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Abstract: This paper proposes a new middleware solution called Network Adaptive
Deadband (NAD) for long time operation of Networked Control Systems (NCS) through
the Internet or any shared network based on IP technology. The proposed middleware
takes into account the network status and the NCS status, to improve the global system
performance and to share more effectively the network by several NCS and sensor/actuator
data flows. Relationship between network status and NCS status is solved with a
TCP-friendly transport flow control protocol and the deadband concept, relating deadband
value and transmission throughput. This creates a deadband-based flow control solution.
Simulation and experiments in shared networks show that the implemented network adaptive
deadband has better performance than an optimal constant deadband solution in the same
circumstances.
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1. Introduction

Control systems are basically composed by a controller and a plant, where the controller receives the
information about the state of the plant, computes the new action and sends it to the plant. The controller
uses the required hardware and software to obtain the control law. The plant uses actuators to apply
the received actions from the controller, and uses sensors to measure the state of the plant (Figure 1).
Sensors and actuators were traditionally connected to the control system through a dedicated network. If
the control loop between controller and plant is closed through a shared digital communication network
such as Internet, stability cannot be guaranteed because of variable communication delays and data
packet loss. But the use of Internet as intermediate network has some advantages, such as the high
availability, testability, simple installation as well as low cost. Networked Control Systems (NCS) cover
tele-operation, tele-robotics and network-based control. The applications are in traffic control, robotics,
domotics, tele-operation, in general Internet of things and can be extended to serve as remote back-up
controllers for some critical plants in case of a disaster.

Figure 1. NAD basic scheme.
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x = output vector of the plant u = output vector of the controller

r = reference (external input to the controller) K = scale matrix of the control equation.

Dc = Deadband in the controller Dp = Deadband in the plant

The adoption of TCP/IP protocol stack is mandatory to send packets across the Internet, and
researchers should work with this restriction. Major contributions of the researches in NCS over Internet
are in the controller-design, in designing new transport protocols (in layer 4 of the TCP/IP stack) or
in the local segment of the extremes of the NCS. The Internet constraints for NCS (such as delay and
packet losses) are basically caused by the queue size of the intermediate routers and the capacity of the
network link between both extremes of the NCS. Variable delay and variable packet losses are mainly
due to the unpredictable network occupation of the background traffic and the transmission rate of the
NCS [1]. The transmission rate is closely related with the sampling period of the NCS and the network
constraints [2]. A big effort is made to calculate the limits of the sampling periods that maintain the
NCS stability, such as the Maximum allowable sampling period (or MASP) of an NCS (see the work of
Nesi¢ et al. [3] and references cited therein).

In our previous study [4], we conclude that an adequate transport scheme can solve the transmission
rate problem in Internet-based NCSs. The transport scheme should have flow-control, best-effort and

fairness features, as well as an NCS data priority system. Some transport protocols meet the first three
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specifications, but compete with control data scheduling strategies implemented in the control design, to
solve the variable delay and packet losses problem.

In this work, a general scheme to combine control and network status is presented. The general
scheme is implemented in a middleware solution that uses a transport protocol that satisfies the
aforementioned features, in combination with the deadband concept that works as the NCS data priority
system (see Figure 1 for a basic Linear Quadratic Regulator LQR control system). However, a more
generic adaptive deadband solution may be implemented with other adaption law, mainly to optimize the
power consumption, highly recommended in sensor networks.

The starting point to implement the proposed middleware is a properly designed NCS in the expected
network scenario, taken into account delays and packet losses. Several works have been made to design
such an NCS, using different strategies that will be described in Section 2.

The concept of deadband applied to NCS was initially studied by Otanez ef al. [5]. NCS deadband
focuses on the relative value of NCS data to be transmitted. In deadband sampling solution, a data is sent

only if its difference with the last data sent is bigger than a defined value. This value is called deadband.

Lif ||xs — z|| > 0

1
0if ||oys — ]| < 0 W

DFisend = {

A deadband transmission filter can be formulated as in Equation (1), where 0 is the deadband value,
x5 18 the last data sent and z is the candidate data to be sent. In Figure 1, D, and D, are the deadband
filters for the controller and plant sides respectively.

