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Abstract: Here, we report the application of a label-free electrochemical aptasensor based 

on a graphite-epoxy composite electrode for the detection of thrombin; in this work, 

aptamers were immobilized onto the electrodes surface using wet physical adsorption. The 

detection principle is based on the changes of the interfacial properties of the electrode; 

these were probed in the presence of the reversible redox couple [Fe(CN)6]
3−

/[Fe(CN)6]
4−

 

using impedance measurements. The electrode surface was partially blocked due to formation 

of aptamer-thrombin complex, resulting in an increase of the interfacial electron-transfer 

resistance detected by Electrochemical Impedance Spectroscopy (EIS). The aptasensor 

showed a linear response for thrombin in the range of 7.5 pM to 75 pM and a detection 

limit of 4.5 pM. The aptasensor was regenerated by breaking the complex formed between 

the aptamer and thrombin using 2.0 M NaCl solution at 42 °C, showing its operation  

for different cycles. The interference response caused by main proteins in serum has been 

characterized. 
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1. Introduction  

Aptamers are artificial DNA or RNA oligonucleotides selected in vitro which have the ability to 

bind to proteins, small molecules or even whole cells, recognizing their target with affinities and 

specificities often matching or even exceeding those of antibodies [1]. Furthermore, the recognition 

process can be inverted and is stable in broad terms. Due to all these properties, aptamers can be used 

in a wide range of applications, such as therapeutics [2], molecular switches [3], drug development [4], 

affinity chromatography [5] and biosensors [6]. 

One of the most known and used aptamers is selective to thrombin, with the sequence  

5'-GGTTGGTGTGGTTGG-3'. Thrombin is the last enzyme protease involved in the coagulation 

cascade, and converts fibrinogen to insoluble fibrin which forms the fibrin gel, both in physiological 

conditions and in a pathological thrombus [7]. Therefore, thrombin plays a central role in a number of 

cardiovascular diseases [8], and it is thought to regulate many processes such as inflammation and 

tissue repair at the blood vessel wall. Concentration levels of thrombin in blood are very low, and 

levels down to picomolar range are associated with disease; because of this, it is important to be able to 

assess this protein concentration at trace level, with high selectivity [9]. 

In previous years, there has been great interest in the development of aptasensors. Aptasensors are 

biosensors that use aptamers as the biorecognition element. Different transduction techniques such as 

optical [10], Atomic Force Microscope [11], electrochemical [12] and piezoelectric [13] variants have 

been reported. Recently, among the different electrochemical techniques available, the use of 

Electrochemical Impedance Spectroscopy (EIS) [14] has grown among studies [15,16]. EIS is rapidly 

developing as a reference technique for the investigation of bulk and interfacial electrical properties of 

any kind of solid or liquid material which is connected to or part of an appropriate electrochemical 

transducer. Impedance is a simple, high-sensitivity, low-cost and rapid transduction principle to follow 

biosensing events that take place at the surface of an electrode [17–19]. Moreover, apart from the 

detection of the recognition event when an immobilized molecule interacts with its target analyte, EIS 

can be used to monitor and validate the different sensing stages, including preparation of biosensor. 

Together with Surface Plasmon Resonance and the Quartz Crystal Microbalance, EIS is one of the 

typical transduction techniques that do not require labelled species for detection. 

In the present communication, we report the application a label-free electrochemical aptasensor for 

the detection of thrombin using graphite-epoxy composite electrodes (GEC). This platform is of 

general use in our laboratories and has been already extensively studied and applied for amperometric, 

enzymatic, immuno- and genosensing assays [20,21]. The uneven surface of the graphite-epoxy 

electrode allows the immobilization of the aptamer onto its surface by simple wet physical adsorption. 

