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Abstract: Capacitance and resistivity sensors can be used to continuously monitor soil 

volumetric water content (θ) and pore-water electrical conductivity (ECp) with  

non-destructive methods. However, dielectric readings of capacitance sensors operating at 

low frequencies are normally biased by high soil electrical conductivity. A procedure to 

calibrate capacitance-resistance probes in saline conditions was implemented in contrasting 

soils. A low-cost capacitance-resistance probe (ECH2O-5TE, 70 MHz, Decagon Devices, 

Pullman, WA, USA) was used in five soils at four water contents (i.e., from dry conditions 

to saturation) and four salinity levels of the wetting solution (0, 5, 10, and 15 dS·m
−1

). θ 

was accurately predicted as a function of the dielectric constant, apparent electrical 

conductivity (ECa), texture and organic carbon content, even in high salinity conditions. 

Four models to estimate pore-water electrical conductivity were tested and a set of 

empirical predicting functions were identified to estimate the model parameters based on 

easily available soil properties (e.g., texture, soil organic matter). The four models were 

reformulated to estimate ECp as a function of ECa, dielectric readings, and soil 

characteristics, improving their performances with respect to the original model 

formulation. Low-cost capacitance-resistance probes, if properly calibrated, can be 

effectively used to monitor water and solute dynamics in saline soils. 
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Symbols  

θ  volumetric water content 

εr  soil complex permittivity 

ECa bulk electrical conductivity 

ECp pore-water electrical conductivity 

ECw electrical conductivity of the solution used to wet the soil 

ECs electrical conductivity of the solid phase 

ECe electrical conductivity of aqueous extract of saturated soil-paste 

1. Introduction 

Coastal farmlands are often threatened by saltwater contamination that poses a serious risk for 

drinking water quality and agricultural activities. To control and evaluate the hazard of soil salinity, 

accurate measurements of soil water content and solute concentrations are needed. The term salinity 

refers to the presence of the major dissolved inorganic solutes (basically Na
+
, Mg

2+
, Ca

2+
, K

+
, Cl

−
, 

SO4
2−

, HCO3
−
, NO3

−
, and CO3

2−
 ions) in the soil [1]. The salinity of a solution can be quantified in 

terms of its electrical conductivity (EC; dS·m
−1

), which is strictly related to the total concentration of 

dissolved salts, with 1 dS m
−1

 being approximately equivalent to 10 meq·L
−1

 at 25 °C [2]. Soil salinity 

is generally determined by measuring the electrical conductivity of aqueous extracts of saturated  

soil-pastes (ECe) or of other soil to water ratio extracts. However, such methods of investigation are 

destructive, time-consuming, and usually not representative of the real salinity status of soils in field 

conditions [1]. To determine the real (i.e., at actual soil water contents) stress conditions affecting 

crops and to monitor fluxes of salts (e.g., upward fluxes in the vadose zone) the electrical conductivity 

of the pore-water (ECp) should be measured instead. Multi-sensor probes have recently been developed 

in order to assess water content and electrical conductivity with continuous and non-destructive 

measurements. 

2. Methodological Issues 

2.1. Water Content Measurements 

The capacitance (dielectric) technique has been widely used to estimate soil volumetric water 

content (θ) [3]. Capacitance sensors induce an alternating electric field in the surrounding medium. 

The total complex impedance is obtained by quantifying the voltage and the current induced by the 

electric field on the sensor electrodes. The impedance is related to the complex permittivity  

(or dielectric constant; εr) of the surrounding medium. The volume of the induced electric field 

depends mainly on the size and shape of the sensor electrodes. Moreover, the electric field decays 

rapidly, being inversely proportional to the square of the distance. Topp et al. [4] noticed a strict 
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correlation between εr measured by time domain reflectometry (TDR) and soil water content. They 

therefore proposed an empirical third-degree polynomial in εr to calculate θ. The complex permittivity 

of the soil measured by dielectric sensors is the sum of soil real (ε’) and imaginary (ε’’) permittivity 

(dielectric loss): 

 (1) 

where j
2
 = −1. The value of θ is related to ε’ only. On the other hand, ε’’ changes according to soil 

salinity, soil temperature (T), and the operating frequency of the sensor [5–10]. Especially in low-cost 

sensors working at low frequencies (<1 GHz), the contribution of ε’’ in saline soils cannot be  

ignored [3,11,12]. It is therefore essential to consider the influence of ε’’ in εr measurements in order 

to gain correct θ estimations. 

2.2. Pore-Water Electrical Conductivity Assessment 

The determination of the pore-water electrical conductivity is a difficult task as it cannot be directly 

related to any sensor output. Typically sensors measure soil bulk (or apparent) electrical conductivity 

(ECa), which is the combination of the contributions of the three phases constituting soils: solid, water 

and air [9,13]. According to Corwin [14], three pathways of current flow contribute to the ECa 

measurement: current through the pore water solution (the liquid phase pathway); current through 

exchange complexes on the surface of soil colloids (the soil-liquid phase pathway); and current 

through the soil particles that are in direct contact (the solid pathway). ECa can be estimated from  

εr readings [15] or from the electrical resistance that soil opposes to an alternating electric  

current [13,14]. ECp and ECa are strictly correlated, indeed an increase of ions in the matrix solution 

leads to an increase of ECa values [8,16,17].  

