
Sensors 2012, 12, 3512-3527; doi:10.3390/s120303512 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 
Article 

Inertial Sensing to Determine Movement Disorder Motion 
Present before and after Treatment 

Wesley J. E. Teskey 1,*, Mohamed Elhabiby 1,2 and Naser El-Sheimy 1 

1 Department of Geomatics Engineering, 2500 University Drive NW, University of Calgary, Calgary, 
Alberta T2N 1N4, Canada; E-Mails: mmelhabi@ucalgary.ca (M.E.); elsheimy@ucalgary.ca (N.E.S.) 

2 Public Works Department, Faculty of Engineering, Ain Shams University, Khalifa El-Maamon st, 
Abbasiya sq, Cairo 11566, Egypt 

* Author to whom correspondence should be addressed; E-Mail: wjeteske@ucalgary.ca;  
Tel.: +1-403-389-7259; Fax: +1-403-284-1980. 

Received: 6 February 2012; in revised form: 5 March 2012 / Accepted: 5 March 2012 /  
Published: 12 March 2012  
 

Abstract: There has been a lot of interest in recent years in using inertial sensors 
(accelerometers and gyroscopes) to monitor movement disorder motion and monitor the 
efficacy of treatment options. Two of the most prominent movement disorders, which are 
under evaluation in this research paper, are essential tremor (ET) and Parkinson’s disease 
(PD). These movement disorders are first evaluated to show that ET and PD motion often 
depict more (tremor) motion content in the 3–12 Hz frequency band of interest than control 
data and that such tremor motion can be characterized using inertial sensors. As well, 
coherence analysis is used to compare between pairs of many of the six degrees-of-freedom 
of motions under evaluation, to determine the similarity in tremor motion for the various 
degrees-of-freedom at different frequency bands of interest. It was quite surprising that this 
coherence analysis depicts that there is a statistically significant relationship using 
coherence analysis when differentiating between control and effectively medicated PD 
motion. The statistical analysis uncovers the novel finding that PD medication induced 
dyskinesia is depicted within coherence data from inertial signals. Dyskinesia is involuntary 
motion or the absence of intended motion, and it is a common side effect among medicated 
PD patients. The results show that inertial sensors can be used to differentiate between 
effectively medicated PD motion and control motion; such a differentiation can often be 
difficult to perform with the human eye because effectively medicated PD patients tend to 
not produce much tremor. As well, the finding that PD motion, when well medicated, does 
still differ significantly from control motion allows for researchers to quantify potential 
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deficiencies in the use of medication. By using inertial sensors to spot such deficiencies, as 
outlined in this research paper, it is hoped that medications with even a larger degree of 
efficacy can be created in the future. 

Keywords: accelerometer; gyroscope; Parkinson’s disease; essential tremor 
 

1. Introduction 

This paper focuses on the use of inertial sensors (accelerometers and gyroscopes) for the study of 
movement disorders; specifically, essential tremor (ET) and Parkinson’s disease (PD) are examined. 
The use of inertial sensors for such a task is quite helpful given the small size and low cost of the 
MEMS (microelectromechanical systems) inertial sensors that were utilized. Such MEMS inertial 
sensors are typically smaller than a coin and cost only a few dollars each. This makes them well suited 
to movement disorders analysis because their small size allows them to be mounted easily in devices 
used for motion tracking, and their low cost improves accessibility for the use of such devices. 

Both ET and PD can have significant negative impacts on the patients that are afflicted with these 
disorders. Both disorders can affect people’s ability to eat, write and drink, and 73% of ET patients 
have a documented disability [1]. As well, for PD the estimated annual costs arising from the disorder 
are approximately $20 billion annually [2]. ET tends to be characterized as an action tremor, meaning 
that it is present mostly when patients are voluntarily undergoing motion [3] and PD tends to be more 
of a rest tremor, meaning that it tends to be present when patients are not moving (although it can still 
be present during motion in many cases) [4]. Both tremors tend to exist in the 3–12 Hz frequency  
band [5]. 

Because of the large impact that such disorders can have, it is important to have medications that 
can adequately treat disorders. This research paper explores methods in which inertial sensors can help 
to assess the efficacy of treatment options. There have been previous works in which inertial sensors 
have been used to differentiate movement disorder patient motion from control motion [6,7];  
such works have used artificial neural networks with inputs from parameters obtained from inertial 
sensor data. 

