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Abstract: In this study, the biospeckle technique was evaluated for monitoring of apple 
bull’s eye rot development and product quality in general, during storage under various 
conditions and during subsequent shelf life. This non-destructive optical method is based 
on the analysis of laser light variations scattered from the sample. Apples of the cultivars 
‘Pinova’ and ‘Topaz’, susceptible to bull’s eye rot, were used in two independent 
experiments. In the first, apples were non-destructively monitored for five months during 
cold storage. After that time, 34% of ‘Pinova’ and 21% of ‘Topaz’ apples displayed visible 
surface lesions. The increase of biospeckle activity was observed during the development 
of fungal disease. In the second experiment various storage conditions were used and 
apples were tested during their shelf life by non-destructive and destructive methods. This 
study showed that biospeckle activity decreased during shelf life, irrespective of storage 
conditions. 
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1. Introduction 

Bull’s eye rot, caused by species of Neofabraea, better known as Pezicula, is one of the most 
frequent and damaging fungal diseases affecting stored apples. It starts in the orchard, but its 
symptoms appear only several months after harvest (generally after 3–4 months in cold storage). Late 
maturing apple cultivars like ‘Pinova’ and ‘Topaz’ are particularly susceptible to the disease, with an 
incidence that can exceed 15–30% after 120 days of cold storage [1–5]. Early detection of infection is 
important for ensuring microbiological quality and safety of food commodities. Actually, non-destructive 
techniques has been applied in the evaluation and monitoring of biological properties [6]. 

The biospeckle technique is a relatively new, non-invasive method to analyze the vitality of 
biomaterials. It is based on the optical phenomenon occurring during illumination of samples by 
coherent light. The scattered rays interfere with each other and form random, granular patterns 
consisting of dark and bright spots. If the illuminated sample does not show any biological activity, the 
images obtained are invariant. In the case of biological samples, however, the intensity distribution 
evolves and fluctuates in time [7,8]. This was first observed by Abramson at the Stockholm Royal 
Institute of Technology [9], who noticed that ‘when an apple is illuminated with laser light the 
speckles move!’. According to Braga et al. [10] processes such as cytoplasmic streaming, organelle 
movement, cell growth and division during fruit maturation and biochemical reactions are responsible 
for certain biospeckle activity. Brownian motion should also be taken into account [8]. Nevertheless 
knowledge about the biospeckle phenomenon in relation to fruits and vegetables is still limited, and 
there is a lack of consistent biological interpretations of the phenomenon. 

Applications of the biospeckle technique in the agricultural area include monitoring of quality and 
ripening of fruits and vegetables, analysis of seeds or assessment of motility parameters [7,8,11–21]. In 
all cases the biospeckle activity changed with the state of investigated sample. Analysis of temporal 
variation of the speckles was used to evaluate the presence of fungi in beans [22]. Due to the fact that 
the laser light can penetrate apple tissue to a depth of 7–10 mm [7] it is possible to obtain information 
about biospeckle activity from tissue localized under the skin. This means that, there would be a 
chance to detect and monitor the development of different defects before their symptoms become 
visible on the fruit surface. 

The aim of this work was to monitor bull’s eye rot development by means of the biospeckle 
technique. Up to now, examples of biospeckle application for estimation of fruits quality have been 
shown [12,14,16–19], however the influence of storage methods on biospeckle dynamics in  
post-storage shelf life was not tested yet. The second aim was to analyze changes of biospeckle 
activity and quality attributes of apples during shelf life after storage under normal and controlled 
atmosphere conditions, including 1-metylocyclopropene treatment. 

2. Materials and Methods 

Apples (Malus domestica Borkh.) of the cultivars ‘Pinova’ and ‘Topaz’ were obtained from the 
Research Institute of Horticulture in Skierniewice, Poland. These cultivars were chosen due to their 
known susceptibility to bull’s eye root. About 480 apples of each cultivar were harvested in October 
2010 at their optimal harvest windows. For two experiments, the fruit were divided: (1) into a batch of 



Sensors 2012, 12 3217 
 
100 apples for non-destructive monitoring of bull’s eye rot development, and (2) into a batch of about 
380 apples for destructive measurements during shelf life after storage under various conditions. 

