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Abstract: Subsurface environment sensing and monitoring applications such as detection 

of water intrusion or a landslide, which could significantly change the physical properties 

of the host soil, can be accomplished using a novel concept, Wireless Signal Networks 

(WSiNs). The wireless signal networks take advantage of the variations of radio signal 

strength on the distributed underground sensor nodes of WSiNs to monitor and characterize 

the sensed area. To characterize subsurface environments for event detection and 

classification, this paper provides a detailed list and experimental data of soil properties on 

how radio propagation is affected by soil properties in subsurface communication 

environments. Experiments demonstrated that calibrated wireless signal strength variations 

can be used as indicators to sense changes in the subsurface environment. The concept of 

WSiNs for the subsurface event detection is evaluated with applications such as detection 

of water intrusion, relative density change, and relative motion using actual underground 

sensor nodes. To classify geo-events using the measured signal strength as a main indicator 

of geo-events, we propose a window-based minimum distance classifier based on Bayesian 

decision theory. The window-based classifier for wireless signal networks has two steps: 

event detection and event classification. With the event detection, the window-based 

classifier classifies geo-events on the event occurring regions that are called a classification 

window. The proposed window-based classification method is evaluated with a water 

leakage experiment in which the data has been measured in laboratory experiments. In 
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these experiments, the proposed detection and classification method based on wireless 

signal network can detect and classify subsurface events. 

Keywords: subsurface sensing; subsurface event detection and classification; Wireless 

Signal Networks (WSiNs)  

 

1. Introduction 

Wireless sensor networks have the potential to be implemented in subsurface sensing and 

monitoring applications, which are called Wireless Underground Sensor Networks (WUSNs) [1]. The 

key applications could be monitoring subsurface hazards and characterizing subsurface environments 

in real-time using wireless sensor nodes. In the applications of subsurface hazard monitoring, wireless 

sensor networks can be used for slope monitoring or predicting landslides [2,3]. Subsurface wireless 

sensor nodes can adopt existing sensing devices (e.g., MICA2/z with MTS300/310/400/410 for light, 

temperature, humidity, barometric pressure, seismic, acoustic, sounder, and accelerometer [4]). 

However, the sensor nodes only provide point measurements and are incapable of providing regional 

measurement for characterization and monitoring of subsurface medium. To characterize and monitor 

subsurface environments, the concept of Wireless Signal Networks (WSiNs) is introduced in this 

paper. WSiNs use the wireless signal strength variation between the distributed sensor nodes as the 

main indicator of a subsurface event or physical change in the host medium. 

The potential subsurface monitoring applications include landslides, earthquakes, and active fault 

zone monitoring which involve soil movement [1,3]. The monitored events in the applications are 

characterized by the localization of sensors. This localization allows sensors to estimate their locations 

using information transmitted by a set of seed sensors. Other potential applications of characterizing 

subsurface environments include monitoring of oil leakage from subsurface reservoirs, water leakage 

from underground pipelines, seepage in earth dams, and estimation of soil properties and conditions [5]. 

The soil properties and conditions such as degree of compaction, gradation, and salinity level can 

potentially be monitored based on the Received Signal Strength (RSS) information, which are 

demonstrated in the paper. The received signal strength with respect to distance from the source can be 

considered as information to be classified for different events. The received signal strength information 

can be classified by minimum distance classifier using Bayesian decision theory. In the application of 

Bayesian theory to runtime wireless underground sensor networks, the computational power is an 

important factor to be considered because wireless sensor nodes have limited computational power. In 

the paper, a window-based minimum distance classifier is proposed for a computationally efficient 

classifier for wireless signal networks maintaining high accuracy with less computation. The paper 

aims to make four contributions: 

 A novel concept of Wireless Signal Networks (WSiNs) for subsurface event detection and 

classification based on the underground radio propagation is introduced. The concept is 

demonstrated through experiments using real wireless sensor nodes. Compared to the existing 



Sensors 2012, 12 14864 

 

 

geo-sensing and monitoring methods, the concept provides both point sensing and regional 

sensing between the underground sensor nodes in real-time.  

 A detailed list of soil properties is provided with experimental data on how radio propagation is 

affected by soil properties in subsurface communication environments. With the 

comprehensive analysis of soil properties in subsurface communication environments, network 

designers and researchers can estimate underground communication radius and network 

capacity, and use the experimental data for their underground wireless network design. 

 The WSiN concept is evaluated for the event detection of subsurface applications such as 

detection of water intrusion, relative density change, and relative motion using actual 

underground sensor nodes. For the event detection concept and experiment, a new type of 

subsurface sensing system is developed. 

 A window-based minimum distance classifier based on Bayesian decision theory is evaluated 

with the water leakage experiment. The received signal strength information over the existing 

underground communications of wireless sensor nodes is used as a tool for subsurface event 

detection and classification with high accuracy and less computation.  