Afterwards, the electrode surface may be renewed after each experiment by polishing with abrasive 

paper. The transduction principle used is based on the change of electron-transfer resistance in the 

presence of the [Fe(CN)6]
3−

/[Fe(CN)6]
4−

 redox couple, which can be measured by EIS. The proposed 

aptasensor showed appropriate response behaviour values to determine thrombin in the picomolar 

range. Moreover, this proposed method has some advantages such as high sensitivity, simple 

instrumentation, low production cost, fast response, portability and what’s more, the biosensor has 

been shown to be easily regenerated by wet procedures.  
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2. Experimental 

2.1. Chemicals 

Potassium ferricyanide K3[Fe(CN)6], potassium ferrocyanide K4[Fe(CN)6], potassium dihydrogen 

phosphate, sodium monophosphate and the target protein thrombin (Thr), were purchased from Sigma 

(St. Louis, MO, USA). Poly(ethylene glycol) (PEG), sodium chloride and potassium chloride were 

purchased from Fluka (Buchs, Switzerland). All reagents were analytical reagent grade. All-solid-state 

electrodes (GECs) were prepared using 50 μm particle size graphite powder (Merck, Darmstadt, 

Germany) and Epotek H77 resin and its corresponding hardener (both from Epoxy  

Technology, Billerica, MA, USA). The aptamer (AptThr) used in this study, with sequence  

5'-GGTTGGTGTGGTTGG-3', was prepared by TIB-MOLBIOL (Berlin, Germany). All solutions 

were made up using MilliQ water from MilliQ System (Millipore, Billerica, MA, USA). The buffer 

employed was PBS (187 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4·2H2O, 1.76 mM KH2PO4,  

pH 7.0). Stock solutions of aptamer and thrombin were diluted with sterilized and deionised water, 

separated in fractions and stored at −20 °C until used.  

2.2. Apparatus 

AC impedance measurements were performed with an IM6e Impedance Measurement Unit  

(BAS-Zahner, Kronach, Germany) and Autolab PGStat 20 (Metrohm Autolab B.V, Utrecht, The 

Netherlands). Thales (BAS-Zahner) and Fra (Metrohm Autolab) software, respectively, were used for 

data acquisition and control of the experiments. A three electrode configuration was used to perform 

the impedance measurements: a platinum-ring auxiliary electrode (Crison 52–67 1, Barcelona, Spain), 

an Ag/AgCl reference electrode and the constructed GEC as the working electrode. Temperature-

controlled incubations were done using an Eppendorf Thermomixer 5436. 

2.3. Preparation of Working Electrodes 

Graphite epoxy composite (GEC) electrodes used were prepared using a PVC tube body (6 mm i.d.) 

and a small copper disk soldered at the end of an electrical connector, as shown on Figure 1(a). The 

working surface is an epoxy-graphite conductive composite, formed by a mixture of graphite (20%) 

and epoxy resin (80%), deposited on the cavity of the plastic body [15,16]. The composite material 

was cured at 80 °C for 3 days. Before each use, the electrode surface was moistened with MilliQ water 

and then thoroughly smoothed with abrasive sandpaper and finally with alumina paper (polishing strips 

301044-001, Orion) in order to obtain a reproducible electrochemical surface. 

2.4. Procedure 

The analytical procedure for biosensing consists of the immobilization of the aptamer onto the 

transducer surface using a wet physical adsorption procedure, followed by the recognition of the 

thrombin protein by the aptamer via incubation at room temperature. The scheme of the experimental 

procedure is represented in Figure 1(b), with the steps described in more detail below. 
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Figure 1. (a) Scheme of the manufacture of graphite-epoxy composite electrodes,  

(b) Steps of the biosensing procedure. 

 

2.4.1. Aptamer Adsorption 

First, 160 µL of aptamer solution in MilliQ water at the desired concentration was heated at  

80–90 °C for 3 min to promote the loose conformation of the aptamer. Then, the solution was dipped 

in a bath of cold water and the electrode was immersed in it, where the adsorption took place at room 

temperature for 15 min with soft stirring. Finally, this was followed by two washing steps using PBS 

buffer solution for 10 min at room temperature, in order to remove unadsorbed aptamer.  

2.4.2. Blocking 

After aptamer immobilisation, the electrode was dipped in 160 µL of PEG 40 mM for 15 min at 

room temperature with soft stirring to minimize any possible nonspecific adsorption. This was 

followed by two washing steps using PBS buffer solution for 10 min. 

2.4.3. Label-Free Detection of Thrombin 

The last step is the recognition of thrombin by the immobilized aptamer. For this, the electrode was 

dipped in a solution with the desired concentration of thrombin. The incubation took place for 15 min 

at room temperature with soft stirring. After that, the biosensor was washed twice with PBS buffer 

solution for 10 min at room temperature to remove nonspecific adsorption of protein. 

