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Abstract: Coupling errors are major threats to the accuracy of 3-axis force sensors. Design
of decoupling algorithms is a challenging topic due to the uncertainty of coupling errors.
The conventional nonlinear decoupling algorithms by a standard Neural Network (NN)
are sometimes unstable due to overfitting. In order to avoid overfitting and minimize
the negative effect of random noises and gross errors in calibration data, we propose a
novel nonlinear static decoupling algorithm based on the establishment of a coupling error
model. Instead of regarding the whole system as a black box in conventional algorithm, the
coupling error model is designed by the principle of coupling errors, in which the nonlinear
relationships between forces and coupling errors in each dimension are calculated separately.
Six separate Support Vector Regressions (SVRs) are employed for their ability to perform
adaptive, nonlinear data fitting. The decoupling performance of the proposed algorithm is
compared with the conventional method by utilizing obtained data from the static calibration
experiment of a 3-axis force sensor. Experimental results show that the proposed decoupling
algorithm gives more robust performance with high efficiency and decoupling accuracy, and
can thus be potentially applied to the decoupling application of 3-axis force sensors.
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1. Introduction

Force sensing is crucial for on-line perception and feedback in interactions between intelligent
robotic manipulators and environments. Multi-axis force sensors are used to perceive generalized force
information and convert input force signals to voltage signals [1]. They are usually mounted on the tips
of robot arms for automatic contact recognition, motion planning, and force control tasks [2–4]. Force
sensors are widely used in assembly robots, polishing robots, rehabilitation robots, etc. [5–7].

The accuracy of multi-axis force sensors has a great impact on force-perception based tasks with high
precision requirements. This motivates the need to improve measurement precision. For a multi-axis
force sensor, a key issue is that input force in one dimension may affect not only output of this
dimension but also those of the other dimensions. Errors caused in this way, called the coupling errors,
are major threats to the accuracy of multi-axis force sensors. Coupling errors occur for various reasons,
such as mechanical structures, limitation of machining accuracy, transverse effect of strain gauges, etc.
Song et al. in [8] developed a self-decoupled 4-axis force/torque sensor to reduce coupling errors by
improving hardware design. However, in most cases, it is costly and sometimes infeasible to avoid
coupling errors by improving the hardware design and machining accuracy. Decoupling algorithms are
always used to reduce coupling errors.

The common static decoupling algorithm calculates the pseudo-inverse matrix of calibration data
based on the Least Square Method (LSM) [9–11]. This algorithm is based on the assumption that
relationships between input forces and output voltages in all dimensions are linear. Afterwards,
the transfer matrix between input forces and output voltages are calculated. The obtained transfer matrix
is called calibration matrix. Voyles et al. in [12] proposed a fast linear decoupling technique called
shape from motion in which the motion of the force vector and the calibration matrix are simultaneously
extracted by singular value decomposition from raw sensor signals. Cao et al. in [13] explored a linear
static decoupling method using an NN to increase the accuracy of decoupling. However, large amounts
of experiment data indicate the nonlinearity in relationships between forces and coupling errors. Thus,
the precision of linear decoupling algorithms is limited and unsatisfactory. Other approaches [14,15]
employed a feed-forward NN with back propagation (BP) training algorithms to realize the nonlinear
Multiple Input Multiple Output (MIMO) mapping of a multi-axis force sensor. In [15], the authors also
used a standard radial basis function (RBF) NN for decoupling. Engineering applications show that
decoupling algorithms with a standard NN model can sometimes reduce coupling error significantly, but
sometimes generate worse results than without decoupling due to overfitting.