Another technique for study of movement disorders involves the use of a Teager Energy Function, 
which gives an estimate of the overall mechanical energy present during tremor motion [8]. This 
Teager Energy Function can help researchers to identify periods of significant tremor motion from 
periods of less substantial tremor motion. The referenced Teager analysis only used accelerometers, 
and not gyroscopes, and for this reason, the Teager analysis was not able to differentiate between 
lateral and rotational motion captured in accelerometer signals (as described in Section 2.3 on “Kalman 
Filtering and Smoothing”). In contrast, the work presented in this paper utilizes a full (six degree-of-
freedom) rendering of motion, and this helps to identify (with more specificity) motion associated with 
the test subjects examined. This in turn makes it easier to identify the patterns of motion associated 
with ET, PD and movement disorder data. 

The work presented also here differs from many previous works primarily in that the techniques 
discussed can not only help to differentiate control motion from movement disorder patient motion for 
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cases where medication is either not in use of largely ineffective (this kind of analysis has been carried 
out in many previous works). But the techniques presented here can also be used to help differentiate 
the motion of controls from effectively medicated PD patients undergoing dyskinesia (which is 
involuntary motion or the absence of intended motion). This is a significant accomplishment because 
medicated PD patients often complain about the effects the medication can have on their overall motion, 
and by helping to quantify such effects, it will be possible to objectively measure the effectiveness of 
medications, and assist with medical trials to test the efficacy of treatment options proposed. Perhaps it 
will be possible in the future, using the analysis in this research paper, to develop new treatment 
options for PD patients, absent the dyskinesia that often accompanies treatment.  

2. Data Processing Techniques 

2.1. Continuous Wavelet Analysis 

Continuous wavelet analysis is applied here in part to help to manage frequency spectrum 
information for the inertial signals under evaluation. Wavelet frequency spectrum data is in many ways 
similar to a Fourier based frequency spectrum data, but wavelets have a number of inherent advantages 
when compared to Fourier analysis. For one, there are many families of wavelets from which one can 
pick and the Coiflets 3 wavelet (the Coiflets 3 mother wavelet is shown in Figure 1) was chosen for 
analysis because it matched well with the signal under evaluation. In contrast, Fourier analysis tends to 
be more restricted to sinusoidal based processing techniques when generating frequency spectra. 

Figure 1. Coiflets 3 mother wavelet. 

 

Another advantage of wavelets is signals sections where data are not good can more easily be 
removed during analysis (this particular advantage of using wavelets is not particularly useful for the 
analysis presented here, but it may be useful in future implementations of wavelets in the research area 
highlighted). Wavelets are well suited to analyzing small signal sections while avoid distortions when 
processing is taking place near the beginning or end of a signal. This is partly due to the time and 
frequency resolution that wavelets provide (as opposed to Fourier based analysis which is more 
focused on only frequency resolution). As a further advantage, if the processing taking place were to 
utilize the discrete wavelet analysis more broadly for future applications, the wavelet based processing 
would be much faster than comparable Fourier based processing techniques when generating  
auto-spectra. 
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To apply the coiflets 3 mother wavelet and produce wavelet coefficients, ܳ൫݉ఊ,  ఙ൯, the followingݐ
is used [9]: 

ܳ൫݉ఊ, ఙ൯ݐ ൌ 1ඥ݉ఊ න ሻݐሺݏ ෨߰ሺݐ െ ఙ݉ఊݐ ሻ݀ݐஶ
ିஶ  (1) 

where ݉ఊ is a scaling parameter to appropriately size the wavelet for the analysis, ݐఙ shifts the wavelet 
in time so that the wavelet can be applied at the appropriate signal portion, ݏሺݐሻ is the signal under 
evaluation as a function of time (ݐ) and ෨߰ሺݐሻ is the complex conjugate of the mother wavelet ߰ሺݐሻ 
depicted in Figure 1 (this notation for complex conjugate is used throughout this research paper). 

What is produced from Equation (1) is a set of values that describe the frequency content of the 
signal under evaluation in terms of time and frequency evaluated. The frequency under evaluation is 
not directly available from the wavelet data (which rely on the scaling parameter ݉ఊ  to size the 
wavelets appropriately). However, pseudo-frequency, ܨ௔, at any scale in the wavelet analysis, can be 
determined by using the following [10]: ܨ௔ ൌ  (2) ݐ∆ߛ௖ܨ

where the term ܨ௖ is the center frequency for the analysis taking place; this term is found by matching a 
sinusoidal function of known frequency to the mother wavelet shown in Figure 1 such that they 
overlap as closely as possible. Once the center frequency is known, it can be scaled using the time 
sampling rate of the data, ∆ݐ, and the scaling parameter ߛ (the subscript of ݉ఊ from Equation (1)). 

