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Abstract: Multi-channel systems appear in several fields of application in science. In
the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different
domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a
combination of them. Due to the inherent speckle phenomenon present in SAR images, the
statistical description of the data is almost mandatory for its utilization. The complex images
acquired over natural media present in general zero-mean circular Gaussian characteristics.
In this case, second order statistics as the multi-channel covariance matrix fully describe the
data. For practical situations however, the covariance matrix has to be estimated using a
limited number of samples, and this sample covariance matrix follow the complex Wishart
distribution. In this context, the eigendecomposition of the multi-channel covariance matrix
has been shown in different areas of high relevance regarding the physical properties of
the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has
been frequently used in different applications as target or change detection, estimation
of the dominant scattering mechanism in polarimetric data, moving target indication,
etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the
eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel
SAR images is simplified for SAR community. Validation is performed against simulated
data and examples of estimation and detection problems using the analytical expressions are
as well given.

Keywords: multi-channel systems; sample eigenvalues; Wishart distribution; MIMO;
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1. Introduction

Multi-channel systems with random nature appear in a wide range of fields in the literature. For
several of them, the central limit theorem applies and their random behavior can be modeled by Gaussian
statistics, being thus statistically fully described by the first and second order moments. In the case of
multi-channel SAR systems, the assumption of zero-mean multivariate complex Gaussian distribution is
frequently valid for geophysical media, being thus fully described by the complex Hermitian covariance
matrix. This is the statistical case treated in this work.

Since a SAR signal corresponds to the superposition of the scattered fields from all scatters inside
a resolution cell, physical parameter estimation may be performed by exploiting the multi-channel
covariance matrix. For that, eigendecomposition theorems have been widely used in the literature,
decomposing the whole covariance matrix into elementary quantities, in order to provide a better physical
interpretation of the data.

The eigendecomposition of the multi-channel SAR covariance matrix leads to useful information
in a large range of SAR applications, including Ground Moving Target Indication (GMTI) [1],
polarimetric SAR (PolSAR) [2], interferometric SAR (InSAR) [3], polarimetric interferometric SAR
(PolInSAR) [4], change detection [5], target detection [6] and filtering [7,8]. Particularly, the covariance
matrix maximum eigenvalue has been proved to be a key parameter in various areas. In [5] and [9],
the change detection problem was elaborated using the maximum eigenvalue of the interferometric
covariance matrix. The eigendecomposition of the SAR covariance matrix with application to SAR
GMTI is used in and to calculate the probability of moving target detection in homogeneous and
heterogeneous terrain. Regarding polarimetry, the eigendecomposition of the coherency (which is also
a covariance) matrix is the most common tool among incoherent target decomposition theorems for the
interpretation of the earth’s surface. The maximum eigenvalue of the coherency matrix is also often
used in polarimetry, due to the close relationship to the dominant scattering mechanism of the scattering
process [2,10,11].

Although there is a wide area of applications regarding the maximum eigenvalue of the multi-channel
covariance matrix, a certain lack of information in the literature concerning its statistical characterization
in terms of multi-channel SAR may be verified. The statistical description can be useful to understand
bias effects and to analyze estimation as well as detection problems. The estimated (sample) covariance
matrix follows a Wishart distribution, which has been of interest along the years since its first derivation.
In areas as communication systems, several works using such results have been published [12–16]. The
application of the Wishart distribution in remote sensing was however considerably late introduced [17].

The cornerstone study considering the statistical description of the covariance matrix
eigendecomposition in polarimetry has been carried out in [18]. The majority of the analysis in [18]
was performed on the basis of numerical methods. In this paper the results of [18] is supported by
addressing analytical solutions. Additionally, it is derived an exact closed form expressions for the
Moment Generating Function (MGF) of the sample covariance matrix maximum eigenvalue.

The validation of the derived expressions is performed using simulated data, demonstrating its
agreement with the theory. The effect of the number of samples and underlying correlation scenario
of the sample covariance matrix on the bias in the estimation of the maximum eigenvalue is also
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investigated. Finally, examples of applications are as well given, in the fields of estimation and detection
theory.

The next section reminds the basics of the statistical description of multi-channel SAR systems and of
the covariance matrix eigendecomposition. It also includes the derived theorems presenting the statistical
founds. Section 3 includes numerical examples validating the theorems as well as an analysis of their
behavior. Sections 4 and 5 show their usage for the analysis of the estimation bias and for the elaboration
of detection problems, respectively. Section 6 concludes the paper with discussions and directions for
future work. The detailed statistical derivations can be found in the Appendix.

2. Statistical Characteristics of the Maximum Eigenvalue of the Multi-Channel Sample
Covariance Matrix

2.1. Preliminaries

The individual elements of a m-dimensional multi-channel system may be organized in a
m-dimensional vector k. As the elements are assumed to follow zero mean complex Gaussian
distributions, the vector k is said to follow a m-dimensional multivariate normal distribution,
with zero mean and true covariance matrix Σ among the vector elements, and is represented by
k ∼ NC

m (0,Σ) [19,20]. For zero mean Gaussian statistics the covariance matrix fully describes the
data, playing a key role in several application fields. In practical situations however, the true covariance
matrix Σ is unknown and has to be estimated by its maximum likelihood estimator (MLE), the sample
covariance matrix Z = (1/n)

∑n
j=1 kjkj

†, where n is the number of estimation samples and † is the
transpose conjugate operator. In the SAR context, the number of independent samples is also called
looks. The elements of Z follow a m dimensional complex Wishart distribution with n degrees of
freedom and true covariance matrix Σ, represented by Z ∼ WC

m(n,Σ) and defined as [20]:

pZ(Z) =
nmn|Z|n−m etr (−nΣ−1Z)

|Σ|nΓ̃m(n)
with Γ̃m(n) = πm(m−1)/2

m∏
i=1

Γ(n− i+ 1) (1)

where Γ(·) is the gamma function and etr(·) is the exponential trace of a matrix.
The spectral theorem from linear algebra allows the decomposition of the full rank m-dimensional

covariance matrix in a set of m one-rank covariance matrices using its eigenvalues and eigenvectors.
Accordingly, the decompositions of the true covariance matrix Σ =