In the first experiment, fruits were stored under a normal atmosphere (NA) at 2 °C for about 140 d. 
One hundred apples were tested non-destructively at eight dates with 20 d intervals. About eight apples 
were removed from NA, immediately tested at room conditions and then placed back to NA. In total, 
about 15 min were required for all measurements. 

In the second experiment apples were stored under normal atmosphere at 2 °C (1NA, 2NA, 3NA, 
which mean respectively 1, 2 and 3 months of storage), and under controlled conditions (1 °C,  
2% CO2, 2% O2) for eight months (4CA). Additionally, one batch (5MCP) was treated by  
1-metylocyclopropene (625 ppb, SmartFresh 03 VP, Rohm and Haas, Philadelphia, PA, USA) and 
then stored for eight months under CA atmosphere. In each of the five storage variants 75 apples were 
tested in shelf life simulation. Biospeckle activity and quality attributes (firmness, soluble solids 
content, dry matter content) were evaluated at 1, 3, 5, 7 and 10th day of shelf life. 

2.1. Biospeckle Measurement 

The device for biospeckle measurement was similar to that previously used by Zdunek et al. [16–19]. 
Its schematic illustration is presented in Figure 1. In this study, two similar systems, equipped with 
differed laser for illuminating the sample were used.  

Figure 1. Scheme of the biospeckle setup. 

 
 

In the first experiment, and in the case of 1NA, 2NA and 3NA series from the second experiment, a 
He-Ne laser (1 mW, λ = 632.8 nm, LLR 811, Optel, Opole, Poland) was used. The laser beam was 
expanded by a microscope objective (10/0.24, 160/-, PZO, Poland).  

For the 4CA and 5MCP experiments, a diode laser (8 mW, λ = 635 nm, LQC635-08C, supplied 
with Laser Diode Control Unit, Newport, Irvine, CA, USA) was used. The laser beam was expanded 
by a beam expander 20× (Edmund Optics GmbH, Karlsruhe, Germany).  
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In both systems, a CCD camera (Monochrome FireWire Astronomy Camera DMK 21AF04.AS, 
The Imaging Source Europe GmbH, Bremen, Germany) with a 25 mm TV lens 1:14 and 20 mm 
extension ring (Pentax Corporation, Tokyo, Japan) was used as detector of scattered light. The distance 
between camera and apple was about 100 mm, and that between laser and apple 180 mm. The 
illumination angle was Θ ≈ 30°. Biospeckle movies lasting 4 s were recorded in uncompressed AVI 
film form (8 bits, RGB24 codec) at a 15 fps rate. The image exposure time of the CCD camera was 
1/250, gain and brightness were set experimentally to avoid pixel overexposure on the image 
histogram. The image resolution was 320 × 240 pixels which corresponded to observation area of 
about 3 × 2 mm. These settings ensured avoidance of apple curvature. The parameters of image 
acquisition were kept unchanged during the experiment.  

Biospeckle activity was evaluated using the correlation coefficient Ckτ, where k is a frame number 
and τ is a lag time (1/15 s) [18,19]. Ckτ was calculated as the correlation coefficient of data matrix, 
consisting of intensities of pixels, of the first frame with the data matrixes of the following frames 
from the analyzed biospeckle movies. In this study, C4 was analyzed only as the correlation coefficient 
between the first frame and the frame at kτ = 4 s. The time of 4 s was chosen to obtain a reasonable 
decrease of Ckτ which was down to 0.2 for some apples and in the case of lasers and optics used. Then, 
a BA = 1-C4 value was determined as the biospeckle activity parameter for a certain sample. Higher 
biospeckle activity corresponds to higher 1-C4 value. Correlation coefficient C was calculated using 
“corrcoef” function in Matlab® R2010a software (MathWorks, Natick, MA, USA). Each apple was 
tested at six points localized on the fruit equator in the experiment 1, or at two opposite sites in 
experiment 2. As a result, mean values of BA were calculated. 

2.2. Firmness Measurements 

Firmness of the apples was measured in a non-destructive way with an acoustic impulse response 
technique (AFS impact, AWETA, G&P, Nootdorp, The Netherlands). In this method only two 
parameters are needed to obtain the firmness index (FI): the resonant frequency of the first elliptical 
mode and the mass of the fruit [23,24]. In experiment 2 each sample was measured at two opposite 
sites and as a result the mean value of FI for each fruit was obtained.  