Several models to estimate ECp from ECa have been developed in the last sixty years, based on 

empirical relations as well as on theoretical assumptions. Models are usually based on the empirical 

relationship between ECa and θ at constant ECp values, where the magnitude of ECa varies according 

to the tortuosity of the electrical current paths (depending on soil texture, density and particle 

geometry, particle pore distribution, and organic matter content). Tortuosity can be expressed in terms 

of a soil transmission factor (π) [16,18,19] or soil-type-related parameters [20–22].  

Recent development of low-cost multi-sensor probes could make such ECp models implementable 

for continuous monitoring purposes. However, since most of the ECp models are calibrated in limited 

soil conditions [9,23–25], new relationships between variables and soil properties must be defined to 

extend their applicability to a wider range of soils. 

The general aim of this study was to calibrate a multi-sensor probe for monitoring soil volumetric 

water content and soil water electrical conductivity in a heterogeneous saline coastal area. The specific 

objectives were: (i) to develop a procedure to simultaneously calibrate θ and ECp; (ii) to test different 

models for ECp; and (iii) to develop general functions to extend ECp model application to a wide range 

of soils, even in critical saline conditions. 

  

'ε'ε'-jεr ×=
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3. Materials and Methods  

3.1. Decagon ECH2O-5TE Probe  

The sensor used in this experiment was an ECH2O-5TE probe (hereafter simply referred to as 5TE). 

5TE is a multifunction sensor measuring εr, ECa, and T (Decagon Devices Inc., Pullman, WA, USA). 

A detailed description of the 5TE can be found in Bogena et al. [26] and Campbell and Greenway [27]. 

The probe is a fork-type sensor (0.1 m in length, 0.032 m in height). Two of the three tines host the 

dielectric sensor. The capacitance sensor supplies a 70 MHz electromagnetic wave to the prongs that 

charge according to the dielectric of the soil surrounding the sensor. The reference soil volume is ca.  

3  10
−4

·m
3
. A charge is consequently stored in the prongs and it is proportional to the soil dielectric. 

Previous versions of dielectric sensors by Decagon Devices operate at lower frequencies  

(e.g., ECHO10 probe, 5 MHz). The increase of operating frequency has led to a higher salinity 

tolerance [6,8,12]. In fact εr measurement with 5TE should not be affected by soil salinity up to ECe 

values of 10 dS·m
−1

 [28].  

The bulk electrical conductivity is measured with a two-sensor array. The array consists of two 

screws placed on two of the sensor tines. An alternating electrical current is applied on the two screws 

and the resistance between them is measured. The sensor measures electrical conductivity up to  

23.1 dS m
−1

 with 10% accuracy; however a user calibration is suggested above 7 dS·m
−1

. Temperature 

is measured with a surface-mounted thermistor reading the temperature on the surface of one of  

the prongs. 

3.2. Soil Sampling  

Soil samples from a coastal farmland affected by saltwater intrusion [29,30] were cored for the 

calibration of the 5TE probe. The site is located at Ca’ Bianca, Chioggia (12°13'55.218"E; 

45°10'57.862"N), just south of the Venice Lagoon, North-Eastern Italy. The area has high spatial 

variability in soil characteristics due to its deltaic origins (Figure 1). 

Three sampling locations were chosen in the basin (sites A, B, and C, Figure 1). At sites A and B 

both topsoil (0 to 0.4 m depth) and subsoil (0.4 to 0.8 m depth) were collected, while only the topsoil 

was cored at site C since the profile is uniform. The main physical and chemical properties of the 

samples were characterized. Soil texture was determined with a laser particle size analyzer 

(Mastersizer 2000, Malvern Instruments Ltd., Great Malvern, UK). Soil total carbon content and soil 

organic carbon (SOC) content were analyzed with a Vario Macro Cube CNS analyzer (Elementar 

Analysensysteme GmbH, Hanau, Germany). Cation exchange capacity (CEC) was measured at a pH 

value of 8.2 according to the BaCl extraction method [31]. Soil pH was measured with a 1:2 soil to 

water ratio with a pH-meter (S47K, Mettler Toledo, Greifensee, Switzerland). Particle density (ρr) was 

measured with an ethanol pycnometer [32]. Bulk density (ρb) was determined from undisturbed core 

samples. ECe was measured according to Rhoades et al. [1].  
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Figure 1. Aerial image of the study area at the southern edge of the Venice Lagoon, Italy. 

The sampling sites A, B, and C are marked.  