2.4.4. Regeneration of Aptasensor 

Finally, to regenerate the aptasensor, the aptamer-thrombin complex must be broken. For this, the 

electrode was dipped in a 2 M NaCl, heated at 42 °C while stirring for 20 min. Afterwards, the 

electrode was washed twice with PBS buffer solution for 10 min. 
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2.5. Impedimetric Measurements 

Impedimetric measurements were performed in 0.01 mM [Fe(CN)6]
3−/4−

 solution prepared in PBS at 

pH 7. The electrodes were dipped in this solution and a potential of +0.17 V (vs. Ag/AgCl) was 

applied. Frequency was scanned from 10 kHz to 50 mHz with a fixed AC amplitude of 10 mV. The 

impedance spectra were plotted in the form of complex plane diagrams (Nyquist plots, −Zim vs. Zre) 

and fitted to a theoretical curve corresponding to the equivalent circuit with Zview software (Scribner 

Associates Inc., USA). In the equivalent circuit shown in Figure 2, the parameter R1 corresponds to the 

resistance of the solution, R2 is the charge transfer resistance (also called Rct) between the solution and 

the electrode surface, whilst CPE is associated with the double-layer capacitance (due to the interface 

between the electrode surface and the solution). The use of a constant phase element (CPE) instead of 

a capacitor is required to optimize the fit to the experimental data, and this is due to the nonideal nature 

of the electrode surface [14]. The parameters of interest in our case are the electron-transfer resistance 

(Rct) and the chi-square (χ
2
). The first one was used to monitor the electrode surface changes, while χ

2
 

was used to measure the goodness of fit of the model. In all cases the calculated values for each circuit 

were <0.2, much lower than the tabulated value for 50 degrees of freedom (67.505 at 95% confidence 

level). In order to compare the results obtained from the different electrodes used, and to obtain 

independent and reproducible results, relative signals are needed [16]. Thus, the Δratio value was 

defined according to the following equations: 

Δratio = Δs /Δp 

Δs = Rct (AptThr-Thr) − Rct (electrode-buffer) 

Δp = Rct (AptThr) − Rct (electrode-buffer) 

where Rct(AptThr-Thr) was the electron transfer resistance value measured after incubation with the 

thrombin protein; Rct (AptThr) was the electron transfer resistance value measured after aptamer 

inmobilitation on the electrode, and Rct (electrode-buffer) was the electron transfer resistance of the blank 

electrode and buffer. 

Figure 2. Equivalent circuit used for the data fitting. R1 is the resistance of the solution, R2 

is the electron-transfer resistance and CPE, the capacitive contribution, in this case as a 

constant phase element. 
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3. Results and Discussions 

3.1. Optimization of Electrode Surface 

First of all, the concentration of aptamer and PEG immobilized onto the electrode surface were 

optimized separately by building its response curves. For this, increasing concentrations of AptThr and 

PEG were used to carry out the immobilization, evaluating the changes in the Δp. 

Figure 3 shows the curve of AptThr adsorption onto the electrode surface. It can be observed that 

the difference in resistance (Δp) increased up to a value. This is due to the physical adsorption of the 

aptamer onto the electrode surface, which followed a Langmuir isotherm; in it, the variation of Rct 

increases to reach a saturation value, chosen as the optimal concentration. This value corresponded to a 

concentration of aptamer of 1 µM.  

Figure 3. Optimization of the concentration of Apt-Thr. Uncertainty values corresponding 

to replicated experiments (n = 5). 

[AptThr] (M)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2


p
(O

h
m

s
) 

200

250

300

350

400

450

500

550

 

Figure 4. Optimization of the concentration of the blocking agent, PEG. Uncertainty 

values corresponding to replicated experiments (n = 5). 
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To minimize any possible nonspecific adsorption onto the electrode surface, polyethylene glycol 

(PEG) was used as the blocking agent. As shown in Figure 4, and like the previous case, there was an 

increase in resistance until the value of 40 mM of PEG where the saturation value is reached. 

Therefore, the optimal concentration of blocking agent was chosen as 40 mM. 