∑m
i=1 li(eie

†
i ) and its estimator

Z =
∑m

i=1 λi(e
′
ie

′
i
†) are given by

Σ = Q

l1 · · · 0
... . . . ...
0 · · · lm

Q† and Z = Q′

λ1 · · · 0
... . . . ...
0 · · · λm

Q′†,
Q = [e1, e2, · · · , em]
Q′ = [e′1, e

′
2, · · · , e′m]

(2)

with their real non-negative eigenvalues li and λi, and respective complex eigenvectors ei, e′i, for
i = {1, ...m}.
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2.2. Sample Maximum Eigenvalue Statistical Description

The following Theorem III concerns the derived Moment Generating Function (MGF) of the
maximum eigenvalue of the sample covariance matrix Z of a multi-channel statistical system, which
is a critical step in removing the bias of the largest eigenvalue. The Theorem III, which is derived due to
the previous works (Theorems I and II), is the main result of the paper. It is detailed in the appendix and
will be used for the elaboration of illustrative estimation and detection problems in Sections 4 and 5.

Throughout the paper, | · | is the matrix determinant, ⟨X⟩n = (1/n)
∑n

i=1 Xi denotes the estimator of
the random matrix X formed from a sample of size n.

Theorem I: Let k ∼ NC
m(0,Σ) be a m-dimensional complex vector whose elements follow zero

mean Gaussian distributions with associated m × m covariance matrix Σ. Let Σ have lm ≤ .... ≤ l1

eigenvalues. Then the Cumulative Density Function (CDF) of the maximum eigenvalue λmax of the
sample covariance matrix ⟨kk†⟩n, with the assumption m ≤ n, is given by

Fλmax(x) = S |Ψ(x)|, with constant term S =
πm(m−1)nm(2n−m+1)/2

Γ̃m(m)Γ̃m(n)

∏m−1
k=1 km−k∏m

i=1 l
n
i

∏m
i<j

(
1
lj
− 1

li

) (3)

where Ψ(x) is a m ×m matrix with its (i, j)th element Ψ(x)i,j =
γ(n+1−j,x n

li
)

( n
li
)(n+1−j) , and γ is the incomplete

Gamma function (Equation (2.42) in [21]).
Proof: [14] gave the closed expression of CDF of the largest eigenvalue of the complex Wishart

matrices. Here, it is written in the form of SAR covariance matrix after small continuation, see also
Appendix A.

Theorem II: Let k ∼ NC
m (0,Σ) be a m-dimensional complex vector whose elements follow zero

mean Gaussian distributions with associated m × m covariance matrix Σ. Let Σ have lm ≤ .... ≤ l1

eigenvalues. Then the Probability Density Function (PDF) of the maximum eigenvalue λmax of the
sample covariance matrix ⟨kk†⟩n, with the assumption of m ≤ n, is given by

pλmax(x) = S |Ψ(x)| tr
[
Ψ(x)−1Ω(x)

]
(4)

where Ω(x) is an m×m matrix with its i, jth elements Ω(x)i,j = exp
(
−n

li
x
)
xn−j , and Ψ(x) and S are

defined in Equation (3).
Proof: Equation (4) is obtained by differentiating Equation (3) with respect to x using (Equation (9)

in [22])
d

dt
|X(t)| = |X(t)| tr

(
X(t)−1 d

dt
X(t)

)
. (5)

Here it can be noted that when the true covariance matrix Σ is diagonal, the PDF of the largest eigenvalue
reduces to Ermolaev and Rodyushkin result [23].

Theorem III: Let k ∼ NC
m (0,Σ) be a m-dimensional complex vector whose elements follow zero

mean Gaussian distributions with associated m × m covariance matrix Σ. Let Σ have lm ≤ .... ≤ l1
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eigenvalues. Then for any positive integers s, the sth moment of the maximum eigenvalue λmax of the
sample covariance matrix ⟨kk†⟩n, with the assumption of m ≤ n, is given by

E(λs
max) = S

m∑
i,j=1

(−1)i+j
∑

πs∈πsub∈Sm

sgn(πs)
m−1∏
k=1

1

n+ 1− πs(k)
(
n

lk
)
n−πs(k)

2 auk
k (b+ A)−v−MΓ(v +M)×

FA

(
v +M ;u1 − λ1, . . . , um−1 − λm−1; 2u1, . . . , 2um−1;

a1
b1 + A

, . . . ,
am−1

bm−1 + A

)
if k = j ∧ πs(j) = i, πs ∈ πsub

(6)

where S indicates the constant term as in Theorem I and FA(· · · ) is the hypergeometric function of
several variables with ak = n

lk
, uk = (2 + n − πsub(k))/2, v = 1 + s + n − i +

∑m−1
k=1

n−πsub(k)
2

,

b = n
lj
+
∑m−1

k=1
n
2lk

, λk = n−πsub(k)
2

, M =
∑m−1

k=1 uk, A = 1
2

∑m−1
k=1 ak. Here, the sum is computed over

(m− 1)! permutations of πs. Sm denotes the set of all m! permutations of the set S = {1, 2, ...,m}, and
sgn(πs) denotes the sign of the permutation πs : +1 if πs is an even permutation and −1 if it is odd.

Proof: See Appendix section B. In the appendix the moment of sample maximum eigenvalue is also
given in more friendlier form for programming obtained by splitting the hypergeometric function of
several variables into a sum of its variables.