Constant deadband solution attempts to minimize the throughput while maintaining acceptable
performance for an NCS. However, a constant deadband that minimizes the throughput may not be

suitable for networks with variable congestion scenarios, basically due to two remarks:

Remark 1 If the network is congested, a minimum transmission throughput can result in a reception

throughput below the minimum required to maintain stability, due to packet loss.

Remark 2 If the network is not congested, increasing the transmission rate improves the performance
of the NCS, but the rate should stay below the available capacity on the network, because the delay
increases due to saturation of the queues of the intermediate routers [4].

The packet selection process that allows the deadband solution is suitable as a prioritization system
for NCS data on shared networks, but does not take into account the state of the network to maximize
the performance of NCS. This paper proposes a deadband modulation system taking into account the
previous mentioned remarks. To module the deadband, a TCP-friendly flow control algorithm is used as
transport protocol, and the complete middleware solution is called TCP-friendly NAD.

A flow is TCP-friendly if its arrival rate is approximately equal or slower than the rate of a conformant

TCP connection under the same network conditions [6].

1
PG = thpit/sec = V3/(RTT/2p) (2)

The conformant TCP throughput without retransmission follows Equation (2) for fixed packet size.
In Equation (2), p represents the probability of packet losses and RTT the round trip time. [ PG is
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an acronym for Inter-Packet Gap, which represents the time between packets sent, and th stands for

throughput, in packets per second.

TCP-friendly requirements can be mandatory for new Internet protocols in order to share the Internet

with good results. This feature can be exploited by other shared networks, and could be necessary for

multi-agent systems.

The benefits of the proposed transport scheme can be seen in Figure 2. This figure shows a

comparison between commonly used transmission schedulers and the NAD, where the points represent

a transmission event.

Figure 2(a) represents a transmission scheduler for a constant sampling rate with period 75, but
without transport flow control or deadband.

Figure 2(b) represents a transmission scheduler for a constant deadband sampling with a deadband
value of ¢ according to Equation (1).

Figure 2(c) represents a transmission scheduler based on a TCP-friendly transport protocol, with
different network congestion scenarios, where NV, represents the network use. In this figure, the
I PG depends on the transport flow control algorithm, that generally depends on the network usage:
with high congestion situations, the packet send period or / PG is high ({/ PG,), and it decreases
in low congestion scenarios (I PG > I PGy > I PGj).

Figure 2(d) represents the proposed network adaptive deadband solution, a deadband scheduler
based on the network usage /N,,. In this subfigure the value of the deadband depends on N,,. It will
have a larger deadband (d;) in a high congestion network environment, and a smaller deadband
(3) in a low congestion situation. Note that 6; > do > 3.

Figure 2. Points representing data transmission events for diverse transmission schedulers.
(a) Fixed sampling rate with period 7; (b) constant deadband with value J; (c) variable
transmission rate with the Inter-Packet Gap (/ P() value depending on the transport flow
control algorithm; (d) network adaptive deadband (NAD) tracking network usage N,,.
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The main reason for using this deadband solution rather than the constant deadband, amplitude

relative deadband [7] or pure transport protocol is that the reduction of data sent caused by the constant
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deadband is not always required on shared networks (see remark 2). Besides, this reduction is at
the expense of an increment in the NCS error or a decrement in the psychophysical perception of
the tele-operated system. At the same time, packet loss in the case of constant deadband can cause
instabilities if the transmission scheduling rule is in the low limit of acceptable throughput (see remark 1).
A pure transport protocol such as the trinomial algorithm, adapted to the network scenario, can share the
network with fairness, but it does not guarantee any of the NCS requirements to maintain stability.

On the other hand, a schema that combines the two aforementioned solutions can share the network
with fairness requirements, and at same time, they can maintain the best available performance in a
variable network scenario.

The paper is organized as follows. Motivation, originality and introduction to preliminary concepts
such as TCP-friendly and deadband are advanced in this section. An overview of the related work is given
in Section 2. Section 3 shows a general scope of Network Adaptive Deadband and defines the different
elements involved in the scheme. The proposed TCP-friendly based deadband control is presented in
Section 4 and its application to a tele-operated gantry-crane is showed in Section 5. Simulation and
experimental results that compare constant deadband and adaptive deadband in a shared network are
presented in Sections 6 and 7 respectively. Finally, the conclusions and future work are described in
Section 8.