3.2. Detection of Thrombin 

With the optimized concentrations of aptamer and PEG and following the above experimental 

protocol for the detection of thrombin, the aptasensor response was initially evaluated. The aptamer  

of thrombin forms a single-strand oligonucleotide, a chain that recognizes the protein by a three-

dimensional folding (quadriplex). During this folding, weak interactions between the aptamer and 

protein of the host-guest type are created, leading to complex AptThr-Thr [22]. One example of the 

obtained response after each biosensing step is shown in Figure 5. As can be seen, resistance Rct 

between the electrode surface and the solution is increased. This fact is due to the effect on the kinetics 

of the electron transfer redox marker [Fe(CN)6]
3−

/[Fe(CN)6]
4–

 which is delayed at the interface of the 

electrode, mainly caused by steric hindrance and electrostatic repulsion presented by the complex 

formed.  

Figure 5. Nyquist Diagram of: (a) Electrode-buffer ●, (b) Aptamer of thrombin (AptThr) ●, 

and (c) AptThr-Thr ○ 10 pM [Thr]. The arrow in each spectrum denotes the frequency 

(AC) of 10.9 Hz. 

 

 

Performing new experiments with solutions containing different amount of thrombin, the 

calibration curve was built. Figure 6 shows the evolution of the Nyquist diagrams for the calibration of 

the aptasensor. There is a correct recognition of the protein by the aptamer; as by increasing thrombin 

concentration, the interfacial electron transfer resistance between the electrode surface and solution 

also increases, until reaching saturation. To evaluate the linear range and detection limit of the  

AptThr-Thr system, the calibration curve was built, representing the analytical signal expressed as 

Δratio vs. the protein concentration (Figure 7). As can be seen, a sigmoidal trend is obtained, where the 

central area could be approximated to a straight line, with a linear range from 7.5 pM to 75 pM  
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for the protein. Moreover, a good linear relationship (r
2
 = 0.9981) between the analytical signal  

(Δratio) and the thrombin concentration in this range was obtained, according to the equation:  

Δratio = 1.013 + 1.106 × 10
10

 [Thr]. The EC50 was estimated as 44 pM and the detection limit, 

calculated as three times the standard deviation of the intercept obtained from the linear regression, 

was 4.5 pM. The reproducibility of the method showed a relative standard deviation (RSD) of 7.2%, 

obtained from a series of 5 experiments carried out in a concentration of 75 pM Thr. These are 

satisfactory results for the detection of thrombin in real samples, given this level is exactly the 

concentration threshold when forming thrombus [9].  

Figure 6. Nyquist diagrams for different concentrations of thrombin. ● Electrode-buffer,  

○ AptThr, ▼ 1 × 10
−12

 M [Thr], Δ 2.5 × 10
−12

 M [Thr], ■ 5.5 × 10
−12

 M [Thr],  

□ 7.5 × 10
−12

 M [Thr],  1 × 10
−11

 M [Thr], ◊ 5 × 10
−11

 M [Thr], ▲ 7.5 × 10
−11

 M [Thr],  

  1 × 10
−10

 M [Thr]. The arrow in each spectrum denotes the frequency (AC) of 10.9 Hz. 

 

Figure 7. Calibration curve vs. thrombin concentration. (Δratio = Δs /Δp; Δs = Rct( AptThr-Thr) − 

Rct (electrode-buffer); Δp = Rct (AptThr) − Rct(electrode-buffer)). 
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3.3. Selectivity of Aptasensor 

Thrombin is present in blood serum, a complex sample matrix, with hormones, lipids, blood cells 

and other proteins [23]. To study the selectivity of the system, we evaluated the response of proteins 

typically present in serum such as fibrinogen, immunoglobulin G and albumin. In the first case, we 

tested albumin protein, which is found in serum at a level from 3,500 to 5,000 mg/dL [24], 

representing more than 60% of the total protein present. To perform the test, the highest concentration 

in serum was used, that is 5,000 mg /dL. When the aptamer was incubated with this protein, electron 

interfacial resistance did not increase, in this case it was observed a slight decrease. Afterwards, when 

the aptamer was incubated with thrombin, an increase in the resistance, and of expected magnitude, 

was observed. Therefore, it was proved that albumin was not recognized by the AptThr, and it did not 

interfere with aptamer-thrombin system.  

In the second case, fibrinogen was evaluated as an interfering protein. Fibrinogen is a fibrillar 

protein involved in the blood clotting process. By the action of thrombin, fibrin is degraded and results 

in the formation of a clot [25]. This protein is present in human serum in a concentration range of 200 

to 400 mg/dL [26]. It was observed that the electron interfacial resistance increased as a result of some 

type of recognition by the AptThr. Therefore, this protein could act as an interference for the system.  