The rest of the paper is organized as follows: In Section 2, the paper describes existing subsurface 

monitoring techniques. Section 3 introduces the concept of wireless signal networks and their 

applications as well as challenges and solutions of wireless signal networks. In Section 4, the paper 

provides the soil properties affecting received signal strength with experimental data. Then, in  

Section 5, the paper presents subsurface event detection and classification methods. In Section 6, the 

paper provides the performance evaluations and discussion. Finally, Section 7 concludes the paper. 

2. Existing Monitoring Techniques  

Electromagnetic (EM) wave propagation has been widely used in soil science as a means of  

geo-sensing and determination of some soil properties. For instance, moisture content and salinity of 

soil have been measured using different techniques including four-electrode sensors (surface array or 

insertion probes), remote electromagnetic induction sensors [6,7] and time domain reflectometric 

sensors [8]. Also, ground penetrating radar (GPR) and active microwave remote sensing have been 

implemented in soil moisture detection [9,10].  

In general, subsurface monitoring has been accomplished through destructive and non-destructive 

techniques including direct soil sampling, probing and soundings, and using geophysical mapping 

tools. Although these techniques have been successfully implemented to characterize the state of  

geo-media, there are challenges associated with these techniques including difficulties in providing 

real-time data to track geo-hazard (e.g., landslides, slope failures) and deployment challenges 

specifically the requirement of wired connections in some conventional techniques. 

To address some of these challenges associated with the aforementioned techniques, wireless 

sensors have been used recently for subsurface monitoring. Current applications of wireless sensors 

include measurements of earth-slope inclination, landslides, strong ground motion, and soil-structure 

interactions [11–15]. In the examples cited above the sensors are attached to the exterior of the system 

of interest and embedded using supplementary frames. These sensors are designed to measure a 
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specific property (point measurement) and transmit the collected data via wireless communication. 

Recent papers introduced a new approach that uses the characteristics and changes of the wireless 

signal as an indication of the changes in the properties of the host medium [16–19]. 

3. Wireless Signal Networks 

3.1. Concept of Wireless Signal Networks  

Wireless Signal Networks (WSiNs) use the radio signal strength variation as the main indicator of 

an event in the physical domain of the wireless signal network [18]. Soil properties such as density and 

water/mineral content are known to affect radio wave propagation. When and if these physical 

properties of the host soil change during the evolution of a geo-event (subsurface event), they in turn 

affect the transmission quality and strength of the radio waves within the region of the event. Using the 

new approach, regional subsurface monitoring in real-time can be achieved. Figure 1 shows the 

concept of subsurface monitoring with wireless signal networks for detection of landslide and chemical 

plume/oil leakage. The new approach could provide both point sensing and regional sensing between 

the underground transceivers, and real time measurements that potentially can be used for subsurface 

monitoring. 

Figure 1. Subsurface monitoring with Wireless Signal Networks (WSiNs). 

 

3.2. Underground Radio Propagation  

A free-space radio propagation model can be used to predict the Received Signal Strength (RSS) 

between the transmitter and the receiver based on the clear and unobstructed line-of-sight (LOS) path 

between them. A well-known radio transmission formula was introduced by H. T. Friis in 1946 [20]. 

The received power in free space is given by the Friis free space equation as follows: 
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where 
rP  is the received power which is a function of the transmitter-receiver distance, 

tP  is the 

transmitted power, 
tG  is the transmitter antenna gain, 

rG  is the receiver antenna gain, d is the distance 

between the transmitter and receiver, L  is the system loss factor not related to propagation ( 1L  ), 

and   is the wavelength [21]. 

In geo-media, the signal strength attenuation is much faster than in air due to the transmission 

power loss in the medium. For lossy dielectrics, the permittivity and electrical conductivity are 

dependent on the operating frequency. These two properties characterize the displacement 

(polarization) current and the conduction current which incur the power losses of the electromagnetic 

wave in the soil [22]. An accurate and simple subsurface wireless signal propagation model for  

low-power devices (i.e., wireless sensor nodes) at a frequency of 2.4 GHz was developed and its 

performance was evaluated using real wireless sensor nodes (MICAz) [23]. In the underground radio 

propagation model, the underground medium has permittivity 
0r   , permeability 

0 , and electrical 

conductivity σ, where 
0  (8.85 × 10

−12
 F/m) is the permittivity and 

0 (4π × 10
−7

 H/m) is the 

permeability of air. In the derivation of the underground radio propagation model, the source is 

imagined to be a vertical electric dipole of length ds and carrying a current I. The received signal 

strength in geo-media (soils) is defined as follows: 
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where effA is the effective antenna area of the receiver, 
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 is the intrinsic wave impedance 

of the medium,   is the phase angle of the intrinsic impedance 
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e   ,   is angular frequency, 
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 [23]. Comparing the theoretical estimations of the underground radio 

propagation and the measured data using MICAz (2.4 GHz), the theoretical model fits the measured 

data well within a 3.45 dBm deviation or with an accuracy of 96.33% on average [23]. 