2. Related Work

Network and control system relationship in an Internet based NCS or in tele-operation systems is
usually limited to adapt the controller design to several network variables (such as the delay constraint,
the delay variation and the number of consecutive losses).The common solutions for the control system
use the network as a passive element, and in the case of Internet, solve the transport problem using the
UDP transport protocol. On the other hand, common network solutions for NCS investigate the creation
of new protocols and data flow control algorithms. In this case, control systems are used as applications
without considering the contents of the data to be transmitted. Modern techniques have emerged with
the generic name of co-design that try to model and integrate the network in the control system. Some
authors refer generically to this topic as Network Based Control (NBC). There are different solutions to

this problem that we classify in the following four approaches.

2.1. Packet and Deadband Based Control

This line scans the contents and structure of NCS data packets to optimize the network performance
and efficiency [8,9]. These methods allow to work on predictive control, because the controller (or the
plant) can send actual, past and future NCS data, in the same packet. Thus, if the data is lost or not sent,
the other extreme has predictive information received in previous packets [1,10].

Deadband control applied to NCS focuses initially on modeling Networked Control Systems [5]
analyzing the performance effects of limiting packet transmission to reduce the network traffic. This
makes the communication medium more efficient, and time delays are minimized.

In [7] a passivity approach for deadband control is made for haptic tele-operation, and later,
perception Weber-inspired deadband approaches were made [11]. In [2] a study about the relationship
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between the sampling rates of a control system, and the transmission rates of a local communication
network, is made. A similar solution to the one proposed in this paper has been presented in [12].
However, the work in [12] was made specifically for wireless sensor networks; in [13], the predictive
deadband allows to study the influence of different factors, such as the CPU load, on the efficiency
of deadband sampling. These works focus the deadband study to improve the performance of sensor

networks, optimizing the network and/or the power consumption of the whole system.

2.2. Codesign of Control and Transmission Rate

This line of work studies protocols, middleware systems and control theory. The work of Nesic and
Teel [3,14] focuses on the transmission rate (or sampling) problem of nonlinear systems.

In event-triggered control, the control input is updated when a certain condition of the state of the
plant is met. For example the work of P. Taboada and M. Mazo in [15,16] and the references therein
present very interesting results in modeling sampling rate (or transmission rate) and control system.
In self-triggering control [17], the controller calculates the next sampling-time as a function of the
state of the plant. The target of the triggering control is to minimize the energy requirements, without

compromise the performance of the control system.

2.3. Codesign of Control and Gain

In [18] a middleware system that modifies control gains in PID controllers is studied. The system
takes into consideration the network status. The controller output algorithm depends on the remote
plant and the controller global configuration. The state of the network is obtained by sending probe
packets. More recently, in [19] a network delay-dependent gain scheduling law is used on an Ethernet
shared network.

2.4. NCS Specific Transport Protocols

In the transport layer, there are some solutions related to the UDP protocol, developing flow-control
and TCP-friendly features, such as TFRC [20], DCCP [21] or the trinomial algorithm [22]; Recently,
Wirz et al. have worked in transport protocols for robotics, such as the Bidirectional Transport
Protocol (BTP) [23]. BTP is an end-to-end flow control protocol that minimizes the round trip time
while maximizing the transmission rate. The Tele-operation Data Transport Protocol (TDTP) [9]
focuses on the bidirectionality of the NCS data flow to improve the efficiency of the transmission rate.
Bidirectionality of the NCS systems in transport protocols is used to determine the network status in the
packet header of the reverse flow.

In the Link Layer of the OSI model, CAN, HART or EtherCat, and the technologies like Ethernet,
Wifi 802.11, bluetooth or ZigBee are suitable as the local segment of the Internet NCS connection with
an appropriate gateway to the Internet link.

To our knowledge, no work has been done to relate deadband sampling and transport flow
control algorithms.
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3. Network Adaptive Deadband Proposed Scheme

The solution presented here is a middleware that combines transport and application layer
functionality. The application layer will deliver NCS status data to the transport layer and the transport
layer looks to the application data fields. Figure 3 shows a detailed box diagram of the functionality and
data flow between the layers. Network status is calculated using a bidirectional transport architecture,

where the network information is inserted in the transport header.