Moreover, in experiment 2, apple firmness was also measured destructively using a universal 
testing machine Lloyd LRX (Lloyd Instruments Ltd, Hampshire, UK) with a 500 N load cell. Ten 
apples were punctured by a cylindrical Magness-Taylor probe (11.1 mm diameter) at a speed of  
20 mm min−1. Before the test, the apple skin was removed. Maximum force, needed to penetrate the 
flesh over a distance of 8 mm was read as the apple firmness (F) and expressed in N. 

2.3. Soluble Solids Content 

Soluble solids content (SSC) was determined using a digital refractometer (PAL-BX/RI, Atago Co. 
Ltd., Tokyo, Japan). Freshly squeezed juice was poured onto the prism. The results were obtained in 
Brix degrees. Measurements were carried out for five apples in four replicates. 
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2.4. Dry Matter Content 

Samples of five apples (approximately 20 g) were cut into small pieces and dried (SUP-30W, 
Wamed, Poland) at 105 °C to constant mass. Dry matter content (DM) was calculated as  
DM = (m2/m1) × 100, where m1 was the mass of the fresh sample and m2—mass of the dried sample.  

2.5. Statistical Analysis 

Statistical analysis was performed using Statistica 8.0 (StatSoft, Inc., Tulsa, OK, USA). In the 
experiment 1 storage effect was tested by one-way ANOVA to show differences between measured 
biospeckle activity during apple fungal disease development. Post-hoc analysis were performed using 
the HSD Tukey test. In the experiment 2 basic statistics (mean values and standard deviations) were 
calculated for quality attributes and biospeckle activity measured in the shelf life simulations. 
Moreover two-way ANOVA was used for testing series*day effect. Pearson’s correlation coefficients 
between mean BA values and other mean quality attributes were also determined. The effects were 
tested using F-value and the significance level was evaluated at p < 0.05. 

3. Results 

3.1. Infection Development in Experiment 1 

After about two months of storage, the first hardly visible spots appeared on the skin of two apples 
of both cultivars (Figures 2 and 3).  

Figure 2. Biospeckle activity BA (black line) and percentage of infected fruit (red line) 
during development of bull’s eye rot of ‘Pinova’ apples. Bars indicate standard deviation; 
different letters denote significant differences (at α = 0.05) between means.  
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Figure 3. Biospeckle activity BA (black line) and percentage of infected fruit (red line) 
during development of bull’s eye rot of ‘Topaz’ apples. Bars indicate standard deviation; 
different letters denote significant differences (at α = 0.05) between means. 

 

The circular and light-brown areas constantly increased in size and darkened with time. As a result, 
34% of ‘Pinova’ and 21% of ’Topaz’ apples were severely diseased after ~140 d. Symptoms of 
infections were always more pronounced in ‘Pinova’ apples (Figure 2). Bull’s eye rots in this case 
were mostly observed close to the equator of apples, whereas in ‘Topaz’, the spots usually appeared 
close to the stem or calyx end. 

Each mean BA value, presented in Figures 2 and 3, was calculated from 600 measurements  
(100 apples × 6 places on the equator). Standard deviations of BA are relatively large however due to 
number of repetitions observed changes were often significant and allowed making conclusions about 
trends. Overall effect of storage showed significant change of biospeckle activity (F-value > 38,  
p < 0.05). With one exception, BA change trends were similar for apples of both cultivars. On day 26 
of storage, however, BA of ‘Topaz’ apples occasionally increased (Figure 3). Despite this, BA of 
healthy apples seemed to decrease (‘Pinova’) or, at least, remained constant (‘Topaz’) during the initial 
40 d of storage. In the next stage, (~40–100 storage days) BA significantly increased as the post-hoc 
analysis showed. In this period small, light–brown, circular spots appeared. Prolonged storage  
(~100–140 d) caused pronounced visible symptoms and death of the tissue. This is accompanied by 
significant decrease of biospeckle activity (Figure 4). 