3.3. Applications for Wireless Signal Networks  

To monitor underground environments, the underground radio propagation model can be used by 

underground wireless signal networks which use the wireless signal strength variation in the soils as 

the main indicator of an event. By analyzing the received signal strength, the wireless sensor networks 

can collect additional information from the wireless data carrier. The targeted events are subsurface 

hazards such as a landslide or earthquake which involve a lot of shifting and moving of earth masses, 

and the intrusion of a chemical plume which would dramatically change the physical properties of the 

host soil as shown in Figure 1. These events would affect the transmission of radio waves and the 

received signal strength in the region. Because the underground received signal strength deviation is 

very small, the subsurface events can be detected by the signal strength deviation as follows: 

( , ) ( , )r rP d t P d t t   , where   is the deviation criterion which can be empirically determined 
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based on the underground environments. If the soil condition is changed due to an event such as water 

leakage on the medium between sensors, the sensor can detect the event based on the decreased 

received signal strength and classify the event based on the reference data which can be generated by 

Equation (2) or empirical data. 

3.4. Challenges and Solutions of Wireless Signal Networks  

The deployment of wireless signal networks in underground environments imposes challenges  

as follows: 

3.4.1. Installation and Management 

The installation and management of underground sensors are much more difficult than aboveground 

networks because drilling, sensor embedment and management are not easy tasks. Even if the sensor 

position is easily traceable; the sensor can be damaged during digging. Thus, before the deployment of 

underground sensor networks, the network and topology should be designed to minimize installation 

and management costs. For example, the sensor with high energy consumption can be deployed in 

shallow depth. To avoid replacing the battery, high capacity batteries and power saving sensor 

operation can be used. For the sake of minimizing energy consumption of underground sensors 

operation, efficient sleep mode and long data reporting interval can be adopted. 

3.4.2. Communication Radius 

The communication radius in soil is much shorter than in the air due the high attenuation of radio 

propagation in soil medium. Based on the underground radio propagation model and the field 

measurements; the communication radius of the commercial wireless sensors such as 2.4 GHz MICAz 

and 433 MHz MICA2 with 1 mW transmission (Tx) power are about 20 cm and 30 cm in wet clay 

type soil (measured electrical conductivity of 780 mS; estimated relative permittivity of 30) sampled in 

Lehigh University Goodman Campus as shown in Figure 2. 

Figure 2. Underground radio signal attenuation with 2.4 GHz and 433 MHz. 
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3.4.3. Low Frequency Wireless Signal Networks 

To overcome high signal attenuation or increase communication radius in soil, three methods can be 

used: (1) high transmission power, (2) high gain antenna, and (3) low radio frequency. In case of high 

transmission power and high gain antenna, the benefit of extending communication radius is not 

enough to design practical underground applications. If the underground sensors use a low frequency, 

the communication radius can be extended more efficiently. There are candidates of low frequency 

bands for underground communication such as LowFER (Low-Frequency Experimental Radio) of  

160 ~ 190 kHz in the United States and Canada, and low frequency ISM (industrial, scientific and 

medical) bands of 6.78 MHz and 13.56 MHz. ISM bands are radio bands reserved internationally for 

the use of radio frequency for industrial, scientific and medical purposes. LowFER is a license-free 

form of two-way radio communications practiced on frequencies below 500 kHz [24]. The proposed 

propagation model is generic and applicable to a wide range of frequencies (1 MHz ~ 2.5 GHz) 

besides the one used by the current wireless sensors operating on 2.4 GHz and 433 MHz [23]. Based 

on Equation (2), we can achieve 1.3 ~ 2 m communication with 6.78 MHz and 13.56 MHz ISM bands, 

and 20 ~ 25 m communication with 160 ~ 190 kHz LowFER bands even in wet clay underground with 

1 Watt Tx power and the same MICA’s antenna gain as shown in Figures 3 and 4.  

Figure 3. Underground radio signal attenuation with 13.56 MHz and 6.78 MHz. 
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As an experimental platform, the USRP (Universal Software Radio Peripheral) systems are 

configured working on low frequency bands for underground communications [18]. USRP is an 

experimental platform of a GNU radio or software-defined radio (SDR) system where components that 

have been typically implemented in hardware (e.g., mixers, filters, amplifiers, modulators, 

demodulators, detectors, etc.) are instead implemented by means of software on a personal computer or 

embedded computing devices [25]. Using two USRP mother boards equipped with BasicTX/RX and 

LFTX/RX daughter boards, the communication systems working on low frequency bands are 

established in [18]. The BasicTX and BasicRX boards are designed for use with external RF frontends 
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operating from 1 to 250 MHz frequency bands. LFTX and LFRX are similar to the BasicTX and 

BasicRX, but the operating frequency bands are from DC to 30 MHz with differential amplifiers and 

low pass filters. The USRP E100/E110 [26] which has an embedded processor with BasicTX/RX or 

LFTX/RX boards can be used for a low frequency wireless signal network platform. 