Figure 3. Network Adaptive Deadband general middleware.
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The middleware uses two threads. The Reception thread delivers application data directly to the
NCS. The Transport Data (TD) of the Transport Header (TH) are processed in the transport layer by the
Transport Control Function (TCF), where the flow control algorithm is implemented. The TCF generates
Transport Control Data (TCD) that includes processed information regarding the network status. This
TCD is provided to the Deadband Function (DF), which relates throughput and deadband. Optionally,
application control information such as error, Average Error (AE) or predictive data, can be used as DF
input. These data are called Application Control Data (ACD).

The Transmission thread filters NCS data with the Deadband Filter (DFi), which uses the deadband
value obtained dynamically by the DF in the reception thread. Deadband filter is implemented using
the sending event function defined in Equation (1). The proposed adaptive deadband formulates the
deadband function as in Equation (3), where th, RTT, p are the throughput, round-trip time and packet
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losses respectively ; these variables are used as TCD data. Average error (AF) or instantaneous error
(error) are proposed ACD data.

§ = f(TCD, ACD)

d = f((th, RTT,p), (AE,error)) ©)

4. TCP-Friendly Adaptive Deadband

In this section, the transport control scheme and the deadband function for the TCP-friendly Adaptive
Deadband are described.

4.1. Transport Control Scheme

The implemented transport scheme focuses on the flow control algorithm and on the use of
bidirectionality in NCS data flows.

The transport control function (7'C'F’) implemented is the trinomial flow control algorithm [22].
The trinomial algorithm calculates the / PG and differentiates increment and decrement transmission
rate intervals. To compute the transmission rate, the algorithm uses three parameters («, 3, y), and the
RTT. The RTT is measured using timestamps. The sender selects an increment or decrement interval
depending on a backward packet loss tag. This tag, called Backward Congestion Notification (BCN), is
inserted in the reverse flow by the receiver and received by the sender. The details of this tag and the

way it is included in a bidirectional data flow, are explained in our previous work [9,24].

Figure 4. Bidirectional transport header for trinomial algorithm and data structure for
tele-operated gantry crane.
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In the direct flow between sender and receiver, the receiver detects the loss of packets by computing
a sequence number and reports it to the sender setting the BCN tag to one (BC'N = 1). If there are
not packet losses, the BCN tag is set to zero (BC'N = 0). Figure 4 shows the transport header format
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of the implemented trinomial algorithm, with the BCN tag, the sender sequence number and sender and

receiver timestamps.

IPG, - W
S W e BON = 1
PG T 1 BC

IPGH_l - (4)
PG, if BON =0

Equation (4) shows the way the transmission rate is decremented (with BC'N = 1) or incremented
(with BC'N = 0), where W > 0 is a variable depending on 7, o and RT"T". Parameter 5 < 1 is an initial
parameter. To know how this algorithm is determined and the details of how it works, see the work of
Liu et al. [22].

4.2. Deadband Function

In this work, we have chosen as deadband function the relationship between transmission rate (or
throughput th) and deadband (§ = f(th) = &). The implementation of the trinomial algorithm
presented in Section 4.1 meets the TCP-friendly requirements, and gives a way to calculate the
throughput ¢h by calculating the inter packet gap I PG = 1/th.

Figure 5. (a) Linear approach of th(¢); (b) Throughput and error versus deadband.
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Obtaining an analytical solution to the relationship between ¢th and deadband (0 = f(th) = dy,) is
complex and can be attempted using rate-distortion theory [25] or a simple linear approach. From the
rate-distortion theory, the throughput-deadband relationship is a continuous, monotonically decreasing
convex function, and tends to have very similar forms in real implementations. Figure 5(b) shows these
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relationships. Experiments, simulations and related literature [1,2,5,7,25-27] show that this relationship
always has that form.

The purpose of this work is not to determine an exact representation of d,;, but a deadband function
easy to implement, maintaining the lower and upper bound of the transmission rate to achieve the
performance of the control system. A similar simulated method for Wireless Sensor Networks, was used
in the work of Xia ef al. [12]. Lower and upper bounds of the throughput can be obtained by diverse
methods or analysis, such as the ones presented by Tatikonda et al. [28]. From [4], in Internet with TCP
congestion, the upper limit of the transmission rate should be smaller than without congestion (th,,4.);
with UDP congestion, the lower limit should be bigger than without congestion (th,,,;,). However, the
DF has the form in Figure 5(b), where the bounds are also represented.