Due to the experimental set up, the locations of BA measurements were preliminary fixed and were 
monitored in the same places. Since bull’s eye rot development was not controlled, as a result, direct 
BA measurements of bull’s eye rot spots exactly in the same place were very rare. Comparison of 
biospeckle activity changes for infected and health place on the same apple in a specific case where 
rotting appeared exactly in monitoring area (Figure 4) confirmed results in Figures 2 and 3. BA 
decreased during the 40 d of cold storage. Then in both healthy and infected places biospeckle activity 
increased but for the decaying place it happened faster. The first bull’s eye rot hardly visible symptoms 
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occurred at 85th day of NA storage in this case. It suggests that maybe the increase of BA at 60th day, 
when the change 40–60 d was already significant, would be used for prediction of infection. Finally, 
BA decreased and especially infected part showed very low activity. 

Figure 4. Biospeckle activity BA of one selected ‘Pinova’ apples for healthy and decaying 
tissue during storage. Photographic documentation of apple bull’s eye rot development is 
also given. Lesion area is marked by black arrow and red circle presents laser illumination 
point. 

 

3.2. Biospeckle Activity after Various Storage Methods (Experiment 2) 

Decrease in BA during shelf life was observed for 1NA series of both tested cultivars. In ‘Pinova’ 
apples, biospeckle activity changed slightly during 2NA shelf life simulation and increased during 
3NA (Table 1). The highest value of biospeckle activity was obtained in general for 4CA series but 
also a decrease of BA was noted. After 1-MCP treatment (5MCP) biospeckle activity also decreased. 
BA of ‘Topaz’ decreased in the case of 1NA and 2NA shelf-life experiments (Table 2). For 3NA 
biospeckle activity increased from 0.48 (1st day) to 0.59 (10th day). During storage under 4CA and 
5MCP conditions, no clear trend in changes of BA could be detected. Firmness gradually decreased in 
the case of 1NA, 2NA, 4CA and 5MCP, both in ‘Pinova’ (Table 1) and in ‘Topaz’ apples (Table 2). 
The lowest values of IF and F and the least pronounced shelf life effect was obtained in the 3NA 
experimental stage. Dry matter content DMC and total soluble solids content SSC generally increased 
during apple storage. The highest values of DMC were obtained at day 10 in the 5MCP series (18.60% 
for ‘Pinova’ and 18.03% for ‘Topaz’). 2NA program was characterized by the highest mean SSC, and 
it fluctuated from 14.2 to 15.7° Brix for cv. ‘Pinova’ and 12.7–14.1° Brix for cv. ‘Topaz’. In turn the 
lowest mean values of SSC was obtained for 4CA series in both cases.  
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Table 1. Mean values of biospeckle activity (BA) and quality attributes for ‘Pinova’  
(F–firmness, FI–firmness index, SSC–soluble solids content, DMC–dry matter content) of 
apple during shelf-life. SD–standard deviation, the same letters a–e mean no significant 
difference at the level of α = 0.05 between superscripted values. 

Series Shelf life 
(days) BA ± SD F (N) ± SD FI ± SD SSC (°Brix)  

± SD 
DMC (%)  