Figure 4. Underground radio signal attenuation with 160 kHz and 190 kHz. 
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4. Soil Properties Affecting Received Signal Strength 

The received signal strength is affected by physical soil properties (e.g., soil density) and 

temporally dynamic variables (e.g., soil water content, salinity, soil temperature, etc.) which are 

affecting the electric conductivity and permittivity of the soil. To evaluate the variation of the received 

signal strength and apply the changing electric conductivity to the proposed theoretical model, the 

electric conductivity of the soil was measured for different water contents and salinity based on the 

American Society for Testing and Materials (ASTM) G187 standard [27] and the results are shown in 

Table 1. The experimental conditions for the measurements are described in Section 6, and the PVC 

box (shown in Figure 16) is used to evaluate the soil properties affecting the received signal strength. 

In the measurements, the first node (S1) was set as a sender and the other nodes (S2~S6) are set as 

receivers recording the received signal strength.  

4.1. Soil Gradation 

The received signal strengths in two types of sand with different gradations were compared. The 

comparisons of the received signal strength for the fine and medium sands at 12% water content are 

shown in Figure 5. The average particle size (D50) of fine and medium sand was 0.58 and 0.98 mm 

respectively. The received signal strength increases as the particle size in the soil increases. This may 

be attributed to the fact that, in the same soil type and condition, the soil with smaller particle size has 

higher electrical conductivity which imposes higher attenuation in the radio signal propagation. 
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Table 1. Electric conductivity of the soil used in received signal strength measurements. 

Soil Type Water Content (%) Salinity (ppm) Electric Conductivity (mS/m) 

Fine Sand 

5 
1,000 23.42 

5,000 26.67 

8 
1,000 33.16 

5,000 37.61 

12 
1,000 65.36 

5,000 86.96 

15 
1,000 123.61 

5,000 146.05 

20 
1,000 238.66 

5,000 283.77 

Figure 5. Received signal strength variations with soil gradation. 
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4.2. Water Content 

To investigate the effects of soil water contents on the received signal strength, water contents were 

increased by 3–5% in each experiment. In the experiments using sandy type soils, the lowest water 

content level was 5% and the maximum water content level was 20%. In the case of 20% water 

content, the water was segregated from the soil grains. That is the maximum water content in the type 

soil sample used in the experiment. The increase in the water content increases the electric 

conductivity of the soil as presented in Table 1. The increased conductivity induces more attenuation 

on the underground radio propagation. The received signal strengths for different water contents were 

measured and the results for water contents of 5%, 8%, 12% and 15% are shown in Figure 6. As it can 

be seen in Figure 6, the received signal strength decreases as the water content increases. 
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Figure 6. Received signal strength variations with water contents (W.C.). 
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4.3. Salinity 

To demonstrate that the salinity can affect the received signal strength and wireless signal networks 

can distinguish different salinity levels, laboratory experiments were conducted. As the salinity of the 

soil increases, the electric conductivity of the soil increases (see Table 1). The received signal strengths 

for different salinity levels were measured and the results for salinity levels of 1,000 and 5,000 ppm  

at water content of 15% are shown in Figure 7 where the received signal strength decreases as the  

salinity increases. 

Figure 7. Received signal strength variations with salinity. 
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4.4. Relative Density 

The received signal strengths for different relative densities (Dr, an index that quantifies the state of 

compactness between the loosest and densest possible state of coarse-grained soils) were measured at 

constant water contents. The results for specimens of fine sand at relative densities of 15, 55, and 75% 

by compaction at constant water content of 12% are shown in Figure 8, where the received signal 

strength of the loose sand at 15% relative density is higher than the denser sands of 55% and 75% 

relative densities. The received signal strength decreases as relative density increases and the influence 

of signal attenuation is significant at longer distance. 

Figure 8. Received signal strength variations with relative density. 
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4.5. Temperature 

To investigate the effects of soil temperature on the underground radio propagation, the received 

signal strengths were measured in an experiment. The dry soil temperature decreased from 44.65 °C to 

29.3 °C in the experiment. As shown in Figure 9, the received signal strength slightly increased as the 

temperature decreased. This trend can be explained by the slight decrease of electrical conductivity of 

soil when temperature decreases, and the negligible change of dielectric permittivity of soil for small 

to medium moisture contents (0~32%) [28–30]. Thus, the increased received signal strength is 

attributed to the decrease of electrical conductivity as the soil temperature decrease. 

In the wireless signal networks experiments, the received signal is affected by soil properties.  

In other words, the monitoring system based on the received signal strength can distinguish the 

changes on soil properties or detect subsurface events. From our measured data and based on existing 

works [18,31–33], the paper presents a detailed list on how radio propagation is affected by soil 

properties in subsurface communication environments. The summarized soil properties and the effects 

on the received signal strength are presented in Table 2. The Equation (2) can be expressed in 
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logarithmic scale such as Pr (d)dB = 10logK – 8.69ad – 20logd, where the changes on soil properties 

affect a and K. Based on the signal strength deviation, sensor nodes can detect the subsurface events as 

follows: Pr (d,t)dB ≥ ζ × Pr (d,t – Δt)dB at the sensing time t, where ζ is the deviation criterion.  