The linear approach of the DF can be obtained with a basic analysis for a linear and uniform output
signal (z(t)) in one extreme of the NCS with high sampling rate (sr), as seen in Figure 5(a), where
T, = IPG is the transmission period, 7, = 1/sr is the sampling period, ¢ is the fixed deadband
value and z, is the difference between consecutive sampled data. In this case, these parameters satisfy
Equation (5).

1 Tq 1
— —th=2%._ 5
T, 5 T, ©)

However, in packet based NCS, the output is a discrete function. Therefore, in order to satisfy

};iH(l) th = sr, the previous equation has to be changed to:
—

- 5 + Tdq
In dynamic environments, the output signals are nonlinear and discontinuous, and the DF ¢, changes

th sr (6)

dynamically with the environmental states. To reflect this non-linearity and discontinuities in output
signals, the transmission rate is estimated as an average of the different linear functions adding a new
parameter n; in Equation (6). The transmission rate (th(9)) is then characterized as a function of the

system and controller dynamics, reference trajectory, and the chosen deadband [2] in a simple way.

<
oMt
In Equation (7), the parameter c is directly related with the average of the modulus of the output signal

th(9) sr (7)

variation (z4), and should always have a positive value. The parameter n; is obtained by simulation and
is in the range of 0 < n; < 1.

The function ¢, should be have a maximum deadband ¢,,,, and a minimum deadband 6,,;, to
maintain acceptable performance. The maximum deadband depends on the minimum acceptable
throughput th,,;, = 1/IPG,., and a measure of maximum allowed error of the NCS (E,,..), as seen
in Equation (8).

5max = min{éthmm’ 5Emacc} (8)

The minimum deadband depends on the maximum acceptable throughput th,,,., depending on the
queue size of the intermediate routers of the network [4].
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These values are important to limit the range of the deadband function and to guarantee the stability
of the NCS.

Figure 5(b) represents the typical relationship between deadband and throughput (th(d)) or error
(E(0)), where deadband limits are also reflected. The th(d) function varies with the traffic load of the
shared network, as seen in the figure. The error vs. deadband curve is represented as £/(J) and his
formulation is out of the scope of this paper. Equation (7) corresponds to the D F'~! throughput curve of
the Figure 5(b).

For fixed packet size, th of Equation (7) can be replaced by 1/ PG, and the deadband function DF

can be represented as:

DF =6ipg =4 6= [c(IPG-sr — D] if § < bpaz )
5771(1.1’ lf 6 Z 5maac
Figure 6 represents the TCP-friendly Adaptive Deadband scheme on the controller side, but it is
similar on the plant side.

Figure 6. TCP-friendly adaptive deadband.
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4.2.1. Determining the Optimal Constant Deadband

These approaches can be used to determine the constant deadband filter, by using the procedure
presented in [5], and summarized below:

P(6) = K, - thy(6) + Kz - E,(6)

P(6,) = ming{ Ky - thy () + Ky - E,(8)} (10)

Constant deadband selection should follow the criteria in Equation (10), where P(0) is a deadband
dependent global performance function and ¢, is the optimal deadband value. Throughput and error
should be normalized (th,, = th/sr and E,, = E/FE,,,,). K and K, are weighting and scale factors.

The results obtained in simulation show that optimal deadband for an NCS varies with network
conditions and reference signals.

4.2.2. Stability Issues

There are some stability analyses for NCS using deadband. In [5] the deadband is modeled as a
vanishing perturbation. Then, if the original system is exponentially stable, the existence of a Lyapunov
function is guaranteed in the perturbed system. Using the BIBO (Bounded Input Bounded Output)
concept for NCS with LQR controllers, we can use the principle that any stable and linear system with
bounded inputs generates bounded outputs. In a similar way, Lian ef al. in [2] demonstrate stability
for networked multi-agent systems that use deadband in the communication modules. For adaptive but
bounded deadband, a similar principle can be used.

For tele-operated systems, the passivity approach based on scattering transformation [7] may be used
to demonstrate stability using a bounded deadband.

5. TCP-Friendly Adaptive Deadband for a Tele-Operated Gantry Crane

The proposed schema has been tested in some control systems in our laboratory, such as a
Mass-Spring and a gantry crane with a PID controller.

