emission spectra of the ligand L with addition of H+ and/or Cu2+ in 
methanol (2.0 × 10−5 M). 

 
 
The emission enhancement is significant under the addition of acid to the THF solution of the 

ligand, while the emission is slightly enhanced in the methanol solution. The enhanced fluorescence 
upon protonation at amine group is caused by the sufficient protons which disturb and suppress the 
PET process and result in a recovered emission [12,32,33]. The similar enhancement due to CHEF 
effect is observed upon addition of copper ions to the THF solution. The ESI-MS result of the mixture 
of the ligand and copper ions show a m/z peak at 297.1 ([M++H2O]) and 659.2 ([CuL2(H2O)2]). To 
understand the chelation ability of the ligand towards Cu2+, the HOMO (high occupied molecular orbit) 
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and LUMO (lowest unoccupied molecular orbit) distribution of the L were determined by density 
functional theory (DFT) calculations. As shown in Figure 5, the HOMO distribution is mainly located 
diffusely over the thiourea group, thus the S and N atoms are electron-rich centers and exhibit high 
affinity for the metal ion, which contributes to CHEF effect. 

Figure 5. HOMO −1, HOMO, LUMO and LUMO +1 distributions of the ligand at the 
B3LYP/6-31G (d,p) level of theory calculated. 

 
HOMO −1 HOMO 

 
LUMO +1 LUMO 

In methanol solution, however, the fluorescence is quenched. This might be due to the intrinsic 
fluorescence quenching by mechanisms inherent to paramagnetic species Cu2+ in high dielectric and 
polar methanol. The communication between paramagnetic Cu2+ and fluorophore is predominant, and 
thus the fluorescence is quenched. 

3.3. Binary Logic Analysis for Molecular Logic Circuit 

Fluorescence is one of the most widely employed signals owing to its high sensitivity, feasibility in 
detection, and low cost in operation. Since systems containing fluorophores can be switched between 
emissive state and quenched state via manipulation of the PET process, the chemical system described 
above could be a simple functional model of logic gate with tuning the fluorescence as output signal. 

It is interesting to note that the logic analysis of the present system is complex if the solvent is 
considered as the control input. In this context, the logic system described here is a chemical model of 
a 2:1 multiplexer. Physically, a multiplexer is a communication device that combines multiple inputs 
into an aggregate signal to be transported via a single transmission channel. Simply, it is a data selector 
which outputs any one of several possible inputs via a control switch. 

In the present case, the solvent as the third input acts like a mechanical rotary switch to control the 
logic functions of the molecule, enabling the molecule to output selectively the desirable data from all 
the inputs. With the input of the proton and the metal ion Cu2+ while solvent as the control, changes of 
the fluorescent emission of the ligand corresponding to two different inputs mimic the digital selection 
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Figure 7. (a) The equivalent circuit; (b) A scheme of a multiplexer. 

 
      (a) 

 

 
(b) 

Table 2. The truth table for the molecular 2:1 multiplexer. 

Input A 
H+ 

Input B 
Cu2+ 

Selection 
Control S a 

Output b 
FL 

0 0 0 0 
0 1 0 0 
1 0 0 1 
1 1 0 1 
0 0 1 0 
0 1 1 1 
1 0 1 0 
1 1 1 1 

a The use of solvent is set as control S with THF as 0 and MeOH as 1; b The output in MeOH is 
interpreted by using the negative logic convention.  

4. Conclusions 

In summary, we have demonstrated a combinational logic circuit of molecular multiplexer within a 
simple molecular system, where the emission of anthracene and the solvent effect are employed as 
signaling and switch control, respectively. The work presented herein opens the possibility for further 
development of chemical logic systems, and thus for the construction of molecular digital devices 
which are likely to be evolved into components of future molecular computers such as a wet computer. 
Further investigation of this topic is underway in our lab. 
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