2.3. Dependence of the Covariance Matrix Eigenvalues

Before starting the following analysis, it would be nice to illustrate the dependencies of the
eigenvalues on the covariance matrix parameters, which is necessary for the further understanding of the
addressed topics. For that, a two-dimensional covariance matrix is used, originated from the expected
values of the outer product of the vector k = [k1 k2]

T , i.e.,

Σ = E(kk†) =

[
σ2
1 σ1σ2ρe

jϕ

σ1σ2ρe
−jϕ σ2

2

]
(7)

where σ2
1 , σ2

2 are the variance or power of k1 and k2, respectively, ρ is the absolute and ϕ the phase of
their complex correlation coefficient, and T means transpose.

The eigenvalues of the true covariance matrix can be shown to be given by [5]:

l1,2 =
1

2

[
b+ 1√

b
±
√

b2 + 1

b
− 2 + 4ρ2

]
, σ2

1 = bσ2
2 . (8)

The behavior of l1 and l2 is presented in Figure 1, as a function of a normalized power ratio b and a
correlation ρ. Note their mutual dependence, making clear that b and ρ directly determine the behavior
of both eigenvalues.
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Figure 1. Two-dimensional system configuration. (a) True eigenvalue l1 and (b) true
eigenvalue l2 as a function of correlation and normalized power ratio b. (c) Counter plots
of l1.
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3. Validation and Analysis of the Theoretical Expressions

This section aims to validate the theorems mentioned in the previous section using simulated
data. The simulated data have been generated using different multi-dimensional configurations,
where the correlation between channels have been generated using the well known Mahalanobis
transformation [24].

Figure 2. (a) Comparison between the theoretical distributions and the histograms obtained
from simulated data of the maximum sample eigenvalue. (b) The distribution of the
maximum sample eigenvalue as a function of the number of samples, for a three-dimensional
system. In both case, the powers are given by σk1 = σk2 = σk3 = 1 and correlations by
ρk1k2 = 0, ρk1k3 = 0.8 and ρk2k3 = 0. When n → ∞, λmax = l1 = 1.8.
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Figure 2(a) shows the comparison of the Equation (4) with simulations. The theoretical PDF curves
clearly agree with the histograms obtained from simulated data. As expected, the PDFs become narrower
with increasing n, indicating less variance around the true value of the maximum eigenvalue l1 = 1.8.
This behavior can be better seen in Figure 2(b) where the distribution of λmax as a function of the
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number of estimation samples n is presented. Note also that the expected value of the distributions
seems to change for different n.

Figure 3(a) shows the variation of the histogram mean as a function of n for a two-dimensional
case with fix correlation ρ = 0.2. In Figure 3(a), the theoretical expected value of λmax has been also
over plotted for comparison. The curves match well, which validates Theorem III. The same has been
carried out for the second order moment, i.e., the variance of λmax, and is presented in Figure 3(b). The
agreement between the theoretical variance of λmax and the variance of the simulated data can again be
confirmed. Also, as already observed in Figure 2(a), the lower the number of samples n, the higher the
variance of λmax.

Figure 3. Theoretical versus simulation results (a) for the first order statistics (mean),
and (b) for the second order statistics (variance), of the sample maximum eigenvalue of a
two-dimensional system with powers σk1 = σk2 = 1 and correlation ρk1k2 = 0.2.
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The impact of the correlation and the number of samples on the behavior of the third (skewness)
and fourth (kurtosis) order moment of the maximum sample eigenvalue λmax is presented in Figure 4.
Skewness is a measure of how symmetrical the distribution is with respect to its mean. Figure 4(a,b)
indicates that the skewness of λmax converges to zero for increasing n and increasing ρ, expressing the
tendency to a symmetrical distribution in that cases.

Kurtosis is a measure of the peakedness of the distribution. Figure 4(c,d) shows that for increasing
n and ρ, the kurtosis of the λmax distribution tends to three, which corresponds to the kurtosis of the
normal Gaussian distribution.

4. Estimation Bias

Figure 5 shows the expected value (first order moment) of the maximum sample eigenvalue λmax as
a function of the true eigenvalues lmax for a fixed number of samples n = 3 and k = 1. The variation of
the underlying correlation of the true covariance matrix ρ, which changes the values of lmax, has been as
well indicated in a color code. Observe that the higher the correlation is, the higher lmax becomes.



Sensors 2012, 12 2773

Figure 4. Theoretical results for the third (skewness) and the fourth (kurtosis) order statistics
of the sample maximum eigenvalue of a 2D system having powers σk1 = σk2 = 1 and
correlations ρ = {0.2, 0.3, . . . , 0.9} versus the number of samples n = {2, 3, . . . , 62}.
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Figure 5. Effects of the correlation between channels on the expected value of the maximum
sample eigenvalue keeping n = 3 and k = 1.
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The bias of the estimator of a certain parameter is defined as the difference between the expected
value of the estimator and the true value of the parameter. In the present case, the bias is hence given by
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E[λmax]− lmax. Notice thus from Figure 5 that the bias of λmax becomes very strong for low values of
the correlation lmax (or equivalently, low values of ρ).

The effect is emphasized in Figure 6(a,b), where the bias of λmax is presented as a function of lmax

and l2, for n = 3 and n = 16, respectively. The values of the underlying correlation ρ have been also
indicated. The bias is small either when the correlation is high or the number of samples is sufficiently
large. When the correlation between channels is low, the bias becomes very significant and a large
number of samples is necessary to decrease the estimation bias.

Figure 6. The bias, E[λmax] − lmax, of the sample maximum eigenvalue with the
number of samples 3 and 16 in various correlated channels having a standard deviation of
σk1 = σk2 = 1.
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5. Analysis of Detection Problems

Detection theory is a means to quantify the ability of a procedure to detect a parameter (or signal)
immersed in a noise environment. A decision has to be taken, in order to say yes, there is a signal, or no,
there is no signal. Such decision is usually taken under the application of a decision threshold. Noise
contributes off course negatively inducing wrong decisions. For the quantification of detection accuracy,
some quantities are usually defined as the probability of detection (PD) and probability of false alarm
(PFA), allowing a detection problem analysis.