In the last case, generic immunoglobulin G (IgG) was used. IgG is a globular protein that is 

synthesized in response to the invasion of any bacteria, virus or fungi. It is present in human serum 

over a range of concentrations from 950 mg/dL to 1,550 mg/dL in serum, with a normal value of  

1,250 mg/dL. IgG also acted as interferent, which is proved from the increase of the resistance Rct. 

This increase, as it also happened in the case of fibrinogen, may be due to some biological interaction 

between the aptamer and these proteins, not yet described. In the last two cases, the addition of 

thrombin to the system increased the interfacial resistance between the electrode and the surface; this 

fact could be due to some phenomenon of partial displacement between thrombin and protein 

interferents that could take place. 

Table 1. Summary of calibration results for thrombin and other major proteins presents in serum. 

Protein Regression Line Sensitivity (M
−1

) Detection limit Typical conc. in serum 

Thr Δratio = 1.013 + 1.106 × 1010 [Thr] 1.106 × 1010 4.5 pM 0 

Fbr Δratio = 1.007 + 3.698 × 105 [Fbr] 3.698 × 105 2 µM 6–12 M 

IgG Δratio =1.424 + 2.385 × 104 [IgG] 2.385 × 104 10 µM 60–100 M 

Albumin No response − − 0.52–0.75 mM 

 

To evaluate the sensitivity of the aptasensor we compared the calibration plots for the different 

proteins. Table 1 summarizes the parameters of the calibration curve of each protein and thrombin, as 

well as their respectives slopes and detection limits. The aptasensor showed the highest sensitivity for 

its target molecule, thrombin, with its slope being 6 orders of magnitude greater than the slope for IgG 

and five orders of magnitude more than the one for fibrinogen, as shown in Figure 8. Therefore, it was 

demostrated that the aptasensor showed a much higher sensitivity to Thr, regarding potential interfering 

proteins, which displayed this effect due to the high level of concentration in which they are present. 
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Figure 8. Response to proteins evaluated: IgG (●), Fbr (○) and Thr (▼). 

 

3.4. Regeneration of Aptasensor 

Finally, it was possible to regenerate the aptasensor by dissociating the AptThr-Thr complex, 

formed by weak interactions. It was achieved by stirring the aptasensor in saline media and increasing 

the temperature (42 °C). In this way, to show regeneration, three sensing cycles were performed with a 

blank measure in between each. Thrombin was added to the media and an increase of Rct due to 

complex formation AptThr-Thr was recorded. Then, by adding a saline buffer, increasing the 

temperature and stirring, the complex dissociated and resistance decreased to the baseline value of the 

correspondent (AptThr), and so on. Values were calculated as Δratio on every step of the process and 

represented in the bar chart as shown in Figure 9. In the third incubation with Thr, Δratio was increased 

more than in the other incubations, this was because it was incubated with a higher concentration. This 

type of regeneration may be an alternative to the polishing surface renewal, a typical feature of 

graphite-epoxy composite electrodes; an important advantage is that it regenerates the electrode 

surface without removing the immobilized aptamer on the electrode surface, which means that their 

use is largely facilitated and that cost of each analysis is reduced drastically. 

Figure 9. Signals obtained for three consecutive processes of regeneration. [Thr] used:  

7.5 pM (1 and 2), and 75 pM (3). Uncertainty values corresponding to replicated 

experiments (n = 3). 
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4. Conclusions 

In conclusion, this work reports a simple, label-free and reusable aptasensor for detection of 

thrombin. The immobilized aptamer retained its bioactivity and could be used for recognition of the 

target substrate. The aptamer immobilization step or the recognition event modified the electron 

transfer kinetics of the redox probe at the electrode interface, which was examined by EIS. 

The described aptasensor, based on physical adsorption of the aptamer, showed a low detection 

limit, good range of concentration for thrombin detection and high sensitivity. The interference 

produced by serum proteins, fibrinogen and immunoglobulin G, not described before, showed some 

limitations in the operation of the aptasensor, although usable given the concentration excess at which 

they manifest. In addition, the aptasensor can be regenerated by dissociating the complex formed 

between the aptamer and thrombin protein .This fact presents an alternative to polishing regeneration 

and reduces the cost of analysis. 
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