Figure 9. Received signal strength variations with temperature. 
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Table 2. Soil properties affecting the received signal strength in underground applications. 

Soil Properties Effects on received signal 

Soil Gradation Particle size ↑  received signal ↑ 

Water content Water content ↑  received signal ↓ 

Salinity Salinity ↑  received signal ↓ 

Relative density Relative density ↑  received signal ↓ 

Temperature Temperature ↓  received signal ↑ 

5. Subsurface Event Detection and Classification 

The received signal strength can be used to detect and classify different subsurface events. The 

received signal strength information can be classified by minimum distance classifier using Bayesian 

decision theory. In the application of Bayesian theory to runtime wireless underground sensor 

networks, the computational power is an important factor to be considered because wireless sensor 

nodes have limited computational power. A MICAz sensor node has a low-power microcontroller 

(ATmega128L) which speed is 4 or 7 MHz [4]. The CPU-heavy computational works cannot be 

performed while it sends or receives data due to its hardware and software architecture. When sensor 

nodes send and receive data, the received signal strength information can be collected. The MICAz 

sensor node consumes power as follows: 0 dBm TX: 17.4 mA, −10 dBm TX: 11 mA, and receive 

mode 19.7 mA [4]. In all experiments, 0 dBm TX power is used. In this paper, a window-based 

minimum distance classifier is proposed considering the energy and computational efficiency for 

wireless sensor networks maintaining high accuracy with less computation. The window-based 

classifier for wireless signal networks has two steps: event detection (based on the deviation criterion) 
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and event classification (minimum distance classification). With the event detection, the window-based 

classifier classifies geo-events on the event occurring regions that are called a classification window. 

The proposed window-based classification method in Section 5.2 is evaluated with a water leakage 

experiment in which the data has been measured in laboratory. 

5.1. Event Detection (Window Selection) 

Because the wireless sensor has limited battery and computational power, it is not reasonable to 

classify events at every sensing time. When the sensor node sends or receives data, it cannot compute 

the probabilities for the event classification. So, if the strength of the received signal does not change 

from previously collected data at a specific location, there is not new geo-hazard or event in the soil 

medium and the event classification is not required. Thus, it is important to detect the region of the 

event occurring with a simple classification such as two-category case (
1 : event, 2 : no-event) in 

which 
1  can be assigned to binary value 1 and 2  to binary value 0. The subsurface event 

1  at k-th 

position (1 k N  ) can be detected by the signal strength deviation from existing M  sample average 

at the n-th sensing time 
nt  as follows: 

1

( ) ( ) /
n M

k n k j

j n

x t x t M 


 

 
  
 
  (3) 

where   is the deviation criterion. The deviation criterion can be empirically decided (ex, 3 ~ 5 dBm) 

based on the measured data which has small variation in soil.  

5.2. Event Classification on Selected Window 

There are N  positions to sense geo-events in underground wireless signal networks. Let 

{
1 2, ,..., c   } be the finite set of c  states of events. P(ωj) describes the prior probability that the 

event is in state ωj. The variability of a measurement in probabilistic terms is expressed as x which is 

considered a random variable whose distribution depends on the state of event which is expressed as 

p(x|ωj). If we have an observation x  for which P(ωj|x) is greater than P(ωj|x), there would be a higher 

possibility that the true state of the event is 
i . Thus, choosing 

i  minimizes the probability of error. 

In the classification with more than one measurement, the scalar x  is replaced by the feature vector x , 

where x  is in an N-dimensional Euclidean space NR . The posterior probability ( | )iP x  can be 

computed from ( | )ip x   by Bayes formula: 

( | ) ( )
( | )

( )

i i
i

p x P
P x

p x

 
   (4) 

where 
1

( ) ( | ) ( )
c

j j

j

p x p x P 


 .  

The Bayes formula shows that by observing the value of x  we can convert the prior probability 

P(ωj) to the a posteriori probability ( | )iP x - the probability of the state of event being 
i  given that 

feature value x  has been measured. ( | )ip x  is called likelihood of 
i  with respect to x . The Bayes 

decision rule emphasizes the role of the posterior probabilities, and the evidence factor ( )p x  is 

unimportant as far as making a decision is concerned. To represent event classifiers, a set of 
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discriminant functions ( )ig x  is used, where ,...,i i c . The classifier is said to assign a vector x  to 

class 
i  if ( ) ( )i jg x g x  for all j i . For the minimum error rate classification, discriminant 

functions are defined as follows [34]: 

1

( | ) ( )
( ) ( | )

( | ) ( )

( | ) ( )

ln ( | ) ln ( )

i i
i i c

j j

j

i i

i i

p x P
g x P x

p x P

p x P

p x P

 


 

 

 









 

(5) 

where 
1

( | ) ( )
c

j j

j

p x P 


  does not affect on the decision and can be ignored.  