The maximum eigenvalue of covariance matrices has been frequently used in the literature for the
elaboration of certain detection problems. In the Ground Moving Target Indication (GMTI) area, for
instance, the signal to clutter plus noise ratio has been studied under the distribution of the sample
eigenvalues, which allowed the implementation of a constant false alarm rate detector [9]. The
eigenvalues of the covariance matrix of a SAR image pair have been also used in order to formulate
a problem in the change detection area [5]. Another example is the determination of the existence
of just a single dominant scattering mechanism in a SAR polarimetric acquisition, which also has
been evaluated using a threshold in the maximum sample eigenvalue of the polarimetric covariance
matrix [11]. Target detection and polarimetric filtering represent other fields of application in which the
maximum eigenvalue can be used.



Sensors 2012, 12 2775

Having the closed form expressions of the PDF (Equation (4)) and/or CDF (Equation (3)) of the
maximum sample eigenvalue of the covariance matrix, the PD and PFA when applying a threshold in
λmax can be analytically computed, allowing a complete detection problem analysis.

5.1. Detection of a Dominant Maximum Eigenvalue

Since several detection problems rely in fact on the choice of a dominant or non-dominant lmax by
applying a threshold in λmax, the following problem with two hypotheses is elaborated

H0 (lmax is dominant) : lmax = l1 and li = 0

H1 (lmax is not dominant) : lmax = l1 = li

for i = {2, 3, . . . ,m}.
In one application area H0 may mean that just a single scattering mechanism is present inside a

resolution cell of polarimetric SAR data, in other application H0 can mean that a change happened or a
moving target is present in the scene.

Since lmax is not achievable, a threshold T has to be used in λmax, originating the following PD and
PFA

PD = p[accepting H0 | H0 is true]

= p[λmax > T | H0 is true] =

∫ ∞

T
pλmax (x;H0) dx

PFA = p[accepting H0 | H1 is true]

= p[λmax > T | H1 is true] =

∫ ∞

T
pλmax (x,H1) dx

as a function of the decision threshold T .
Hence, for a two-dimensional system configuration, the distribution pλmax (x;H0) is the distribution

of λmax when l1 = 2 and l2 = 0. For a three-dimensional system, pλmax (x;H0) is determined evaluating
the distribution of λmax when l1 = 3 and l2 = l3 = 0. Higher dimensional system configurations follow
the same rule.

On the other hand, the distribution pλmax (x;H1) is given by l1 = l2 = 1 and l1 = l2 = l3 = 1 for a
two- and three-dimensional system, respectively.

For each value of T , there exists a pair (PFA, PD). The curves of PD versus PFA are called
Receiver Operating Characteristic (ROC) curves and express the detection performance. The more a
ROC curve bends toward the upper left, the better is the detection performance since a higher PD and
lower PFA is achieved.

Figure 7(a) shows the detection performance as a function of the dimension of the multichannel
system, i.e., m = 2, e.g., interferometric, m = 3, e.g., polarimetric and m = 6, e.g.,
polarimetric-interferometric system. For all cases, with fixed number of samples n = 6, one can realize
that the performance of detection is significantly improved as the number of SAR images increases.
Figure 7(b) shows the ROC curves for m = {2, 3} and for different number of samples n. It can be
seen that for both multidimensional system configurations the number of samples increases the detection
performance.
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Figure 7. Maximum sample eigenvalue detection performance as a function of the number
or channels m, samples n and correlation ρ. (a) ROC curves for different multidimensional
systems, m = {2, 3, 6} and n = 6. (b) ROC curves for the two- and three-dimensional cases,
and for different number of samples n. (c) ROC curves for the two-dimensional case, n = 3,
and for different correlation.
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In order to state how correlation effects the detection performance, the detection problem is
reformulated as follows

H0 (lmax is dominant) : lmax = l1 > l2 ≥ l3, . . . ,≥ lm ≥ 0

H1 (lmax is not dominant) : lmax = l1 = li i = {2, 3, . . . ,m}.

In this way, every time that correlation is greater than zero the eigenvalues have different values, and
one is larger than the others. For the two-dimensional case, for instance, pλmax(x;H0) is the distribution
of λmax when l1 > l2, which changes for different values of the correlation ρ. Figure 7(c) presents the
ROC curves for this case. For small correlation between channels, the detector suffers from a significant
false-alarm rate. As expected, when correlation increases the ROC curve bends toward the upper left,
indicating better detection performance. The limit is reached when ρ = 1, meaning that l1 = 2 and
l2 = 0, which corresponds to the cases of the previous detection problem.

5.2. Target Detection Using Polarimetric Matched Filter

In this section the application of the expressions for the detection of specific targets using the
Polarimetric Matched Filter (PMF) concept is illustrated. For that, a short review on PMF is
required [6,7].

In a polarimetric acquisition, the dimension of the system corresponds to the number of channels,
which are in general four, but three for the backscattering reciprocal case. The measured vector k is
hence three- or four-dimensional. The elements of the vector k may be weighted in a given way, in order
to satisfy a certain condition. The weighting can be accounted for by making y = h†k, where h is a
complex vector with same dimension as k. A condition usually aimed to be satisfied in the literature is
the maximization of the quadratic detector |y|2 (Equation (59) in [6]). The optimal weighting vector h
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in order to detect a distributed target with the target vector k is dependent on the target characteristics.
Accordingly, the expected value of |y|2 is given by

E{|y|2} = E{h†k(h†k)†} = h†Σth (9)

where Σt = E{kk†} is the target covariance matrix. Regarding Rayleigh quotient (Theorem 15.91
in [25]), for any m-dimensional complex vector x and a given m × m Hermitian matrix A, x†Ax ≤
∥x∥2amax, where amax is the maximum eigenvalue of A. The equality is valid if x is along the direction
of the amax eigenvector Umax (∥Umax∥ = 1). Hence, for a given distributed target with covariance matrix
Σt, the optimum weighting vector h is given by the eigenvector of the maximum eigenvalue of Σt.