± SD 

1 NA 

1 0.65 ± 0.06 a 82.02 ± 4.44 a 28.2 ± 2.5 a 14.5 ± 0.8 ab 13.85 ± 0.96 a 

3 0.60 ± 0.04 b 80.04 ± 3.23 a 22.9 ± 2.4 b 14.3 ± 0.7 abc 14.82 ± 0.41 a 

5 0.55 ± 0.06 c 77.57 ± 6.38 a 17.8 ± 1.9 c 13.9 ± 0.5 c 14.56 ± 1.54 a 

7 0.53 ± 0.04 c 77.79 ± 4.42 a 15.7 ± 3.7 c 14.1 ± 0.6 bc 14.87 ± 1.55 a 

10 0.55 ± 0.07 d 77.27 ± 2.98 a 11.0 ± 3.7 d 14.7 ± 0.8 a 14.78 ± 077 a 

2 NA 

1 0.55 ± 0.05 ab 56.66 ± 7.83 a 15.3 ± 2.6 a 14.2 ± 0.5 a 14.28 ± 0.93 a 

3 0.57 ± 0.05 b 51.59 ± 6.41 a 11.0 ± 3.1 b 14.9 ± 0.6 ab 14.41 ± 0.72 a 

5 0.51 ± 0.04 a 51.62 ± 4.64 a 9.2 ± 2.0 c 15.1 ± 1.3 bc 14.95 ± 0.78 a 

7 0.52 ± 0.07 a 52.72 ± 7.37 a 6.3 ± 2.0 d 15.7 ± 0.8 c 15.69 ± 1.00 a 

10 0.58 ± 0.05 b 52.15 ± 6.26 a 5.1 ± 1.5 d 15.2 ± 1.1 bc 15.10 ± 0.94 a 

3 NA 

1 0.62 ± 0.11 a 35.28 ± 5.32 a 4.9 ± 1.6 a 14.5 ± 1.1 ab 15.32 ± 1.14 a 

3 0.65 ± 0.10 ab 32.58 ± 6.85 a 4.4 ± 0.4 ab 13.8 ± 0.8 a 15.04 ± 0.85 a 

5 0.62 ± 0.08 a 31.34 ± 4.25 a 4.1 ± 0.4 b 14.9 ± 0.8 b 13.93 ± 0.85 a 

7 0.65 ± 0.12 ab 33.38 ± 3.80 a 3.9 ± 0.3 b 15.2 ± 0.9 b 14.87 ± 1.39 a 

10 0.69 ± 0.09 b 31.30 ± 4.61 a 4.0 ± 0.3 b 14.7 ± 0.6 b 14.84 ± 1.01 a 

4 CA 

1 0.73 ± 0.04 a 71.66 ± 6.78 a 20.0 ± 2.9 a 13.7 ± 0.6 a 15.34 ± 0.71 ab 

3 0.66 ± 0.06 b 74.18 ± 10.10 a 16.4 ± 3.8 b 14.7 ± 0.9 b 14.31 ± 1.27 a 

5 0.67 ± 0.05 b 73.11 ± 7.35 a 12.4 ± 2.9 c 13.7 ± 1.1 a 15.39 ± 1.09 ab 

7 0.66 ± 0.07 b 74.13 ± 3.19 a 11.1 ± 2.9 c 13.8 ± 0.8 a 16.03 ± 0.56 b 

10 0.69 ± 0.09 ab 77.26 ± 8.27 a 7.5 ± 1.7 d 13.2 ± 1.1 a 18.39 ± 0.64 b 

5 MCP 

1 0.62 ± 0.09 ab 85.72 ±10.41 ab 19.2 ± 2.7 a 14.1 ± 0.9 ab 17.28 ± 1.26 a 

3 0.65 ± 0.07 bc 71.30 ± 19.74 a 13.3 ± 3.0 b 13.9 ± 1.0 a 17.85 ± 0.75 a 

5 0.67 ± 0.06 c 88.20 ± 7.34 b 12.1 ± 3.5 b 15.1 ± 0.9 c 17.29 ± 1.18 a 

7 0.63 ±0.07 abc 90.32 ± 10.20 b 8.6 ± 2.6 c 14.7 ± 0.4 bc 18.02 ± 0.42 a 

10 0.59 ± 0.08 a 91.62 ± 10.11 b 8.0 ± 1.6 c 14.8 ± 1.0 bc 18.60 ± 0.97 a 
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Table 2. Mean values of biospeckle activity (BA) and quality attributes for ‘Topaz’  
(F–firmness, FI–firmness index, SSC–soluble solids content, DMC–dry matter content) of 
apple during shelf-life. SD–standard deviation, the same letters a–e mean no significant 
difference at the level of α = 0.05 between superscripted values. 

Series Shelf life 
(days) BA ± SD F (N) ± SD FI ± SD SSC (°Brix) 

± SD 
DMC (%) 