2.2. Coherence Analysis 

Coherence analysis, as outlined here, is a popular method for biomedical signal evaluation because 
it allows for comparison of two data streams at frequencies of interest to see how closely two signals 
match with one another; the coherence analysis outlined here, including the mathematics outlined in 
this Sub-Section, follows from [11]. 

Before coherence analysis can be carried out, a signal needs to be split into ܮ non-overlapping 
segments of equal length (where ݈ ൌ  This is done so that statistical validation can later be .(ܮ…1
carried out as given in Equation (6). The number of data points in the non-overlapping signal portions 
was chosen to be ܶ ൌ 128, or approximately one second of data given that the signals were logged at 
130 Hz. Given that the data of interest for movement disorders lies in the 3–12 Hz frequency band, 
segmenting the inertial data into one second intervals was capable of producing quality results in the 
3–12 Hz frequency band without being too cumbersome to implement. Cumbersome implementation 
results if data segments chosen are too long and therefore difficult to extract from experimental data of 
limited duration in time. Using the above parameters, a discrete signal analysis can be applied as follows: 

݀௦ሺ߱, ݈ሻ ൎ ෍ ݁ି௜ఠ௞ݏሺ݇ሻ௟்ିଵ
௞ୀሺ௟ିଵሻ்  (3) 

where ݁ is the exponential function, ݅ is an imaginary number and ߱ is angular frequency found from 
the product of frequency in Hz and 2ߨ (where ߨ is the ratio of the circumference of a circle to its 



Sensors 2012, 12              
 

 

3516

diameter). The parameter ݇ is applied at discrete signal elements for the analysis undertaken. Once 
Equation (3) has been applied independently to two signals (logged concurrently), the following can be 
utilized to determine a cross-spectrum [ መ݂ଵଶሺ߱ሻ]: መ݂ଵଶሺ߱ሻ ൌ ,෍݀௦ଵሺ߱ܶܮߨ12 ݈ሻ݀௦ଶሺ߱, ݈ሻ෫௅

௟ୀଵ  (4) 

where ݀௦ଵሺ߱, ݈ሻ and ݀௦ଶሺ߱, ݈ሻ are found by applying Equation (3) to signals denoted ݏଵሺ݇ሻ and ݏଶሺ݇ሻ, 
respectively. If the cross-spectral term, መ݂ଵଶሺ߱ሻ, has a large magnitude at a given frequency, it means 
that the signals evaluated are similar in nature at the frequency evaluated (although they are not 
necessarily phase matched). 

To determine auto-spectra values for a given signal, Equation (4) can be applied to the case where 
signals ݏଵሺ݇ሻ and ݏଶሺ݇ሻ are the same signal. When signal ݏଶሺ݇ሻ is set to be equivalent to signal ݏଵሺ݇ሻ, 
the auto-spectrum produced is denoted መ݂ଵଵሺ߱ሻ; and when signal ݏଵሺ݇ሻ is set to be equivalent to signal ݏଶሺ݇ሻ , the auto-spectrum produced is denoted መ݂ଶଶሺ߱ሻ . Using such auto-spectra, the following 
coherence term can be defined: ห ෠ܴଵଶሺ߱ሻหଶ ൌ ห መ݂ଵଶሺ߱ሻหଶመ݂ଵଵሺ߱ሻ መ݂ଶଶሺ߱ሻ (5) 

where the vertical lines in the numerator and to the left of the equal sign of Equation (5) denote 
absolute value. The coherence term is defined in such a manner that it scales the cross spectral term to 
have a value between zero and one. This is useful for comparisons of signals whose magnitudes are 
inherently not similar.  

It is possible to define a 95% confidence limit line (denoted ݈ܿ ) for coherence such that any 
coherence of greater magnitude than this line in a plot can be interpreted as meaningful. Data of lesser 
magnitude than this line suggests that signals ݏଵሺ݇ሻ and ݏଶሺ݇ሻ are independent. This confidence limit 
line is found as follows: ݈ܿ ൌ 1 െ 0.05ଵ/ሺ௅ିଵሻ (6) 

Examples exist based on the use of coherence and cross-spectra parameters in comparison of two 
signal tremors [12,13]. Unfortunately, neither of the two referenced works utilized gyroscopes (they 
only utilized accelerometers) for data collection. This means that it is not possible to obtain a full (six 
degree-of-freedom) rendering of motion; in contrast, the work presented here allows for six degree-of-
freedom motion tracking (since three accelerometers and three gyroscopes were utilized). With six 
degree-of-freedom motion tracking, it is easier to identify exactly what the difference in motion is for 
control, ET and PD data, and this helps to clarify any signal processes analysis undertaken. 