The target vector k is a random sample and has alone no physical meaning. Therefore, usually
multi-look processing is performed making, for n samples (or looks)

y2 =
n∑

i=1

|h†ki|2. (10)

The target is assumed to be immersed in polarization independent clutter. In this way, the detection
procedure is thus evaluated by choosing h as the eigenvector corresponding to the maximum eigenvalue
of the covariance matrix Σt of the target to be detected, and applying a detection threshold y2 > T .

In the presence of target y2 is maximum, given by y2 = ∥h∥2λmax, where h is the eigenvector of λmax.
Hence, assuming without loss of generality that h has unitary length (∥h∥2 = 1), detection performances
can be made using the derivations given in this work, as done in the previous section, where a threshold
has been used in order to detect a dominant maximum sample eigenvalue (λmax = y2 > T ).

Note that the probabilities of detection and false alarm defined in last section can be more simply
evaluated by

PD =

∫ ∞

T
pλmax (x;H0) dx = 1−

∫ T

−∞
pλmax (x;H0) dx = 1− Fλmax (T ;H0)

PFA = 1− Fλmax (T ;H1) .

(11)

A three-dimensional polarimetric target detection problem was formulated making k = [SHHSHV

SV V ]
T , where Si is the polarimetric scattering matrix element in channel i, and using the target

covariance matrix structure

Σt = SHH

 1 0 ρ
√
γ

0 2ϵ 0

ρ∗
√
γ 0 γ

 . (12)

where ϵ = E{|SHV |2}
E{|SHH |2} , γ = E{|SV V |2}

E{|SHH |2} and ρ is the complex correlation coefficient between SHH and
SV V [6,26]. Figure 8 shows the ROC curves for different number of samples for three different kinds
of targets. Figure 8(a) corresponds to an azimuthal symmetric target having covariance matrix with
parameters ϵ = 1, γ = 0.5 and ρ = 0. Figure 8(c) corresponds to a reflection symmetric target having
covariance matrix with parameters ϵ = 1, γ = 0.8 and ρ = 0.8, while Figure 8(b) to a reflection
symmetric target with parameters ϵ = 0, γ = 0.8 and ρ = 0.8 in its covariance matrix. For all three cases,
SHH = 1 and the PFA was evaluated using the polarization independent clutter having ϵ = 1, γ = 1

and ρ = 0. Note that the curves vary not just with the number of used samples n but are also different
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for different targets having different Σt. This means that some types of targets are easier to detect than
others, when using the quadratic detector described here and when the clutter is polarization independent.
When the target covariance matrix is similar to the one of the clutter, the detection performance weakens
(Figure 8(a)). On the other hand, when the covariance matrix of the target is significantly different from
the clutter one, the detection performance improves (Figure 8(c)).

Figure 8. Detection performance of three different distributed scatterers using the PMF
concept for different number of samples. (a) Azimuthal symmetric scatterer with ϵ = 1,
γ = 0.5 and ρ = 0. (b) Reflection symmetric scatterer with ϵ = 1, γ = 0.8 and ρ = 0.8.
(c) Reflection symmetric scatterer with ϵ = 0, γ = 0.8 and ρ = 0.8. The PFA is evaluated
using the polarization independent clutter with ϵ = 1, γ = 1 and ρ = 0.
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6. Conclusions and Discussion

In this paper a depth statistical analysis of the maximum eigenvalue of the eigendecomposition of the
sample covariance matrix in terms of SAR applications is presented. The proposed analysis are supported
by simulation results via several examples. The results are based on a exact closed-form expressions of
PDF, CDF and MGF. In this study, existing density functions of the sample maximum eigenvalue were
extended and/or implemented into multi-channel SAR system in order to obtain a simple expression
of the sample eigenvalues giving a way to fruitful applications. From these closed-form expressions,
it has been possible to develop new algorithms for unbiased calculations of parameters extracted from
multi-channel SAR covariance matrix. In addition to these implementations, closed-form expressions
were developed for the MGF of the sample maximum eigenvalue, which can be critical in the area of
bias removal and detection performance analysis. This new closed-form expressions of the MGF can be
also interesting for other application areas like MIMO systems (Multiple-Input Multiple-Output). Apart
from estimation theory analysis including the MGF, the detection problem of the sample maximum
eigenvalue has been also discussed.
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Appendix

This Appendix starts with the reminder of some basic results from linear algebra and statistical theory
to prove the Theorem III proposed in this manuscript.

Definition 1 (Theorem A3 in [19]): The determinant of a square m×m matrix A is

|A| =
∑
π

sgn(π)a1k1a2k2 ...amkm =
∑
π

sgn(π)
m∏
i=1

aiki (A1)

where
∑

π denotes the summation over all m! permutations, and sgn(π) denotes the sign of the
permutations determined by (−1)π, where π is the permutation symbol. Notice that the determinant
is a combination of the determinants of its sub-matrices, and permuting the columns or rows of a matrix
changes the sign of the determinant related to the permutation.

Definition 2 (Corollary 2 in [27]): Given two arbitrary m × m matrices Φ(x) and Ψ(x) with ijth
elements Φi(xj) and Ψi(xj), and an arbitrary function ξ(·), the following identity holds:∫

. . .

∫
D
|Φ(x)| |Ψ(x)|

m∏
k=1

ξ(xk)dx1dx2 . . . dxm =

∣∣∣∣{∫ b

a

Φi(x)Ψj(x)ξ(x)dx

}∥∥∥∥m
i,j=1

(A2)

where the multiple integral is over the domain D = {a ≤ xm ≤ · · · ≤ x2 ≤ x1 ≤ b}.