 

Soil samples show high variability in sand (from 174.7 to 905.2 g·kg
−1

), organic carbon content 

(from 15.4 to 147.8 g·kg
−1

), and ECe values (from 0.61 to 6.38 dS·m
−1

). Five soil types were selected: a 

sandy soil with low SOC content and low ECe, a silty-clay-loam with low SOC content and high ECe, 

two loam and one clay-loam with medium-high SOC content. Main soil properties are listed in  

Table 1. 

Table 1. Texture, total and organic carbon content, cation exchange capacity, pH, particle 

density, bulk density, and conductivity of the saturated paste extract for the five soil 

samples collected in the Ca’ Bianca sites and used in this study. 

Soil Sample 
Sand  

(%) 

Silt  

(%) 

Clay  

(%) 

Total C  

(%) 

SOC  

(%) 

CEC  

(meq·g−1
)  

pH 
ρr  

(g·cm
−3

) 

ρb  

(g·cm
−3

) 

ECe  

(dS·m−1
) 

A Topsoil 40.92 41.31 17.77 15.50 14.78 0.57 5.60 1.90 0.87 0.61 

A Subsoil 17.47 52.66 29.87 4.30 3.96 0.12 5.89 2.28 1.08 6.38 

B Topsoil 50.54 37.61 11.85 6.64 5.78 0.33 7.23 2.32 1.07 1.42 

B Subsoil 90.52 7.71 1.77 4.26 1.54 0.05 7.68 2.62 1.29 2.26 

C Topsoil 29.61 48.46 21.93 9.84 8.36 0.45 7.58 2.21 0.93 2.05 
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3.3. Experimental Settings  

The 5TE probe was used in a mixture of soil (preliminarily air-dried and sifted at 2 mm) and  

saline solution (54.92% Cl
−
; 30.82% Na

+
; 7.68% SO4

2−
; 3.81% Mg

2+
; 1.21% Ca

2+
; 1.12% K

+
; 

0.44%NaHCO4) to reproduce saline groundwater of the experimental site [33]. Soil samples were 

moistened to a relative saturation (S) of about 0, 0.35, 0.75, and 1.00 with a saline solution of 0, 5, 10, 

and 15 dS·m
−1

 (at 25 °C). The mixtures were prepared in a plastic container and then sealed and kept in 

a dark place at constant temperature 22 ± 1 °C for 48 hours. The soil was then packed uniformly in  

a 6  10
−4

·m
3
 beaker to reproduce the field bulk density. Output values for εr, ECa, and T were 

recorded by a datalogger (Em50, Decagon Devices) connected to the 5TE probe.  

Electrical conductivity of the wetting solution (ECw) differs from the electrical conductivity of the 

pore-water (ECp) [21]. Pore-water solution was extracted from a portion of the soil sample by vacuum 

displacement [34] at −90 kPa and ECp was measured with a S47K conductivity meter. ECe was then 

measured on the remaining soil sample. Water content was determined gravimetrically (at 105 °C for 

24 hours). Measures were replicated 3 times. 

3.4. Calibration Procedure  

A three-step procedure was implemented to calibrate the sensor output for the collected samples:  

(1) model calibration to convert εr and ECa readings to θ or ECp; (2) comparison and selection of the 

best models; (3) simultaneous calibration of the selected models for θ and ECp and evaluation of their 

robustness by applying a bootstrap procedure. 

3.4.1. Models to Convert εr Readings to θ 

Dielectric permittivity can be converted to volumetric water content using empirical models  

(e.g., [4]). However temperature and soil electrical conductivity affect the dielectric permittivity 

measurements of ECH2O sensors [5,35,36]. In one of their latest studies, Rosenbaum et al. [5] 

developed an empirical calibration to correct the temperature effect on εr measurements which 

performed very well in both liquid and soil media. Investigating the effect of temperature on εr, 

Bogena et al. [26] concluded that in a T range from 5 °C and 40 °C, εr varies up to 8% with respect to 

the reference liquid used (εr = 40 at 25 °C). As all the calibration experiments presented in this work 

took place at a controlled temperature of 22 ± 1 °C, the effect of T on εr was considered negligible. On 

the other hand, εr is much more sensitive to electrical conductivity changes [37].  

Polynomial model-types as that proposed by Topp et al. [4] do not provide satisfactory  estimates 

in the presence of high clay and organic contents or in saline soils, especially using sensors operating 

at low frequencies [12,38]. Indeed, application of the Topp model to the experimental data of  

Ca' Bianca provided a large average error (~0.11 m
3
·m

−3
). 

Three models were tested to find a satisfactory empirical relationship between εr and θ data for each 

soil at different ECw values, namely:  
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(a) logistic model: 

 (2) 

(b) hyperbolic model: 

 (3) 

(c) logarithmic model: 

 (4) 

where θMAX is the volumetric content at saturation, a, b, and U are fitting parameters. 

The three models were compared with the Akaike Information Criterion (AIC) [39] and the one 

with the higher Akaike weight (WAIC) [40] was selected for the subsequent simultaneous calibration of 

θ and ECp. The Akaike Information Criterion (AIC) is a measure of the goodness of fit of a specific 

model. It allows the direct comparison of different concurrent equations for model selection purposes. 