2.3. Kalman Filtering and Smoothing 

Kalman filtering and smoothing are employed for analysis to improve orientation information for 
signals captured. Such Kalman filtering and smoothing utilize gyroscope data, known start and end 
orientations for when data is captured and updates from accelerometer data. Start and end orientations 
are known for the data captured because the IMU (inertial measurement unit) used for signal 
acquisition is placed in a holster of defined orientation at the beginning and end of each trial. 
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Accelerometer data can be used to provide updates to orientation information when the IMU utilized is 
not moving significantly; in such cases, accelerometer readings of gravity can be used to calculate 
IMU orientation for two of the three orientation degrees-of-freedom. Unfortunately, orientation about 
the gravity vector cannot be captured in such a manner. The scheme outlined here for using Kalman 
filtering to improve orientation data is described in detail in [14]. There also exists a very similar 
scheme, as depicted in [15]. After Kalman filtering, Kalman smoothing is applied to the data to 
improve accuracy, as outlined in [16]. As well, general descriptions of Kalman filtering and smoothing 
can be found in [17,18]. 

The reason for using Kalman filtering and smoothing to improve orientation information for signals 
captured is so that accelerometer data can be corrected to remove gravitational effects. If good quality 
orientation information is known, then a rotation matrix ( ෠ܴ) can be utilized to transform accelerometer 
data at each time step into a consistent coordinate frame. Once accelerometer data are in a consistent 
coordinate frame, gravity can be removed directly from the accelerometer signals before accelerometer 
data are transformed back into their original coordinate frame; this is outlined in the following equation: തܽ௧ ൌ ෠ܴିଵሺ ෠ܴ തܽ െ ҧ݃ሻ (7) 

where the superscript −1 denotes matrix inverse, accelerometer data for the x, y and z (orthogonal) 
axes are given in respective elements of vector തܽ , gravitational acceleration at a given consistent 
coordinate frame is given in the three element vector ҧ݃  and accelerometer data with gravitational 
effects removed are given in the three element vector തܽ௧. 

It may not be intuitively obvious, but raw accelerometer data, which of course contain acceleration 
from motion tracking and gravitational acceleration, are not suitable directly for analysis of 
translational tremor. The reason is because rotational tremors also affect accelerometer data as a result 
of the fact that accelerometers pick up gravitational acceleration. Any rotational tremor about any axis 
perpendicular to gravity will induce a tremor signal in one or more of the accelerometers logging 
motion [19]. This phenomenon of an accelerometer signal being affected by rotational motion is 
depicted in the bottom half of Figure 2; the top half of Figure 2 depicts an x-accelerometer signal 
resulting from lateral tremor motion along the x-axis. Note that even though the motions depicted in 
the top and bottom halves of Figure 2 are different from one another (in terms of depicting lateral and 
rotational motion, respectively), the resulting accelerometer signal created from lateral and rotational 
motions can be identical (as depicted in the two signals displayed in Figure 2).  

For convenience, it is easier to have accelerometer data depicting translational tremor and 
gyroscope data depicting rotational tremor so that the six degrees-of-freedom analyzed (three 
translational and three rotational degrees-of-freedom) can be directly matched to data from one of the 
six inertial sensors used for data capture (there were three accelerometers and three gyroscopes used in 
the IMU during experimentation). Applying Equation (7) to accelerometer data ensures that what is 
remaining in terms of tremor motion is largely translational tremor. Gyroscopes, largely will log 
rotational tremor (and not any other tremors). 
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Figure 2. Hypothetical accelerometer signals resulting from lateral and rotational motion. 

 

 

For all analysis carried out in this research paper, Equation (7) is applied to all accelerometer data 
before subsequent analysis. As well, both gyroscope and accelerometer data are filtered to remove 
much of the frequency information just below 3 Hz so that the 3–12 Hz frequency band of interest for 
movement disorders can be examined in more detail. The removal of such low frequency data was 
carried out by zeroing Coiflets 3 discrete wavelet coefficients at a scale ߛ ൌ 2ହ ൌ 32 , which 
corresponds to a pseudo-frequency of 2.87 (as defined in Equation (2)). All inertial data had low 
frequency content removed in this manner prior to plotting results. The use of wavelets in this manner 
is detailed in [20,21]. 