± SD 

1 NA 

1 0.64 ± 0.04 a 85.98 ± 4.40 a 25.6 ± 1.5 a 12.7 ± 0.7 a 12.92 ± 1.26 a 

3 0.54 ± 0.08 bd 75.48 ±18.86 ab 22.1 ± 1.7 b 13.4 ± 0.8 b 12.77 ± 0.77 a 

5 0.59 ± 0.05 c 62.68 ±10.32 bc 20.0 ± 1.7 c 13.2 ± 0.6 ab 13.90 ± 0.77 a 

7 0.51 ± 0.06 d 54.59 ± 6.05 cd 15.8 ± 1.9 d 12.7 ± 0.5 a 13.10 ± 0.35 a 

10 0.56 ± 0.05 bc 47.57 ± 3.59 d 12.4 ± 2.5 e 13.6 ± 0.7 b 12.84 ± 0.52 a 

2 NA 

1 0.59 ± 0.06 a 48.50 ± 2.72 a 18.0 ± 1.7 a 12.7 ± 1.0 a 12.80 ± 0.23 a 

3 0.55 ± 0.05 ab 45.81 ± 3.88 a 15.2 ± 3.1 b 13.9 ± 1.0 b 12.55 ± 0.69 a 

5 0.57 ± 0.06 a 45,95 ± 4.81 a 13.6 ± 2.6 b 13.6 ± 1.0 b 13.45 ± 0.53 a 

7 0.51 ± 0.06 b 39.30 ± 2.36 b 9.4 ± 1.9 c 14.1 ± 0.9 b 13.24 ± 0.79 a 

10 0.57 ± 0.06 a 38.32 ± 3.77 b 7.9 ± 2.4 c 13.6 ± 0.5 b 13.71 ± 0.74 a 

3 NA 

1 0.48 ± 0.05 ab 35.32 ± 4.40 ab 8.2 ± 2.6 ac 12.6 ± 0.6 a 12.39 ± 1.04 a 

3 0.47 ± 0.05 a 38.28 ± 3.87 a 10.1 ± 2.7 ab 13.8 ± 0.6 bc 13.11 ± 0.41 a 

5 0.53 ± 0.10 bc 36.88 ± 5.03 a 10.5 ± 3.1 b 14.0 ± 0.7 b 13.11 ± 0.79 a 

7 0.57 ± 0.08 cd 31.11 ± 3.45 bc 7.8 ± 2.3 c 13.3 ± 1.0 cd 12.81 ± 0.86 a 

10 0.59 ± 0.08 d 29.73 ± 4.97 c 7.8 ± 2.6 c 13.0 ± 0.6 ad 13.53 ± 0.31 a 

4 CA 

1 0.66 ± 0.08 a 52.87 ± 7.72 a 21.1 ± 1.9 a 12.1 ± 0.9 a 14.82 ± 1.29 ab 

3 0.60 ± 0.05 b 51.55 ± 7.39 a 20.3 ± 2.1 ab 12.3 ± 0.4 ab 13.68 ± 0.83 a 

5 0.61 ± 0.05 b 43.88 ± 6.24 ab 19.8 ± 2.3 abc 12.3 ± 0.5 ab 13.84 ± 0.62 ab 

7 0.59 ± 0.07 b 44.34 ± 5.44 ab 18.8 ± 3.1 bc 12.6 ± 0.6 b 14.81 ± 1.11 ab 

10 0.63 ± 0.07 ab 37.88 ± 9.27 b 17.9 ± 3.3 c 12 5 ± 0.6 ab 15.82 ± 0.70 b 

5 MCP 

1 0.59 ± 0.08 ac 65.04 ± 8.69 ab 22.8 ± 1.5 a 13.1 ± 0.8 ab 15.38 ± 0.52 a 

3 0.64 ± 0.05 ab 75.86 ± 12.94 a 21.3 ± 1.7 b 13.7 ± 0.5 a 14.68 ± 0.58 a 

5 0.66 ± 0.07 b 62.22 ± 5.43 b 20.9 ± 2.3 b 13.0 ± 0.9 ab 14.59 ± 0.45 a 

7 0.58 ± 0.08 c 54.70 ± 7.13 b 19.1 ± 2.3 c 13.0 ± 0.8 ab 15.26 ± 1.20 a 

10 0.59 ± 0.08 ac 61.06 ± 15.32 b 20.8 ± 1.8 b 12.6 ± 1.0 b 18.03 ± 0.81 b 

 
Two-way ANOVA (Table 3) showed that combined effects of storage method and shelf life were 

significant (p < 0.05) for measured parameters with the exception of DMC for ‘Pinova’ (p = 0.19). 
Table 4 presents summarized Pearsons’ correlation coefficients (R) calculated among mean values of 
variables analyzed in this experiment. Strong correlation between BA and FI was observed for ‘Topaz’ 
(R = 0.84, p < 0.05), whereas in other cases R-values were weak but still significant at the level of  
p < 0.05. For ‘Pinova’ apples, correlations between BA and quality attributes were not significant  
(p > 0.05) with the exception of SSC, for which R = −0.40 (p < 0.05).  
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Table 3. F-value and p-values of two-way ANOVA for combined series*day effect  
for individual cultivars. BA means biospeckle activity, F–firmness, FI–firmness index,  
SSC–soluble solids content, DMC–dry matter content. 