AIC accounts for the risk of over-parameterization as well as for the goodness of fit; several models 

can be ranked according to their AIC, with the one having the lower value being the best. From the 

AIC, the Akaike weight (WAIC = 1) can be computed, which represents the probability that a specific 

model is the best, given the data and the set of candidate models. Note that the fitting parameters 

showed a high dependence on ECa and physico-chemical soil characteristics. To take this effect into 

account, the fitting parameters were expressed as a linear function of ECa and other selected soil 

properties yielding a ―general‖ calibration equation usable on the various soils of the study site. 

3.4.2. Models to Convert εr and ECa Readings to ECp 

Four models were tested: the first is the Malicki and Walczak [21] model. They found that, when  

εr is higher than 6.2, the slope ∂ECa/∂εr depends only on salinity but not on water content, nor bulk 

density, nor dielectric permittivity. They developed an empirical relationship linearly linking ECa to εr 

for various values of ECw, i.e., ECa(εr,ECw). The validity of the linear relationships holds above a 

―converging point‖ characterized by εr0 = 6.2 and ECa0 = 0.08 dS·m
−1

. ECp was consequently defined 

as a function of ECa(εr,ECw) and soil texture:  

 (5) 

where l is the slope of the relation between ∂ECa/∂εr and ECw. This parameter depends on  

the sand content of the sample through the relation l = l’+ l’’  sand(%), with l’ = 5.7  10
−3

 and  

l’’ = 7.1  10
−5

. 

On the basis of Equation (5), Hilhorst [20] developed the following theoretical model: 

 (6) 

U
e

θ
θ

rεba
MAX

-
+1

=
)×+(-

rMAX

rMAX

a

a
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where εp is the real portion of the dielectric permittivity of the soil pore-water and        is the real 

portion of the dielectric permittivity of the soil when bulk electrical conductivity is 0.        is a  

soil-type dependent variable, even if Hilhorst recommended a value equal to 4.1 as a generic offset. 

Moreover, εp was calculated as [20]: 

 (7) 

where T is the soil temperature in degrees Celsius, 80.3 is the real part of the complex permittivity of 

the pore-water at 20 °C, and 0.37 is a temperature correction factor. Hilhorst considers the imaginary 

part of εr to be negligible, hence in his model εr = ε’. The Hilhorst model was proved to perform 

correctly only for low ECp values. Hilhorst himself indicated an ECp value of 3 dS·m
−1

 as the upper 

limit for the validity of his model when a capacitance sensor operating at 30 MHz is used.  

The third tested model is the one proposed by Rhoades et al. [16] (hereafter simply referred as 

Rhoades). They expressed the pore-water electrical conductivity as: 

 (8) 

where ECs (the electrical conductivity of the solid phase) was shown to be dependent on soil texture 

and through a linear correlation with clay content [24,41]; π is a tortuosity factor that mainly depends 

on soil hydraulic properties and was defined by Rhoades et al. as: 

 (9) 

where the constants c and d can be estimated from the regression between ECa and θ at constant  

ECp [16].  

Archie’s law [22] (hereafter simply referred as Archie) was developed to assess the conductivity of 

pore-water in clay-free rocks and sediments, and it has been therefore used in soils containing neither 

clay minerals nor organic matter. According to Archie ECp can be derived as follows: 

 (10) 

where Φ is the porosity (defined as Φ = 1 − ρb × ρr
−1

 = θMAX), S the relative saturation (defined as  

S = θ × Φ
−1

), and k, m and n are fitting parameters. Allred et al. [13] showed that typical values of 

these three constants range from 0.5 to 2.5, from 1.3 to 2.5, and ~2 for k, m, and n, respectively. 

Archie has been modified in order to be used also in soils containing clay minerals [42] by simply 

considering the contribution of ECs in Equation (10). Hence, ECp was defined as: 

 (11) 

Despite the fact that Archie was originally developed for deep sediments in oil research, it has been 

successfully applied in shallow groundwater systems to trace salinity. An example of such 

implementation is given by Monego et al. [43]. It is worth noticing that Archie and Rhoades show a 

similar formulation, being equal when m = 1 and n = 1 (then k = 1/π). 

The four models apply for θ > 0.1 m
3
·m

−3
 (for Rhoades and Hilhorst), θ > 0.2 m

3
·m

−3
 (for Malicki 

and Walczak), and S > 0.3 (for Archie).  

)20(37.03.80  Tp

 


 sa

p
ECEC

EC

θdcπ ×+=

nm
a

p
S

EC
kEC





nm
sa

p
S

ECEC
kEC










Sensors 2012, 12 17596 

 

 

The models were tested with the experimental (ECa,εr) values and the chemical and physical 

properties of the five soil samples collected at Ca' Bianca. In a first step, the original formulations were 

tested by calculating the parameters according to the methodologies proposed by the authors. Next, the 

models were optimized by relating the calibration parameters to the physical and chemical 

characteristics of the soils. ECp data at S ≈ 0.35 were excluded from the optimization as it was 

impossible to collect a sufficient amount of solution with the extraction method used in this 

experiment. ECp data at S ≈ 0 were assumed equal to 0 dS·m
−1

 [8]. 