3. Data Collection and Subjects 

Data was captured, as shown in Figure 3, using an IMU containing three accelerometers and three 
gyroscopes (sensors used were the LIS3LO6AL from ST Microelectronics [22] and the XV-8100CV 
from Epson Toyocom [23], respectively). Subjects were asked to pick up an IMU out of a holster at the 
beginning of testing and direct a laser beam from a laser mounted on the IMU at targets of interest on a 
computer screen; upon arrival at each target, subjects would click a button on the IMU with their 
thumb before moving onto the next target. Ten such targets of interest were randomly positioned on the 
computer screen for each trial and ten such trials were carried out with each subject. At the conclusion 
of testing (for each trial) subjects were asked to place the IMU back in the holster from which they 
grabbed the IMU at the beginning of the trial. During the course of data collection, subjects were 
seated. As well, the IMU axes (for both the accelerometer and gyroscope) were defined such that the 
positive x-axis was pointing to the subject’s right, the positive y-axis was pointing towards the subject 
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Figure 5. X-accelerometer auto-spectra averaged over the population. 

 

Figure 6. Y-gyroscope auto-spectra averaged over the population. 

 

Another (less dominant) tremor observed was a lateral z-axis tremor occurring concurrently with a 
rotational x-axis tremor. This less dominant form of tremor was similar to a clawing motion where 
someone is striking downwards with his or her hand. A similar pattern to what is seen in Figures 5, 6 
and 7 (as explained in the next few pages) is also seen for some subjects when comparing the z-axis 
lateral tremor and x-axis rotational tremor. Figures 5, 6 and 7 depict the x-axis lateral tremor, which 
occurred concurrently with the y-axis rotational tremor; the tremor depicted in these figures was 
present for almost all test subjects (unlike the z-axis lateral tremor, that occurred concurrently with the 
x-axis rotational tremor). It is because the x-axis lateral tremor and y-axis rotational tremor were so 
common that they were chosen for analysis. Other than the x-axis lateral and y-axis rotational tremor 
set, as well as the z-axis lateral and x-axis rotational tremor set, there were no other major tremor types 
broadly observed from test subjects. 
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What is particularly interesting about Figure 7 is that all ET and PD data can be differentiated from 
the data of controls. This is a very significant finding because it allows for PD data with limited tremor 
to be objectively classified as being different from control data. 

The horizontal line near the bottom of Figure 7 shows, based on Equation (6), the 95% confidence 
limit above which coherence should be considered significant. Based on this line, most of the data 
shown in Figure 7 should be considered significant. 

There is an interesting interpretation of the results depicted in Figure 7. Data with significant tremor 
should have more coherence because the x-accelerometer and y-gyroscope chosen for analysis tend to 
log data for two tremor motions that are quite similar and have a consistent phase shift. On the other 
hand, PD data with limited tremor should not necessarily depict higher coherence than control motion; 
however, in this case, PD patients with limited tremor were almost all medicated and were exhibiting 
dyskinesia. This higher coherence for PD data with limited tremor stems from the fact that controls 
have more capability to direct the IMU from side to side and up and down whilst only moving along 
one translational degree of freedom (and not along the other five degrees-of-freedom concurrently). 
PD patients with limited tremor, on the other hand, have less control over there motion (as a result of 
their dyskinesia) and thus cannot move as easily along only one degree of freedom at a time. 

Dyskinesia has not been widely quantified objectively by medical professionals, and generally 
subjective measures are used to ascertain the severity of dyskinesia based movement (such a giving a 
patient a score from 1 to 4 to quantify, by eye, the severity of dyskinesia). There is one example of the 
use of video data to quantify dyskinesia [25], but the use of inertial sensors to quantify dyskinesia (as 
presented here) is novel. Dyskinesia in Parkinson’s disease is generally a result of the use of drugs 
used to treat the disease (and, as stated, almost all Parkinson’s patients in this study were taking such 
drugs). All other major motor symptoms associated with Parkinson’s disease do not explain the results 
in Figure 7 (making dyskinesia the obvious factor that produced the results given). 