The log scale expression of discriminate functions does not affect the decision as well, and will be 

used to develop a minimum distance classifier. The measured received signal of wireless sensors is 

assumed to be independent and normally distributed [35]. That is, each measurement is statistically 

independent and its probability density function is normally distributed. Thus, the discriminant 

function can be evaluated with the densities ( | )ip x   which are multivariate normal-that 

is, ( | ) ( , )i i ip x N    where 
i  is the mean vector and 

i  is the covariance matrix. The general 

multivariate normal density in N dimensional is written as:  

s 1

1/2/2

1 1
( ) exp ( ) ( )

2(2 )

t

N
p x x x 



 
     

 
 (6) 

where x  is N-dimensional column vector,   is the N-dimensional mean vector,   is the N-by-N 

covariance matrix, and   and 1  are its determinant and inverse, respectively [34]. With 

multivariate normal density, the discriminant function is express as follows: 

11 1
( ) ( ) ( ) ln 2 ln( ) ln ( )

2 2 2

t

i i i i i

M
g x x x P            . (7) 

when the features are statistical independent and each feature has the same variance 
2 , the 

covariance matrix is expressed as 2Ii    where I is the identity matrix. Then, the discriminant 

functions are simplified as follows [34]: 

2

2
( ) ln ( )

2

i

i i

x
g x P







    (8) 

where  denotes the Euclidean norm, that is: 

2
( ) ( )t

i i ix x x      . (9) 

If the prior probabilities ( )iP   in the log scale expression are the same for all c classes, the 

ln ( )iP   term becomes unimportant additive constant that can be ignored. In this case, the optimum 

decision rule can be a minimum distance classifier. To classify a feature vector x , we measure the 

Euclidean distance ix   from each x  to each of the c  mean vectors, and can assign x  to the 

category of the nearest mean. The subsurface events can be classified based on the training data (
i ) 
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and measured received signal strengths ( x ). The training data can be generated from empirical data or 

theoretical estimation such that the event 
i  has training data 

i . Then, the measurement x  can be 

classified to the event 
i  which has the minimum distance between x  and 

i  or the highest 

probability that the true state of the event is 
i . Based on the minimum distance classifier, the decision 

boundary can be calculated. For example, the received signal strengths of two events (two different 

water content measurements using MICAz where 12% is measured water content in normal condition 

and 15% is the water content after the water leakage event in Section 6.2) at 5 positions and the 

connected decision boundary of minimum distance classification for 5 positions are shown in  

Figure 10. 

Figure 10. An example of decision boundary of minimum distance classifier for water 

leakage event. 
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After detection of a subsurface event shown in Section 5.1, the event is classified based on the 

selected window. The minimum-error-rate classification can be achieved by using the discriminant 

functions with { }kx x   where   is a set of W  features in classification window which size is W . 

The window based selection reduces the error rate of the classification. Suppose that we observe a 

particular xk and we contemplate taking decision αi. If the true state of the event is ωj, the classification 

has the loss defined as λ(αi|ωj). Because P(ωj|xk) is the probability that the true state of the event is ωj, 

the expected loss associated with taking decision i on selected window, Rw, is:  

1

1

( | ) ( | ) ( | )

( | ) ( | ) ( | )

W c

W i i j j k

k j i

N c

i j j k N i N

k j i

R x P x

P x R x

    

    

 

 



 




 (10) 

where NR  is the expected loss of whole range and W N . The expected loss of window classifier WR  

is lower than the expected loss of whole range classifier s NR  as shown in Equation (10). For example, 

the minimum distance classifier on all sensing positions has a higher error rate due to the variation of 

received signal strength in no event region. 
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Figure 11 shows the window for minimum distance classifier and error prone points from the water 

leakage event in Section 6.2.2. The window-based computation has lower computational cost than 

whole range computation. In other words, the computational cost of whole range minimum distance 

classifier is ( )O cN  where c  is the number of classes and N  is the number of features, whereas the 

cost of the window based minimum distance classification is ( )O cW  where W  is the window size  

and W N .  

Figure 11. A window for minimum distance classifier. 

 

6. Performance Evaluations 

The concept of wireless signal networks for subsurface event detection and classification is 

validated with widely used sensor nodes (i.e., MICAz) because of their stability for the measurements 

of received signal strength. The MICAz sensor nodes are with the CC2420 RF transceiver which 

includes a digital direct sequence spread spectrum baseband modem. The operating frequency was 

configured to be 2.48 GHz which is Zigbee channel 26 and non-overlapping with 802.11 b (WiFi). All 

wireless sensor nodes are calibrated and selected to be working in 1 ~ 2 dBm error bounds on the 

received signal strength measurement. A wireless sensor node (sender) sends a packet periodically  

(at every 15 seconds for subsurface event detection experiment), and the receivers sample the received 

signal strength from the received packets and store the date on the flash memory in which data can be 

retrieved in the laboratory with serial or ethernet programming boards connected to the desktop. 