3.4.3. Simultaneous Calibration of Models for θ and ECp 

The model parameters for the simultaneous quantification of θ and ECp were calibrated by 

minimizing the following objective function: 

 (12) 

where RSStot is the cumulative residual sum of squares, M and N are the total number of observed 

volumetric water content and pore-water electrical conductivity data, respectively,       and       , θj 

and   j are the observed and fitted ECp and θ values, respectively, W1 and W2 are two weighting factors. 

The parameter W1 allows more weight to be given to one of the two variables. The parameter W2 

ensures that a proportional weight is given to the two residual sums of squares (RSS), and that the 

effect of having different units for θ and ECp is canceled. W2 was calculated as suggested by Van 

Genuchten et al. [44]: 

 (13) 

This weighted procedure prevents one data type (i.e., ECp or θ) from dominating the other, solely 

because of its higher numerical values. 

In this study the limited dataset size (M = 80 and N = 55) did not allow a validation to be performed 

on an independent set of data. The models were thus validated through a bootstrap procedure [45].  

A Y number of iterations were carried out. At each iteration, a subset of 60 points out of 80 for θ and 

42 out of 55 for ECp were extracted, forming the calibration dataset. The remaining points were 

retained for validation.  

At the end of the iterations, the root mean square error (               
  

     ), which 

provides the goodness of fit, the median, and the 5th and 95th percentiles of the distribution of each 

parameter were retained for further analysis. The probability distribution function of RMSE was 

compared using the Kolmogorov-Smirnov (KS) test to assess the significance of difference in the 

model predictions.  

The calibration procedure described above was performed using the Generalized Reduced Gradient 

(GRG) Nonlinear Solving Method (Frontline Systems, Inc., Incline Village, NV, USA). 
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4. Results and Discussion 

4.1. Converting εr Readings to θ 

Dependence of 5TE on bulk electrical conductivity was observed to be similar in all the tested soil 

samples. εr readings were greatly affected by ECa: especially for high  values, a small increase in ECw 

significantly raised the dielectric output of the probe, indicating that dielectric readings carried out in 

highly conductive media must be corrected. This finding confirms the results by Rosenbaum et al. [5] 

on the same probe and by Saito et al. [8] on other Decagon dielectric probes operating at lower 

frequencies. An example of the non-linear response of εr at different ECw and  values is presented in 

Figure 2(a). Starting from a relative saturation of 0.75, the response of the probe significantly diverged 

at salinity solution with ECw > 10 dS m
−1

. Figure 2(b) evidences also the direct effect of the ECw on 

ECa readings and how the effect was amplified at higher water content. This observation, confirmed by 

Schwank et al. [11] and Rosenbaum et al. [5], suggests investigating the effect of ECa on  estimation. 

Figure 2. Site A, topsoil: (a) relative saturation vs. measured complex permittivity for four 

ECw values of the wetting solution; (b) influence of ECw on bulk electrical conductivity at 

various relative saturation levels.  

 

Between the tested θ models, Equation (4) showed the best performances, with an Akaike weight 

WAIC close to 1 (Table 2). 

Table 2. Outcome of the  model comparison according to Akaike information  

criterion [40]: residual mean squares (RMS), total number of parameters (K—number of 

parameters of the model including the variance of the estimated residuals), Akaike 

Information Criterion (AIC), AIC differences (Di), and Akaike weights (WAIC). 

Model RMS K AIC  Di WAIC 

Hyperbolic 0.015 21 −301.61 104 2.11 × 10−23 

Logistic 0.002 42 −391.41 15 6.69 × 10−4 

Logarithmic  0.001 41 −406.03 0 1.000 
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Parameters a and b of the logarithmic model were found to be significantly correlated with the ECa 

values at different water contents. Therefore the logarithmic model was reformulated as: 

 (14) 

where a’, a’’, b’, and b’’ are empirical parameters. Calibration of Equation (14) highlighted a strong 

correlation between the terms a’  ECa + a’’ and b’ ECa + b’’. Consequently this latter term was 

assumed equal to q (a’ECa + a’’), where q is a proportionality constant. Equation (14) could thus be 

reformulated as: 

 (15) 

Equations (14) and (15) were compared with the AIC test. A WAIC = 0.99 was obtained for 

Equation (15), indicating that this formulation of the logarithmic model is to be preferred over 

Equation (14), mainly for the reduced number of parameters. 