Other motions associated with Parkinson’s disease are postural instability, rigidity and bradykinesia 
(slow movement associated with the disease), as well as tremor. Postural instability is related to 
inability of patients to keep their balance when walking, which was not examined in this research 
paper, and therefore could not be a factor for what is depicted in Figure 7. Rigidity and bradykinesia, 
which result in slow patient motion, by themselves would obviously not directly lead to a higher 
coherence among tremor motion degrees-of-freedom (similar to what is depicted in Figure 7). Lastly, 
tremor was ruled out as a factor for what is depicted in Figure 7 for PD patients with limited tremor 
(Figure 5 and 6 verify that such PD patients with limited tremor indeed do have small amounts of 
tremor in their motion). Only dyskinesia, among documented PD motor symptoms, can provide a 
suitable explanation for what is shown in Figure 7. 

To verify that the data given in Figure 7 are significant enough to warrant publication, as statistical 
analysis was performed using individual peak coherence values for each subject in the 3–12 Hz 
frequency band. It is important to verify that dyskinesia in PD patients produces statistically different 
data than control data. Before statistical testing, Q-Q plots (three separate plots) were used to check 
data sets for normality [26]. The three Q-Q plots used corresponded to the three separate statistical 
tests in which the three non-control data sets were independently compared to control data sets. Means 
and standard deviations for the three statistical tests are given in Table 1. 
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Table 1. Results from statistical testing when comparing peak coherence values in the  
3–12 Hz frequency band for x-accelerometer and y-gyroscope data. 

Subject Type Mean Standard Deviation P-value using Welch’s one-tailed t-test 
Control 0.480 0.127 - 
ET with significant tremor 0.660 0.143 0.0067 
PD with significant tremor 0.650 0.136 0.0055 
PD with limited tremor 0.548 0.128 0.0854 

After the data sets were verified to be appropriate for statistical testing, a Welch’s one tailed  
t-test was applied (Student’s t-test would have been used instead if the population variances were 
identical) [27,28]. The null hypothesis was that the data sets (three independent tests of two data sets at 
a time) had the same mean. In each case, it was clear that the data sets were indeed different based on 
the p-values. The largest p-value from Table 1 was 0.0854, which implies a 8.54% chance of the 
results observed if the data sets did indeed have the same mean. The results from Table 1 verify what 
was shown graphically in Figure 7, that the control data can be uniquely identified when compared to 
the medicated PD patient data. 

5. Conclusions 

The goals of this research paper were to display that inertial data could be used to uniquely identify 
movement disorder patient data from control data in order to define objective criteria that could be 
used to quantify the size of tremor for patients and to determine the effectiveness of medication and 
treatment utilized by patients. More specifically, due to the ability to monitor the effects of dyskinesia, 
it is possible to evaluate more thoroughly the effects of medication and treatment used by patients; the 
ability to monitor patient dyskinesia using the methodology depicted in this research paper is novel. 
For patients with significant tremor, it was easy to show that inertial data easily captured large tremor 
motion. For PD patients with effective medication to reduce tremor, another technique was utilized to 
show that even though tremor motion was no longer present in patient data, other (dyskinesia based) 
motion effects could be quantified and used to identify medicated PD patient data when it was been 
compared to control data. A set of statistical tests verified that all movement disorder patient data 
presented could be classified as been different from control data. As well, it was explained that PD 
patients on medications often have difficultly completely controlling there motion (due to dyskinesia), 
and it is the lack of ability of such patients to move along one translational degree-of-freedom  
without showing motion for some of the other five degrees-of-freedom that the coherence analysis was 
able to identify. 

Another achievement of this research paper is that Kalman filtering and smoothing were utilized for 
inertial data pre-processing. This data processing technique was quite useful for the analysis carried 
out here. Kalman filtering was used to remove rotational motion logged by accelerometers (due to the 
influence of gravity). After this was done, the three sets of accelerometer data utilized depicted motion 
along three unique (translational) degrees-of-freedom. This allowed for the coherence analysis in this 
research paper to be carried out to compare motion along pairs of the six degrees-of-freedom (three 
translational and three rotational degrees-of-freedom). Most other research conducted using inertial  
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sensors to track movement disorder motion (as referenced in this research paper) does not utilize six 
degree-of-freedom motion tracking, and so the analysis presented here would not be possible with the 
data sets presented in these other works. 

Other processing carried out included wavelet analysis, which was used to define a threshold to 
differentiate patients with significant tremor from patients with limited tremor. Wavelets were also 
used to define criteria to high pass filter raw inertial data before subsequent processing. 
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