Proof of Theorem I

In the case m ≤ n, the sample covariance matrix has full rank and follows a central Wishart
distribution. It can be noted that [28] is an interesting work concerning the case n ≤ m. In Wishart
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history, the joint PDF of the real ordered sample eigenvalues ∞ ≥ λ1 ≥ . . . ≥ λm ≥ 0 of Z is given by
Equation (36) in [18]

pΞ(Ξ) =
πm(m−1)nm(2n−m+1)/2

Γ̃m(m)Γ̃m(n)

∣∣∣∣exp(−n
λj

li

)∥∥∥∥m
i,j=1

m−1∏
k=1

km−k

∏m
i=1 λ

n−m
i

∏m
i<j (λi − λj)∏m

i=1 l
n
i

∏m
i<j

(
1
lj
− 1

li

) ,

with Ξ = QH⟨Z⟩nQ

(A3)

where Ξ = diag{λ1, . . . , λm}, pΞ(Ξ) is the joint PDF of the eigenvalues of the sample covariance matrix
∞ ≥ λ1 ≥ . . . ≥ λm−1 ≥ λm ≥ 0 and ∞ ≥ l1 ≥ ... ≥ lm−1 ≥ lm ≥ 0 are the eigenvalues of the true
covariance matrix.

The CDF of the maximum eigenvalue λmax = λ1 is obtained using

Fλmax(x) = p(λmax ≤ x)

= p(λm ≤ x, . . . , λ1 ≤ x)

=

∫
D
p(λ1, λ2, ..., λm)dλ1...dλm (A4)

where p(λ1, λ2, ..., λm) is the joint PDF of the eigenvalues as defined in Equation (A3), and
D = {0 ≤ λm ≤ ... ≤ λ1 ≤ x}. Before substituting Equation (A3) in Equation (A4) it is desirable
to write a friendlier expression for the joint PDF Equation (A3). If the constant is denoted by S as in
Equation (3), then Equation (A3) can be written as

pΞ(Ξ) = S
m∏
i=1

λn−m
i

m∏
i<j

(λi − λj)

∣∣∣∣exp(−n
λj

li

)∥∥∥∥m
i,j=1

. (A5)

Due to the definition of the Vandermonde determinant [25] the multiplication of
∏m

i=1 λ
n−m
i and∏m

i<j (λi − λj) is:λ
n−m
1 0 0

0
. . . 0

0 0 λn−m
m

 .

λ
m−1
1 · · · λm−m

1
... . . . · · ·

λm−1
m · · · λm−m

m

 =

λ
n−1
1 · · · λn−m

1
... . . . · · ·

λn−1
m · · · λn−m

m

→
∣∣λn−j

i

∥∥m
i,j=1

(A6)

Then the joint PDF of the sample eigenvalues can be written in the form of

pΞ(Ξ) = S
∣∣λn−j

i

∥∥m
i,j=1

.

∣∣∣∣exp(−n
λj

li

)∥∥∥∥m
i,j=1

(A7)

By applying the result of Definition 2 and Definition 1 into (A4) with Ψi(λj) = λn−j
i and Φi(λj) =

exp
(
−n

λj

li

)
, it yields

Fλmax(x) = S
∣∣∣∣∫ x

0

λn−j exp(−n
λ

li
)dλ

∣∣∣∣ . (A8)

Finally, solving the remaining integral using Equation (351) in [25] yields the desired closed-form
expression of the sample maximum eigenvalue CDF of multi-channel covariance matrix

Fλmax(x) = S |Ψ(x)i,j| with Ψ(x)i,j =

(
n

li

)(j−n−1)

γ(n+ 1− j, x
n

li
) (A9)

where γ(a, x) =
∫ x

0
xa−1e−xdx denotes the lower incomplete gamma function.
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Proof of Moments of the Sample Maximum Eigenvalue

For any positive integer s, the sth moment of the maximum eigenvalue is obtained using

E(λs
max) =

∫ ∞

0

xspλmax(x)dx (A10)

where pλmax(x) is the PDF of λmax. It has been shown in Equation (4) that

pλmax(x) = S|Ψ(x)|tr
[
Ψ(x)−1Ω(x)

]
(A11)

where Ω(x) and Ψ(x) are m × m matrices with ijth element Ω(x)i,j = exp
(
−n

li
x
)
xn−j and

Ψ(x)i,j =
(

n
li

)−(n+1−j)

γ(n+ 1− j, xn
li
), and S denotes the constant terms given in Equation (3).

It is desirable to write a friendlier expression for Equation (A11) to be useful for deriving the moments
of the sample maximum eigenvalue. Due to the definition of the inverse of the m × m matrix A−1 =

CT
ij/|A|, Equation (A11) can be written in the following form

pλmax(x) = S tr
[
CT (x)Ω(x)

]
(A12)

where CT (x) is the transpose of the cofactor matrix Ψ(x). Since the trace of a square matrix is the
sum of the diagonal elements of the matrix, Equation (A11) can be written as the sum of the diagonal
elements of D(x) = (CT (x)Ω(x)).

E(λs
max) = S

∫ ∞

0

xstr
[
CT (x)Ω(x)

]
dx (A13)

= S
∫ ∞

0

xstr [D] dx (A14)

Now the problem in Equation (A11) is the evaluation of the diagonal elements of the D(x). The
matrix D(x) is the product of the two square matrices and the trace of the product of two matrices is

tr(CTΩ) =
m∑

i,j=1

CjiΩji = C11Ω11 + · · ·+ Cm1Ωm1 + · · ·+ C1mΩ1m + · · ·+ CmmΩmm shown as

tr



C11 C21 · · · Cm1

C12 C22 · · · Cm2

...
... . . . ...