To identify a ―general‖ equation, q was set as a constant (=−0.766), whereas parameters a’ and a’’ 

were related to soil properties (Table 3). Parameters a’ and a’’ were estimated according to the 

following empirical equations: 

(%)006.0352.0' SOCa   (16) 

 (17) 

Equation (15) allows correcting of the effect of dielectric losses due to the high electrical 

conductivity of the medium [3] due to high organic carbon content, salinity, and clay/sand ratio. The 

RMSE of Equation (15) was 0.038 m
3
·m

−3
. 

4.2. Converting εr and ECa Readings to ECp 

The parameters of models (5), (6), (8), and (11) showed significant correlations with soil properties 

(Table 3). 

Table 3. Pearson linear correlation coefficients for some soil properties and the parameters 

in Equations (15) (logarithmic model), (5) (Malicki and Walczak), (6) (Hilhorst),  

(19) (Rhoades tortuosity) and (10) (Archie). Bold numbers indicate a significant linear 

relationship. 

 

Equation (15) Equation (5) Equation (6) Equation (19) Equation (10) 

a’ a’’ l εECa = 0 e f m n 

Sand 0.25 0.76 1.00 −0.60 −0.68 0.73 −0.79 1.00 

Clay −0.14 −0.8 −0.98 0.51 0.59 −0.62 0.66 −0.97 

Clay/Sand 0.23 −0.89 −0.82 0.20 0.45 −0.43 0.31 −0.79 

SOC −0.98 0.30 −0.40 0.94 0.36 −0.48 0.78 −0.46 

CaCO3 0.26 0.58 0.85 −0.73 −0.95 0.96 −0.75 0.84 

  

  )ln()'''(''' raa ECbbECaa  

  ))ln(1(''' ra qECaa  

(%)

(%)
009.0020.0''

sand

clay
a 
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The parameter l by Malicki and Walczak was confirmed to be mainly correlated to sand content. 

The calibrated parameters for Equation (5) are: ECa0 = 0.06 dS·m
−1

; εr0 = 7.1; l = 0.012 + 10
−6 

× 

sand(%) yielding RMSE = 2.52 dS·m
−1

. In the original paper by Malicki and Walczak l varied from 

0.0083 to 0.0127 while in this experiment the range was narrower, from 0.0117 to 0.0124.  

The ε(ECa = 0) parameter by Hilhorst was expressed as a function of soil organic carbon content: 

 (18) 

According to Equation (18), εECa = 0 ranged from 5.16 to 7.85, values close to the interval found  

by Hilhorst (from 3.76 to 7.6 in soils and synthetic media). The calibrated model yielded  

RMSE = 2.34 dS m
−1

.  

Concerning the Rhoades and Archie models, the term ECs was neglected as the 5TE probe 

registered ECa = 0 in dry soil conditions. Please note that other Authors [41] demonstrated that ECs 

could assume a certain magnitude.  

In contrast to Equation (9) by Rhoades et al. [16],  was found to be uncorrelated with soil water 

content. Nevertheless,  showed a linear correlation with soil porosity ( = e + f × ), with e and f 

depending on CaCO3 as follows: 

 (19) 

In the tested samples  ranged from 0.22 to 0.71, whereas Rhoades et al. [16] found a variation 

from 0.01 to 0.6. The inverse correlation of CaCO3 with the tortuosity factor evidenced in the Ca' 

Bianca soils can be explained by the fact that here a low CaCO3 content corresponds to high clay and 

SOC percentages. Indeed, the higher clay and SOC contents (more complicated geometric 

arrangement), the higher is soil tortuosity [41]. The ―general‖ formulation of the Rhoades model 

provided RMSE = 0.90 dS m
−1

.  

Several formulations were attempted for Archie in order to decrease the number of parameters 

related to soil properties. Here, the parameters k, m, and n were alternately fixed and kept independent 

from the soil type. The formulation with k = 0.487 provided the best fitting according to the AIC test. 

With fixed k, n showed a significant correlation with sand content: 

 (20) 

It is worth noticing that with higher sand contents (Figure 3(a)) n ≅ 2.5, which is close to n values 

suggested for sandy media [13]. As shown in Table 3, n decreases with increasing clay values. For 

given S and ECa values, it is clearly derived from Equation (10) that the smaller the n the higher is 

ECp, i.e., with a large percentage of clay the influence of ―the liquid phase pathway‖ on the ECa 

reading is reduced [14,41]. A non-linear relationship was detected between m and soil organic carbon 

(Figure 3(b)): 

 (21) 

Values of m between 2.65 and 3.82 were derived. As reported by Archie, m becomes larger as the 

permeability of the porous medium decreases (increasing tortuosity). As shown in Figure 3(b) the 

magnitude of m rises with SOC. High organic contents decrease soil bulk density, possibly increasing 

soil tortuosity [46]. Archie calibration returned RMSE = 0.65 dS m
−1

. 

(%)203.0851.40 SOCEC 

      989.3(%)232.0779.1(%)129.0 33 CaCOCaCO

(%)035.0669.0 sandn 

966.0(%)

(%)350.4
(%)018.0






SOC

SOC
SOCm
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Comparison between the RMSE values computed for the four ECp models showed that the 

―general‖ formulation of Archie provided the best estimates. Archie also had the highest WAIC (~1.00). 