6.1. Subsurface Event Detection 

The experiments were designed to demonstrate the functionality of the WSiN to detect transient 

changes in host soil within the network domain. Using the decision rule introduced in Section 5.1, the 

subsurface events can be detected based on the empirically or theoretically determined deviation 

criterion   (ex, 3–5 dBm). Three subsurface event experiments were conducted to generate transient 
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changes within host soil mass (coarse sand, 
50D  = 3.3 mm where 

xD  is the diameter of the soil 

particles for which x  of the particles are finer) in the large soil box shown in Figure 12. These events 

were (1) water intrusion, (2) relative density change, and (3) relative motion. 

Figure 12. Large soil box for experiments of subsurface event detection. 

 

6.1.1. Detection of Water Intrusion 

Water intrusion events were simulated by gradually injecting water between the nodes. Figure 13(a, b) 

show the network system configuration and results of water intrusion experiment respectively. All 

transceivers were buried at a depth of 20 cm at the locations shown in Figure 13(a). The initial water 

content of the soil was 6%. The first event was started at 17 minutes (elapsed time) where water was 

injected between the sender and node R2 (Receiver 2). The next event was started at 19 minutes where 

water was injected between the sender and node R4. The last event was started at 32 minutes where 

water was injected between the sender and node R5. As shown in Figure 13(b), there is a significant 

decrease in the received signal strength right after the water injection in all three cases. However, there 

is no change in the received signal strength at node R3 (fairly constant) which was not located in the 

region of events. Average water content of soil located between the sender and R2/R4/ R5 after the 

injection event was determined as 12%, 11%, and 16% respectively. The increased water content of 

soil increased the permittivity and electrical conductivity of the medium, resulting in decrease of 

received signal strength. It is important to note that the magnitude of signal depletion is proportional to 

the magnitude of change in the water content (comparing nodes R2 and R5). Also, since node R4 was 

located at farther distance than the other nodes, it has a lower value of received signal strength. 



Sensors 2012, 12 14879 

 

 

Figure 13. Experiment of water intrusion detection. (a) Configuration for water intrusion; 

(b) Results of water intrusion detection. 
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6.1.2. Detection of Relative Density Change 

Relative density change experiment through soil compaction was conducted by applying vibration 

at the soil surface using magnetic vibration equipment. All transceivers were buried at a depth of  

20 cm with network configuration as shown in Figure 14(a). Each shaded area between the sender and 

receivers (starting from node R2 toward R5) in Figure 14(a) were compacted for about 2 minutes 

starting at 27, 32, 36, and 38 minutes. The water content of the soil was 5%. As shown in Figure 14(b), the 

change in the compactness of soil is detected by marked drops in signal strengths at all nodes. As shown in 

the parametric test results in Table 2, the increase in soil density reduces the signal strength. The drop 

in received signal strength may be attributed to the increase in electrical conductivity of the medium. 

Compacted soil has more surface particle contacts compared to the loose soil and provides more 

electron flow resulting in higher electrical conductivity of the compacted media. Consequently, the 

received signal strength decreases as the soil compactness (relative density) increases. 

Figure 14. Experiment of relative density change detection. (a) Configuration for relative 

density change; (b) Results of relative density change detection. 
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6.1.3. Detection of Relative Motion 

In this experiment, the sender and the nodes R2, R3, R4, and R5 were located in the same plane at a 

depth of 15 cm from the surface, and the nodes R6, R7, R8, and R9 were located at the same plane at a 

depth of 45 cm from the surface as shown in Figure 15(a). The soil mass was held using a wooden 

plate in the front while the other sides remained continuous. The event started at 27 minutes by 

removing the wooden plate. Relative motion experiment results are shown in Figure 15(b). The 

received signal strength at nodes R2, R3, R6, and R7 remained fairly constant. Since neither the 

physical properties of the soil nor the distance between the sender and receiver changed within these 

regions, no change was recorded in the received signal strength. At nodes R4 and R5 that were directly 

affected by the event, the received signal strength dropped and remained constant as shown in  

Figure 15(b). The drop is attributed to a combination of different factors including change in the 

distance between the sender and receivers, antenna orientation, and density of soil between the sender 

and receivers. In contrast, an increase in the received signal strength at nodes R8 and R9 was detected. 

This increase may be attributed to the removed mass of soil initially located on top of these nodes. The 

important point to notice is that the event could be detected through changes in the received signal 

strength of the nodes within the network domain. 

Figure 15. Experiment of relative motion detection. (a) Configuration for relative motion; 

(b) Results of relative motion detection. 
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6.2. Subsurface Event Classification 

For the sake of better and more accurate control on the soil properties comparing with the large soil 

box shown in Figure 12, a small plastic (PVC) box with dimensions 118 × 13 × 13 cm was made as 

shown in Figure 16(a) and 16(b) and filled with controlled soils. In the experiment, physical soil 

properties (e.g., soil density) and temporally dynamic variables (e.g., soil water content, salinity, soil 

temperature, etc.), which affect the electric conductivity and permittivity of the medium, were 

controlled. To evaluate the proposed classifier, we applied the classifier into a water leakage 

experiment where soil properties were controlled where the soil is fine sand (
50D  = 0.58 mm). 
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Figure 16. Details of designed PVC box and sensor installation. (a) Designed PVC box to 

install sensors (one transmitter and receivers); (b) PVC box with sensors before soil filling. 
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In the experiment, sensors (S2–S6) sent a packet at every 60 seconds and the receiver node (S1) 

calculated the received signal strength based on the received packet. Based on the collected received 

signal strength information, the node S1, which can be a sink node or an intermediate node that can 

send or receive data, estimates the location of water leakage event and classifies the water contents on 

the soil media between the transmitters and receiver. In the water leakage experiment, the soil in the 

box contained 12% water content before the water leakage event. The water leakage event was start at 