To present a practical implementation of the proposed solution, we use an application where the
tele-operated slave is a laboratory crane, which is a scale model of a typical industrial gantry crane, and
the master is a human tele-operator. The crane is equipped with actuated motors and sensors. Although
the true dynamics of the crane are nonlinear and coupled, it will be assumed that the crane movements
are smooth and slow, and that the swing angles of the load are small enough. Under these assumptions,
the linearization of the crane is adequate to model the system. Furthermore, in this situation, the =, y, 2
dynamics become uncoupled. The vertical (or z) dynamic is controlled by the motor that lifts the rope.
The x and y dynamics are formally equivalent and contain the load balance or swing. We will concentrate
our attention on the x (or y) movement of a cart, provided by a motor, hanging a swinging load, not
actuated, with a rope of fixed length.
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The relation between the cart position x(t), the swing angle ,(t) and the force Fi(t) exerted by the
cart motor is given by:

Fy(s) = M| (s* + Bys) - xs5(s) — M, - g - 05(s) | (D
Fy(s) = (—~LoM,)(s* + Bos +w8) - 0(s)
where M, is the mass of the cart or trolley, wy, = (1 +M“)L£’ with L, the rope length,
0

Mload

M, =

S
s to denote that this is the slave system in the tele-operation scheme. A state-spaced model can be defined

with M4 the load mass and B, B, the damping coefficients. We have used the subscript

considering the state vector z(t) € R" as:

T
2= ( 2() vst) 0.(1) wilt) ) (12)
where x,, v,, 05 and w; are the slave position, velocity, swing angle and angular velocity. In state-space

the system is described with the following expressions:

% 0 1 0 0 2 0
Z9 0 —B; M,-g 0 29 L
S el I R T N P e I R
24 0 0 —wg —by 24 —ﬁ (13)
21
vy (1000 29
yw ) L0010 2
24
Or in compact form:
Z(t) = Az(t) + BF(t) (14)

y(t) = Cz(t)
For the implemented dynamic model of the 3D crane Inteco Ltd. the numerical values are:

0 1 0 0 0
0 —18.3 0.959 0 7.2
(1) = t)+ - Fy(t 15
O IR FORS ) (15)
0 0 -9.5 —0.003 —0.95

The controller at the master side receives the state information from the slave side and implements a
linear quadratic regulator LQR for a steady-state optimal control. The selection of weighting matrices

()1 and (), is made so that the cost function is:

J = [Z(:TQuz + FTQuF,)dt

1 0 0
0 0 O
0 0 25
0 0 O

(16)

Q1 = , Qg = 2.0408

o O O O
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Moreover we introduce the Pincer procedure, a modification to the performance criterion that allows
a degree of direct control over the settling time:

Jo = [T Qrz + ul Qe Fy e dt = [ (w' Quw + u' Qy)dt (17
w(t) = e*z(t), u(t) = e* F,(t)
From the definitions in Equation (17) the revised system for use in a LQR computation for the

feedback gain matrix is:

W(t) = (ligs + A)w(t) + Bu(t)

18
u(t) =N -r(t) — K -w(t) (18)
where 7(t) is the reference for the controller. If the designer selects the settling time ¢, = 3, within which

all states should settle to less than 2%, it is obtained:

2(t) = z(0)e

L, 19
2(ts) = 2(0)e™ = < 0.02-2(0) = a > t50 (19

The slave and the LQR controller by the master are using now the equations in Equation (11).

After some trials, the requirements of the system are accomplished with a control law given by
K = (12.1661,0.6646, —22.8596, —3.4107) and N = 12.1661.
Figure 7 shows a representation of the tele-operated gantry crane, simulated in this work.

Figure 7. Tele-operated gantry crane.

ang
| 2= (21,22,23,24) dang

5.1. Adaptive Deadband Function

The deadband function should be determined for the master and the slave sides, but as illustrative
example, only the process for the master side is presented. In this process, the slave side remains with a
constant deadband of value 0.

Figure 8 represents the experimental functions o, and dp for the network conditions of the
experiments, using the gantry crane with sinusoid reference signal of amplitude 10 and period 15 s.
The approximate functions given in Equation (7) are also represented.
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Figure 8. Throughput (th,,) and average error (E,,) response vs. deadband (¢) with different
network status for a tele-operated gantry crane. Reference signal is 105in(27r1i5t).
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The function th(d) parameters are approximated as ¢ = 0.0035 and n; = 1. For higher reference
periods, the deadband function parameter ¢ should be decreased, and parameter n; varies with more
abrupt signals, such as a square signal.