For the Malicki and Walczak, Hilhorst, and Rhoades models the WAIC were close to zero. 

Figure 3. Archie model: relationships (a) n vs. sand content and (b) m vs. soil organic 

carbon. The dotted line represents the fit described by Equations (20) and (21), 

respectively. For the latter, RSS = 2.46 × 10
−3

 and RMSE = 0.04.  

 

These results are also confirmed by the linear regressions between measured and estimated ECp 

(Figure 4). As displayed in this figure the models by Malicki and Walczak, and by Hilhorst did not 

show a good fitting, especially at high ECp values, as already observed by [23,25]. 

The different performances of the four models at various salinity ranges were tested resampling 

observed and estimated ECp 2,000 times, to compute average RMSEs and their confidence intervals  

at p = 0.05 as previously done by Giardini et al. [47]. The selected ranges were: (a) the 0–3 dS·m
−1

 and 

>3 dS·m
−1

; and (b) the 0–10 dS·m
−1

 and >10 dS·m
−1

.  

At low ECp range (i.e., ECp < 3 dS·m
−1

) Rhoades showed the smallest RMSE (0.57 dS·m
−1

), 

nevertheless its performance was not significantly different from those by Hilhorst (RMSE = 0.93 dS·m
−1

) 

and Archie (RMSE = 0.72 dS·m
−1

). On the contrary, the model by Malicki and Walczak provided 

significantly higher errors (RMSE = 1.69 dS·m
−1

).  

Above 3 dS·m
−1

, the models by Malicki and Walczak and by Hilhorst significantly differentiated 

from the other two. In fact they generally overestimated ECp in the range from 3 to 10 dS·m
−1

 with 

RMSE equal to 2.16 and 1.43 dS·m
−1

, respectively. On the other hand they underestimated ECp when 

the pore-water was very conductive (i.e., ECp > 10 dS·m
−1

), with RMSE = 3.28 dS·m
−1

 and  

RMSE = 3.83 dS·m
−1

, respectively.  

In their work, Malicki and Walczak used TDR probes at fairly high frequencies, reducing the 

influence of ECa on εr. Moreover, their study was conducted using a wetting solution with a maximum 

conductivity of 11.7 dS·m
−1

. In the present work, calibrating the Malicki and Walczak model only for 

ECp < 10 dS·m
−1

 would provide satisfactory estimations (RMSE = 1.00 dS·m
−1

). Moreover, the metrics 

of fitting regression would have shown a slope and intercept of 0.837 and 0.680, yielding very similar 

results to those obtained by Malicki and Walczak in their work. With some limitations, the model by 
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Malicki and Walczak might therefore be used in capacitance applications as well as TDR [21] and 

frequency-domain reflectometry [10]. 

Hilhorst validated his model in a much lower ECp range than the one used in this work. Hilhorst 

actually indicated the validity upper bound for the probe used in his work as 3 dS·m
−1

. Indeed, in the 

present study the model showed good performances in the 0–3 dS·m
−1

 range. Moreover, calibrating the 

model for ECp <10 dS·m
−1

 would suitably yield a RMSE of 0.68 dS·m
−1

 with an observed-estimated 

relationship having a slope and an intercept of 0.957 and 0.127, respectively. Most likely, the higher 

operating frequency of 5TE compared to the capacitive probe used by Hilhorst (i.e., 30 MHz) could 

have increased the range of model validity. However, as stated by Hilhorst, the model assumptions 

cease to be valid at higher salt concentrations as εp significantly deviates from that of free water 

(Equation (7)). From the experiment presented here this limit seems to be ECp ~ 10 dS·m
−1

.  

The comparison of the error distribution at different ECp ranges showed that Rhoades and Archie 

did not give significantly different performances. Nevertheless, the Rhoades model showed a larger 

RMSE at high ECp values than at low ones (ECp < 10 dS·m
−1

: RMSE = 0.78 dS·m
−1

; ECp > 10 dS·m
−1

: 

RMSE = 1.17 dS·m
−1

). On the other hand, the Archie model showed a greater consistency over the two 

salinity ranges (ECp < 10 dS·m
−1

: RMSE = 0.69 dS·m
−1

; ECp > 10 dS·m
−1

: RMSE = 0.54 dS·m
−1

). 

Figure 4. Comparison of calculated vs. reference pore-water electrical conductivity for the 

five soil samples using the ―general‖ (a) Malicki and Walczak, (b) Hilhorst, (c) Rhoades, 

and (d) Archie models.; The symbols refer to: □ site A, topsoil; ◊ site A, subsoil; ○ site B, 

topsoil;  site B, subsoil; and ∆ site C, topsoil. 
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4.3. Simultaneous Calibration of Models for θ and ECp 

As reported above, the ―general‖ formulations of Rhoades and Archie showed overall similar 

performances. As already stated experimental  values were used in the two equations. A simultaneous 

calibration was then done estimating ECp and  from ECa and εr readings by substituting the ―general‖ 

logarithmic  model (Equation (15)) within Rhoades and Archie ―general‖ models. The W1 weight 

(Equation (12)) was set to 0.5, thus improving the ECp estimation without notably worsening the  

evaluation.  