26 minutes after experiment start by injecting water into the regions between 40cm and 60cm from the 

first node (S1). After the water leakage event, the average volumetric water content of the soil in the 

box was 15%. 

6.2.1. Reference Data Generation 

In the evaluation, we classify the geo-events based on training data which can be the measured data 

or theoretically estimated data. Using the accurate underground radio propagation model introduced  

in [23], we generate the estimated received signal strength with different water content as the reference 

data (training data for the event classification) which are shown in Figure 17. In the estimation using 

Equation (2), the electric conductivity values of the soil in all experiments were measured as shown in 

Table 1 and the relative permittivity of the soil is estimated between 19–30 based on [36]. 

6.2.2. Event Classification of Water Leakage Experiment 

Figure 18 shows the time evolution of the received signal strength when the water leakage event 

was conducted. With the water leakage event at 26 minutes, the nodes at 55 cm and 95 cm have low 

received signal strength due to high signal attenuation from increased water content. As a result, the 

node at 55 cm generates event detection signal at 26, 27, and 28 minutes and the node at 95 cm 

generates event detection signal at 28 and 29 minutes based on the decision rule, where the deviation 

criterion   is 3 (dBm) and the previous sensing time M  is 3 (minutes). Thus, the minimum distance 

classification will be conducted only from 26 minute to 29 minute. 
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Figure 17. Received signal strength estimation with different water content. 
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Figure 18. RSS measurements in water leakage experiment and event detection signals 

from different location (nodes at 55 cm and 95 cm) generate event detection signal. 

 

When events are detected, the window-based minimum distance classifier classifies the event based 

on the measured data of the detected region by calculating the minimum distance between the detected 

event and the reference data using Equation (8). Figure 19 shows the received signal strength between 

26 and 29 minutes where the event detection signals are generated. In Figure 19, the red circle 



Sensors 2012, 12 14883 

 

 

represents the data in the classification window that can be used in the minimum distance 

classification. The detected events at 26, 27, 28, and 29 minutes are classified as 15% water leakage 

event based on the window-based minimum distance classifier as shown in Figure 19. In case of 

whole-range minimum distance classification, the detected events are classified as 12% water leakage 

event at 26 and 27 minutes and 15% water leakage event at 28 and 29 minutes. We compared  

window-based minimum distance classification and whole-range minimum distance classification and 

summarized the results in Table 3. The proposed method generates four event detections during the 

water leakage experiment. When the events are detected, the window-based minimum distance 

classification detects the leakage event correctly with 100% accuracy; where as the whole range 

minimum distance classification has 50% accuracy.  

Figure 19. Event classification based on received signal strength between 26 and  

29 minutes (detected events at 26, 27, and 28 minutes are classified as 15% water  

leakage event). 

 

Table 3. Comparisons of Minimum Distance Classifier (MDC). 

Time 

(min.) 
Event Detection 

Window-based MDC Whole Range MDC 

Generated 

Event 

Classified 

Event 

Generated 

Event 

Classified 

Event 

26 Node at 55 cm 15% WC 15% WC 15% WC 12% WC 

27 Node at 55 cm 15% WC 15% WC 15% WC 12% WC 

28 Nodes at 55, 95 cm 15% WC 15% WC 15% WC 15% WC 

29 Node at 95 cm 15% WC 15% WC 15% WC 15% WC 
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The window-based minimum distance classification has 68% less computation than the whole range 

minimum distance classification in the experiment. 

7. Conclusions 

The received signal strength information of underground sensors is used to characterize the  

geo-event in the proposed underground wireless signal network. This paper presents a detailed list of 

soil properties affecting underground radio propagation with experimental data. To evaluate the 

concept of WSiNs for subsurface event detection, three event detection experiments (water intrusion, 

relative density change, and relative motion) were conducted using MICAz. In the paper, the  

window-based minimum distance classifier is proposed to detect and classify geo-events of wireless 

underground sensor networks. The window-based minimum distance classifier accurately detects geo-

events and classifies the water leakage event into different water contents. From the theoretical 

analysis and experiment, the proposed window-based minimum distance classifier has less 

computation and higher accuracy than whole range minimum distance classifier. In the future, we will 

conduct experiments for geo-event detection and classification of heterogeneous conditions, such as 

simultaneous water leakage and land slide occurrence, and apply the proposed window-based 

minimum distance classifier to the heterogeneous geo-events. 
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