The normalized function is:

0.0035

thn(0) = 50035 I (20)

Therefore, in Figure 8 for E,,,., = 2.5 (£, = 1), the deadband has an approximate value of

Omaz = 0.25, and 6,,;, = 0, for the maximum throughput th,,., that equals the sampling rate of
1,000 pkt/s.
The deadband function DF for the studied tele-operated gantry crane is:

. 21
0.251f 6 > 0.25

On the slave side, using the same approximation methodology, the parameters ¢ and n, are the same

{ § = 0.0035 - (IPG - 1000 — 1) if § < 0.25
Orpa =

than on the master side, but the function £(0) remains approximately constant. Therefore, a value of
Omaz = 10 can be adopted.

5.2. Constant Deadband for a Gantry Crane

The same reference signals are used to obtain the constant deadband. Results obtained in simulation

and approximated minimum are shown in Figure 9 for some network congestion situations. The
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minimum is within the range of 0.01 < 6. < 0.05. In the Figure 9, the optimal constant deadband
value is approximately o, = 0.02145 for a sinusoid reference signal with period 15 s.

Figure 9. Constant deadband, experimental and approximated for a gantry-crane. Reference

signal is 10sin(2m-ct).
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6. Simulated Example: Sharing the Network

The simulations in this section compare constant deadband (CD) with network adaptive deadband
(NAD) in different network scenarios. The reason to make this comparison is to show the effectiveness
of the NAD solution with respect to the CD solution in scenarios with high congestion when more than
one NCS is used.

Simulations were made with two tele-operated gantry cranes. The two systems use different reference
signals. The gantry crane 1 (gcl) uses a sinusoid reference signal with period 15 s and amplitude 10, and
gantry crane 2 (gc2) uses a triangle reference signal with period 18 s and amplitude 10. Both reference
signals are continuous and slow and have similar deadband parameters.

We use the co-design framework in [4] based on the simulation suite NS2. The network topology
implemented is represented in Figure 10. The transport boxes in the figure can use a configured NAD

transport schema, a constant deadband transport schema or a pure bidirectional transport protocol.

Figure 10. Simulation (a) and Experimental (b) topologies.
TCP Sources/Sink TCP Sources/Sink H

.
'
GC1 ' Middleware
H Deadband ey

E UDP traffic GC2

v T
H \ -
n i . RN
H ' 3
R2 Transport ': H /‘ Internet
X ! S
' D \
H
'

_ L =]
UDP Sources/Sink UDP Sources/Sink
'
a) Simulation topology ' b) Experimental topology

To simulate the Internet, we use a scenario with TCP and UDP traffic from diverse sources. The

network topology uses a bottleneck trunk link between two routers with 1 Mbps capacity. The access
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links capacity to the routers is 10 Mbps. All links are symmetric. The two routers implement a Drop-Tail
queue with a queue limit of 15 packets. Simulations were performed over a total of 100 s with hard
bottleneck congestion of 80% due to UDP and TCP traffic, but no UDP congestion is simulated between
20 s and 40 s in both directions to show Best Effort characteristics.

A comparison between the optimal constant deadband functions and the adaptive deadband functions

is made, with deadband function parameters deduced in Section 5, as shown in Table 1.

Table 1. Deadband function for a Gantry Crane.

refga =10 - sin(27/15 - t)
refgee = 10 - triang(T = 18.1)

master to slave (ms)

slave to master (sm)

0.0035 0.0035
thy (5) 2 T
0.0035 4+ 6 0.0035+ 6
(5min7 5max) (07 025> (07 10)
O 0.02145 1

Figure 11. Simulation results for constant deadband.
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The results are presented in Figure 11 for constant deadband and in Figure 12 for adaptive deadband.
In the figures, the top graphs represent reference position of the master (), and output of the slave (z;).
The middle graphs represent the output of the master () compared with a suitable scaled throughput
from the master to the slave, for clarity purposes. The bottom graphs represent the throughput of the
tele-operated system from the master to the slave (th,,s), compared with the remaining use of the
network N,. Figure 11 in the constant deadband case shows that the two data flows compete to gain
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the network resources, and one of them (or the two) can be unstable. Using the sinusoid reference signal,
the throughput is low on the top and bottom parts of the signal because of slow variation, and the gantry

crane 2 has problems to maintain stability.