The combined logarithmic  model and Rhoades reads: 

 (22) 

with: 

 (23) 

 (24) 

 (25) 

where a’Rhoades, a’’Rhoades, and Rhoades are the fitting parameters defined in Equations (16), (17),  

and (19) during the independent calibration of  and ECp.  

Similarly, the combined logarithmic  model and Archie becomes: 

 

(26) 

with: 

 (27) 

 (28) 

 (29) 

 (30) 

where a’Archie, a’’Archie, mArchie, and nArchie are the fitting parameters originally defined in Equations (16), 

(17), (21), and (20). 

The calibration of Equation (22) yielded RSME values for  and ECp of 0.048 m
3
·m

−3
 and  

0.77 dS·m
−1

, respectively. Better overall results were obtained by Equation (26): RMSE = 0.046 m
3
·m

−3
 

and RMSE = 0.63 dS·m
−1

 for   and ECp, respectively. It is worth noting that the simultaneously 

calibrated parameters were very close to the independently calibrated ones. 

A bootstrap validation was done on the simultaneous calibrations. A total of 5,000 iterations were 

operated for both Equations (22) and (26). Table 4 shows the variations of the slope and intercept of 
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the fitting linear regression between observed and predicted values. Soil water content was correctly 

predicted by both the equations: the slope and intercept medians of the observed-estimated 

relationships were fairly close to 1 and 0, respectively. ECp predictions were less accurate, generally 

overestimated by Equation (22) and underestimated by Equation (26) (Table 4).  

Table 4. Statistical analysis of the bootstrap validation outcome: median, 5th, and 95th 

percentile of slope and intercept distributions of the observed-predicted relationships for 

volumetric water content and pore-water electrical conductivity using Equations (22)  

and (26). 

 
Slope Intercept 

 
Median 5% Limit 95% Limit Median 5% Limit 95% Limit 


      

Rhoades (Equation (22)) 0.97 0.89 1.02 0.01 −0.01 0.04 

Archie (Equation (26)) 0.98 0.91 1.04 0.01 −0.01 0.03 

ECp 
      

Rhoades (Equation (22)) 1.15 0.98 1.31 0.13 −0.13 0.39 

Archie (Equation (26)) 0.93 0.88 1.03 0.32 0.11 0.53 

Figure 5. Comparison between the prediction performance of Equations (22) and (26) 

according to the Kolmogorov-Smirnov test. Boxplot for the RMSE values of (a) volumetric 

water content and (b) pore-water electrical conductivity. The letters A and B in the boxes 

indicate a significant difference (p < 0.01) between the RMSE distributions.  

 

According to the Kolmogorov-Smirnov test, significant differences were observed between the two 

equations. The Archie-based model provided significantly lower RMSE values on the validation sets 

for both  (p < 0.01) and ECp (p < 0.01) (Figure 5(a,b)). Equations (22) or (26) provided similar 

maximum errors for water content, with maximum RMSE of 0.08 m
3
·m

−3
 and 0.09 m

3
·m

−3
, 

respectively. On the other hand, Equation (22) produced a maximum ECp error higher than that of 

Equation (26) (451.42 dS·m
−1

 vs. 211.26 dS·m
−1

). The overall more accurate prediction of the system 

implementing Archie can be justified by the more flexible functional form of the ECp model allowed 

by the two exponential parameters. 
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5. Summary and Conclusions 

Low-cost capacitance-resistance multiprobe sensors are becoming popular for agro-environmental 

studies. In order to obtain reliable results, robust models for soil water content and pore-water electrical 

conductivity must be calibrated in different soil and climatic conditions, especially when these 

instruments are used in coastal areas with contrasting soils and affected by saltwater contamination.  

This experiment verifies the possibility of simultaneously quantifying water content and pore-water 

electrical conductivity from complex permittivity, bulk electrical conductivity, and soil temperature 

measurements performed by the ECH2O-5TE (Decagon Devices, Inc.) probe. This result was achieved 

by improving empirical/theoretical reference models with the use of parameters dependent on physical 

and chemical soil properties, such as texture, soil organic carbon and soil carbonates. The improved 

models, in particular the one developed starting from Archie’s law, prove to be reliable and robust over 

a wide range of water content (from dry to saturated conditions), salinity conditions (pore-water 

electrical conductivity from 0 to ~20 dS·m
−1

), and soil types (from sand with low SOC to clay-loam 

with high SOC). 

Further studies performed in different soil and climatic environment coupled with improved 

dielectric sensors (e.g., with higher operating frequencies) will allow the accuracy of soil water content 

and pore-water salinity determination to be increased. 
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