Cultivar BA F(N) FI SSC DMC 

Pinova F-value = 6.59, 
p < 0.05 

F-value = 2.79, 
p < 0.05 

F-value = 27.05, 
p < 0.05 

F-value = 6.9, 
p < 0.05 

F-value = 1.34, 
p = 0.19 

Topaz F-value = 10.41, 
p < 0.05 

F-value = 5.74, 
p < 0.05 

F-value = 26.47, 
p < 0.05 

F-value = 4.7, 
p < 0.05 

F-value = 3.22, 
p < 0.05 

Table 4. Pearson’s correlation coefficients (R) for the correlation between biospeckle 
activity (BA) and other quality attributes (F–firmness, FI–firmness index, SSC–soluble 
solids content, DMC–dry matter content), measured for ‘Pinova’ and ‘Topaz’ apples. 
Asterisks denote significance at p < 0.05. 

 BA ‘Pinova’ BA ’Topaz’ 
FI 0.02 0.84 * 
F 0.03 0.42 * 

SSC −0.40 * −0.48 * 
DMC 0.19 0.52 * 

4. Discussion 

It is believed that biospeckle fluctuations result from the elastic light scattering on moving  
particles such as cellular organelles. Any disturbance of this movement would be detected as a  
BA change. Thus, biospeckle activity fluctuation, presented in Figures 2 and 3, may be related  
to pathological changes occurring in apple tissues during the development of fungal infection. In the 
first period, before visible symptoms appeared, BA decreased, probably due to starch granule 
degradation [18]. The decrease of biospeckle activity during storage was previously reported by  
other authors [7,8,11,14,16,17].  

According to the literature data [25,26] fungal attack results in elevated level of ethylene 
concentration and increase in transpiration and this could be a reason for observed increase in 
biospeckle activity between the ~40th and ~100th day. 

During infection, a number of biologically active substances, like enzymes, toxins and growth 
regulators, are released by the fungal pathogens, which may affect the structural integrity of the host 
cells or their physiological process. Production of pectolytic enzymes causes pectin degradation and 
leads to plant tissue maceration, i.e., softening, loss of coherence and separation of individual cells, 
which eventually die [25,27,28]. Death of the apple tissue was responsible for decrease in biospeckle 
activity (Figure 4) during prolonged storage (~100–140 d). 

During apple ripening many biochemical reactions take place that could be responsible for variable 
biospeckle. Chlorophyll degradation causes a BA increase due to a decrease of light absorption and 
deeper light penetration [19], whereas starch degradation has an opposite effect: BA increases due to 
decreases in the number of particles acting as light scattering centers [18]. These two processes usually 
occur during fruit ripening. In previous studies apparent biospeckle activity decreased just after harvest 
in shelf life experiments [17]. Similar results were obtained in present experiment, suggesting that 
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starch hydrolysis plays a more important role than chlorophyll degradation for biospeckle activity. NA, 
CA and 1-MCP treatments are followed by a decrease in BA during shelf life. Table 4 showed that 
soluble solids content also affects biospeckle activity: higher SSC was reflected as lower BA. 
However, at present it is difficult to interpret the reasons behind this relationship.  

5. Conclusions 

This work revealed that biospeckle reflects biological activity occurring inside apples and on apple 
skins during bull’s eye rot development. An increase of biospeckle activity was observed when disease 
symptoms were hardly visible. Senescence resulted in a decline of biospeckle activity due to reduction 
of life processes within tissue. This showed that this method would be used in a future for non-
destructive monitoring of pathogen infection development. This experiment showed that a limit of 
detection would be at least comparable to that of visual inspection. However to estimate this limit 
precisely further study is needed in model experiments, with artificial inoculation, where biospeckle 
activity will be evaluated exactly in the place of infection. 

This study also showed that, irrespective of storage conditions, biospeckle activity decreased during 
shelf life. In the case of ‘Topaz’ BA correlated significantly (p < 0.05) with quality attributes 
(firmness, firmness index, soluble solids content, dry matter content), whereas for ‘Pinova’  
a significant correlation was obtained only between BA and SSC. It can be concluded that there is  
a chance to monitor postharvest quality of apples, in relation to biochemical changes, by this  
non-destructive method. 
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