Figure 12. Simulation results for Network Adaptive Deadband.
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In Figure 12, with high variations of the master output, the bandwidth consumption of the system is
high, until the output stabilizes, but remains fair with the rest of network traffic.

Figure 13. Performance comparison between optimal constant deadband and network

adaptive deadband in the simulation.
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Finally, Figure 13 shows a performance (Equation (10) with K} = Ky = 1) comparison between
TCP-friendly adaptive deadband and optimal constant deadband for the two gantry cranes. The results
show that the adaptive deadband has better performance than the constant deadband for the long

time operation.

7. Experimental Results

To validate the effectiveness of the proposed solution, NAD middleware was implemented in a real
Internet scenario between an emulated Master through a normal ADSL Internet access and an emulated
Slave through a high capacity Internet access in a University laboratory. The transport protocol used
is presented in [9], based on a bidirectional implementation of the trinomial algorithm. The transport
packet header is over the UDP protocol as shown in Figure 4, where the data structure is also depicted.

Experimental platform is presented in Figure 10(b), where the plant and controller are the emulated
gantry crane and the LQR controller described in Section 5. The emulated system uses a triangle
reference signal with period 18 s and amplitude 10. Similar transport parameters as gc2 in the
simulated scenario of Section 6 were used. The parameters are represented in Table 1. Measured
network conditions between both extremes have an average RTT of 43msec and 20% packet losses
at a transmission rate of 200pkts/s with 100bytes packet size.

The experiment compares the same tele-operation system with different transport solutions, in
particular with an only TCP-friendly transport protocol, with the constant deadband solution and our
NAD solution. Results are not presented graphically for the TCP-friendly transport protocol because the
tele-operated system becomes unstable. Graphical results for the other cases are presented in Figure 14.

Figure 14. Compared results between NAD and constant deadband in the real Internet link
for the gantry crane and the LQR controller.
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The results show that the NAD has better performance than constant deadband. In
some circumstances, with high congestion, constant deadband can become unstable while NAD
maintains stability.

8. Conclusions and Future Works

This paper proposes a new middleware solution to improve long-time operation of an NCS through the
Internet or any shared network based on IP technology. This solution is useful for sensor networks where
the network use or the power consumption is of special interest. The proposed middleware takes into
account the network status and the NCS status to decide whether to send the output of the system. In that
way, the network can be shared more effectively between several NCS or other bidirectional real-time
flows, and the middleware can be used as a complement to a well-designed NCS on an unpredictable
shared network. In this case, simulation and experimental results show that the proposed solution has
better performance than a TCP-friendly transport protocol or a constant deadband solution.

The proposed scheme, called Network Adaptive Deadband or NAD, is a solution for network
and control integration, using a simple relationship between deadband and TCP-friendly transport
throughput. An experimental procedure is presented to estimate this relationship. Simulation and
experimental results show that the middleware presents good performance in any network conditions,
with a TCP-friendly transport control protocol applied to an estimated deadband function.

The results are of interest to maintain NCS stability and TCP-friendly flows, through IP-based
networks. TCP-friendly protocols and deadband sampling do not ensure by itself best network and
control system performance, but together they may give enough reasons to improve the use of the
network and to maintain the control system stability. The utility of the network adaptive deadband is
not restricted only to IP network applications, but in fact is also applicable to collaborative robotics in
local networks, sensor networks, MMMS tele-operation or plants with several data flows.

The simulation and experimental results show that the middleware presents good performance in any
network conditions, with a TCP-friendly transport control protocol applied to an estimated deadband
function. The results evidence that network adaptive deadband is a good solution to share a public
network as Internet for several NCS. The optimal constant deadband criterion can be adequate when there
are no other NCS data flows that can collapse the network, but can be inefficient and generate instability
caused by non-regulated flow control. Adaptive deadband can regulate the data flow depending on
network status, and permits other NCS data flows to share the network. The utility of the network
adaptive deadband involves not only IP network applications but also collaborative robotics in local
networks, MMMS tele-operation or plants with several data flows.

The solution presented has a practical nature, but as a future line, a more theoretical depth is required
to refine the deadband function and to analyze and model the network-dependent deadband. To do this,
control system equations and transport models should be mixed. The research lines of event-triggering
and the attempts to relate protocols and control design are interesting start points.
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