C1m C2m · · · Cmm

.

e
−x n

l1 xn−1 e
−x n

l1 xn−2 · · · e
−x n

l1 xn−1

e
−x n

l2 xn−1 e
−x n

l2 xn−2 · · · e
−x n

l2 xn−2

...
... . . . ...

e−x n
lm xn−1 e−x n

lm xn−2 · · · e−x n
lm xn−m


 (A15)

where Cji is the determinant of the sub-matrix Mji obtained from Ψ(x) by removing its jth row and ith
column. Then, the j, i th cofactor of Ψji, denoted by Cji, is Cji = (−1)i+j |Mji|. Now, Equation (A14)
is:

E(λs
max) = S

m∑
j,i=1

∫ ∞

0

xsCjiΩjidx (A16)

where Cji can be extracted from Ψ(x) by Definition I as follows,

Cji =

(−1)i+j
∑

πsub∈Sm

sgn(πsub)
m∏
k=1

Ψk,πsub(k)

Ψj,i

, if k = j ∧ πs(j) = i, πs ∈ πsub . (A17)
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Here, the sum is computed over (m− 1)! permutations of πs. Sm denotes the set of all m! permutations
of the set S = {1, 2, ...,m}, and sgn(πsub) denotes the sign of the permutation πs : +1 if πs is an
even permutation and −1 if it is odd. After interchanging the order of the summations and integral in
Equation (A16), the integration reduces to the following form

E(λs
max) = S

m∑
i,j=1

(−1)i+j

∫ ∞

0

xs exp

(
−n

lj
x

)
xn−i

×


∑

πsub∈Sm

sgn(πsub)
m∏
k=1

γ(n+ 1− πsub(k), x
n

lk
)(
n

lk
)πsub(k)−n−1

γ(n+ 1− i, x n
lj
)( n

lj
)i−1−n

 dx

⇒ S
m∑

i,j=1

(−1)i+j
∑

πsub∈Sm

sgn(πsub)

∫ ∞

0

xs exp

(
−n

lj
x

)
xn−i

×

(∏m
k=1 γ(n+ 1− πsub(k), x

n
lk
)( n

lk
)πsub(k)−n−1

γ(n+ 1− i, x n
lj
)( n

lj
)i−1−n

)
dx.

(A18)

It can be seen from Equation (A18) that the integration includes the multiplication of (m − 1) times
incomplete gamma functions with exponential and powers. After applying identities (ex. 10.3,
Equations 10.15 and 10.65 in [21]),

γ (n, ax) = 1
n
(ax)

n−1
2 e

−ax
2 Mn−1

2
,n
2
(ax), n

2
̸= −1,−2,−3, ..., (A19)

γ
(
n+ 1− πsub(k),

n
lk
x
)
= 1

n+1−πsub(k)
( n
lk
x)

n−πsub(k)

2 e
−nx
2lk Mn−πsub(k)

2
,
n+1−πsub(k)

2

( n
lk
x), (A20)

a solution of integration in Equation (A18) may be obtained by using the following formula

∫ ∞

0

xv−1e−bxMλ1,u1− 1
2
(xa1) . . .Mλm,um− 1

2
(xam)dx = au1

1 . . . aum
m (b+ A)−v−MΓ(v +M)×

FA

(
v +M ;u1 − λ1, ..., um − λm; 2u1, ..., 2um;

a1
b1 + A

, . . . ,
am

bm + A

)
,

(A21)

where M = u1+· · ·+um and A = (1/2)(a1+· · ·+am) are valid for ℜ(M+v) > 0, and ℜ(b± 1
2
a1±· · ·±

1
2
an) > 0. Here Mk,m(x) is a Whittaker function of the first kind Equation (7.622) in [25] and FA(α :

β1, . . . , βm; γ1, . . . , γm : z1, . . . , zm) is a hypergeometric function of several variables Equation (9.19)
in [25]. After replacing the integration part of Equation (A18) by Equation (A21), it can easily be shown
that for m dimensional SAR system with n ≥ m, the moments of the sample maximum eigenvalue is

E(λs
max) = S

m∑
i,j=1

(−1)i+j
∑

πsub∈Sm
k ̸=i∧πsub(k)̸=j

sgn(πsub)

∫ ∞

0

m−1∏
k=1

1

n+ 1− πsub(k)
(
n

lk
)
n−πsub(k)

2 xs+n−i+
n−πsub(k)

2 exp(−x(
n

lj
+

n

2lk
))Mn−πsub(k)

2
,
n+1−πsub(k)

2

(x
n

lk
)dx
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E(λs
max) = S

m∑
i,j=1

(−1)i+j
∑

πsub∈Sm

sgn(πsub)
m−1∏
k=1

1

n+ 1− πsub(k)
(
n

lk
)
n−πsub(k)

2 auk
k ×

(b+ A)−v−MΓ(v +M)× FA

(
v +M ;u1 − λ1, . . . , um−1 − λm−1; 2u1, . . . , 2um−1;

a1
b1 + A

,

. . . ,
am−1

bm−1 + A

)
(A22)

where ak = n
lk

, uk = (2 + n − πsub(k))/2, v = 1 + s + n − i +
∑m−1

k=1
n−πsub(k)

2
, b = n

lj
+
∑m−1

k=1
n
2lk

,

λk = n−πsub(k)
2

, M =
∑m−1

k=1 uk and A = 1
2

∑m−1
k=1 ak. Notice that k and πsub(k) takes values from

(k, πsub(k) = {k, πsub(k) ∈ {1, 2, . . . ,m} , k ̸= j ∧ πsub(j) ̸= i}) related to given i, j.
Although Equation (A22) is an exact closed-form expression for the MGF of the sample maximum

eigenvalue, the hypergeometric function of several variables is in general very difficult to evaluate,
and it is better to express Equation (A22) in a more tractable form for future analysis. Regarding
Equation (2.53) in [21], the incomplete gamma function can be written in the closed form

γ(n+ 1− πsub(k), x
n

lk
) = (n− πsub(k))!

1− exp

(
−x

n

lk

)n−πsub(k)∑
t=0

(
x n
lk

)t
t!


 (A23)

for n ∈ Z+, which is a constraint fulfilled by our problem. For the sake of simplicity, f(k, πsub(k)) =

exp
(
−x n

lk

) n−πsub(k)∑
t=0

(
x n
lk

)t
t!

, and
m∏
k=1

(n− πsub(k))!
(
1− f(k, πsub(k))

)
=

m∏
k=1

ak! (1− fk) indicate

m times multiplications of incomplete gamma function. Then if this multiplication is extended as in the
form

m∏
k=1

ak!

1 +

(m1 )∑
k1=1

(−1)1fk1 +

(m2 )∑
k2=2>k1=1

(−1)2fk1fk2 + · · ·+
(mm)∑

km=m>···>k2=2>k1=1

(−1)mfk1fk2 · · · fkm


(A24)

and the integration can be easily implemented into Equation (A18) as follows

E(λs
max) = S

m∑
i,j=1

(−1)i+j
∑

πsub∈Sm

sgn(πsub)

∫ ∞

0

xs+n−i exp

(
−n

lj
x

)( m∏
k=1

(n− πsub(k))!(
1− f(k, πsub(k))

))
/Ψjidx

(A25)
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By analyzing that the term Ψji in the determinant of Equation (A25) reduces to (m − 1) multiplication
of incomplete gamma functions:

E(λs
max) = S

m∑
i,j=1

(−1)i+j
∑

πsub∈Sm

sgn(πsub)
m∏
k=1

ak!

∫ ∞

0

xs exp

(
−n

lj
x

)
xn−idx+

(m−1
1 )∑

k1=1

∫ ∞

0

fk1x
s

exp

(
−n

lj
x

)
xn−idx+ · · ·+

(m−1
m−1)∑

km−1=m−1>···>k2=2>k1=1

∫ ∞

0

fk1fk2 · · · fkm−1x
s exp

(
−n

lj
x

)
xn−idx

 .

(A26)

Applying the rule
∫∞
0

xne−uxdx = n!u−n−1 in Equation (A26) it yields:

E(λs
max) =S

m∑
i,j=1

(−1)i+j
∑

πsub∈Sm

sgn(πsub)
m−1∏
k=1

ak!(n− i+ s)!

( n
lj
)n−i+s+1

+

(m−1
1 )∑

k1=1

n−πsub(k1)∑
tk1=0

(
n
lk1

)tk1
tk1 !

(s+ n− i+ tk1)!(
n
lj
+ n

lk1

)s+n−i+tk1+1 + . . . +

n−πsub(km−1)∑
tkm−1

=0

(
n

lkm−1

)tkm−1

tkm−1 !
. . .

n−πsub(k1)∑
tk1=0

(
n
lk1

)tk1
tk1 !

(s+ n− i+ tk1 + · · ·+ tkm−1)!(
n
lj
+ n

lk1
+ · · ·+ n

lkm−1

)s+n−i+tk1+···+tkm−1
+1

 .

(A27)

The sth moment of sample maximum eigenvalue can finally be written in a closed-form expression as

E(λs
max) = S

m∑
i,j=1

∑
πsub∈Sm

sgn(πsub)G(k, πsub(k)), if k = j ∧ πk(j) = i, πk ∈ πsub (A28)

G(k, πsub(k)) =
m−1∏
k=1

(n− πsub(k))!×

(
(n− i+ s)!

( n
lj
)n−i+s+1

(A29)

+

(m−1
1 )∑

k1=1

n−πsub(k1)∑
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n
lk1

)tk1
tk1 !

(s+ n− i+ tk1)!(
n
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(
n
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)tk1
tk1 !
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(s+ n− i+ tk1 + tk2)!(
n
lj
+ n

lk1
+ n

lk2

)s+n−i+tk1+tk2+1

+ . . .

+
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=0

(
n

lkm−1

)tkm−1

tkm−1 !
. . .

n−πsub(k1)∑
tk1=0

(
n
lk1

)tk1
tk1 !

(s+ n− i+ tk1 + · · ·+ tkm−1)!(
n
lj
+ n

lk1
+ · · ·+ n

lkm−1

)s+n−i+tk1+···+tkm−1
+1

 (A30)
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The moments of the sample maximum eigenvalue regarding its PDF is solved. For larger m

dimensional systems, such an approach may become complicated due to the need for a large number
of calculation of cofactors. However, for applications where only a few eigenvalues, like polarimetry
(m = 3) and interferometry (m = 2), are of interest, the numerical calculations are quite rapid and
stable. For example, in the simplest case of m = 2, n ≥ 2, the MGF is given by

E(λs
max) = S

(
2∑

j,i=1

∫ ∞

0

xsxn−i exp(−x
n

lj
)
∑

πsub∈Sm

sgn(πsub)γ(n+ 1− k, x
n

lπsub(k)

)(
n

lπsub(k)

)k−n−1

)
if πk(j) = i, πk ∈ πsub, and if k ̸= j and lπsub(k) ̸= i, k = 1, 2

= SΓ(2n)Γ(n− 1)

(
l1l2

nl1 + nl2

)2n

×

(
2∑

j,i=1

∑
πsub∈Sm

sgn(πsub)(n+ 1− k)2F1(1, 2n;n+ 2− k;
li

li + lπsub(k)

)

)
.

(A31)

where the constant S = (l1l2)1−nn2n

Γ(n−1)Γ(n+1)(l1−l2)
for m = 2 and 2F1(a, b; c; x) is a Hypergeometric function

Equation (9.8) in [21].
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