Support Vector Machine (SVM) is a powerful candidate for decoupling algorithms due to its ability
to perform adaptive and nonlinear data fitting. SVM starts from solving problems of classification. With
the introduction of Vapnik’s ε-insensitive loss function, it also extends to be a regression prediction tool
that uses machine learning theory to maximize predictive accuracy while not subject to local minimal
and overfitting [16]. Support Vector Machine for regression, called Support Vector Regression, gradually
becomes a powerful tool for nonlinear correcting and compensation in the field of sensors. Guo et al.
in [17] established a model based on SVR to correct the nonlinear error of photoelectric displacement
sensor. Wang in [18] used SVR to make nonlinear estimation and temperature compensation of capacitor
pressure sensors.
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The design of decoupling algorithms of 3-axis force sensors presents several challenges. First, a 3-axis
force sensor is usually used in on-line force perception tasks. This requires the sensor to show quick
response to variations of input forces. Thus, the decoupling algorithms should have high time efficiency.
Second, inevitable noises in calibration data may result in overfitting such that decoupling precision will
be reduced. Also, due to improper operations of laboratory technicians or environment disturbances,
occasionally there may be gross errors in calibration data. Gross errors are outliers that strongly deviate
from the majority of experiment data. Gross errors may result in unexpected decoupling results such that
decoupling precision will be reduced. A reliable decoupling algorithm should be designed to minimize
the negative effects of noises and gross errors. Third, because the hardware causes of coupling errors
such as the mechanical structures and the limitations of machining accuracy are complex and uncertain,
it is difficult to model the coupling errors by polynomials. Thus, a decoupling algorithm should have a
high generalization ability.

Motivated by the above challenges, this paper proposes a precise and fast decoupling algorithm
with high reliability. Instead of referring to the whole sensor system as a black box using one
standard NN [14,15], the proposed decoupling algorithm is designed using the principle of coupling
errors, in which the relationships between each input and output are mapped separately in the proposed
coupling error model to make the algorithm more reliable. The proposed coupling error model consists
of six SVRs and three linear fitting functions, which is more conformable to calibration data structure.
Our method is compared with the standard NN method, as they are applied to the same data from a
calibration experiment, and our method gives better reliability and higher efficiency.

The remainder of the paper is organized as follows. Section 2 introduces a novel model of
coupling error and its notations. ε-SVR is described as the nonlinear approximation tool of the model.
A decoupling process based on the model is proposed. Section 3 briefly describes the principle of a 3-axis
sensor designed in our lab, the calibration experiment process and the structure of the calibration data.
Section 4 discusses the implementation details of the decoupling method using a set of experimental data
obtained from a calibration experiment. In order to demonstrate that our decoupling algorithm is robust
to gross errors, gross errors were artificially introduced into the calibration data and the decoupling
accuracy with the gross errors were calculated. Finally, in Section 5 some conclusions are provided.

2. Nonlinear Static Decoupling

2.1. Coupling Error Model and Notations

We first establish an appropriate coupling error model to capture the relationships between input
forces and corresponding coupling errors. In the model, the input forces and output voltages of a 3-axis
force sensor in X, Y, Z directions are defined as fx,fy,fz and ux,uy,uz, respectively.

For each dimension, output voltages are partitioned into two categories. One category includes the
voltages corresponding to input forces in the same dimension, called prime voltages. The other category
includes the voltages corresponding to the input forces in the other two dimensions, called coupling
errors. We use uxx, uyy, uzz to denote prime voltages and ex, ey, ez to denote coupling errors in X, Y,
Z directions, respectively. Prime voltages account for the majority of output voltages. Next, coupling
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errors are separated into two coupling error elements caused by input forces of different dimensions.
Let (exy, exz) represent the coupling error element in X direction, where exy refers to the coupling error
element caused by fy, and exz refers to the coupling error element caused by fz. Similarly, we split the
coupling error in Y direction into eyx and eyz, and split the coupling error in Z direction into ezx and ezy.
We can get: 

ux = uxx + exy + exz

uy = uyy + eyx + eyz

uz = uzz + ezx + ezy

(1)

Based on the observation of calibration data of multi-axis force sensors in our lab, we make the
following assumptions about coupling errors.

(1) The relationship between the prime force and the prime voltage in every dimension is linear;
(2) Relationships between disturbing force and their corresponding coupling error elements in every
dimension are nonlinear;
(3) The above relationships are independent and time-invariant.

From the above assumptions and the principle of superposition for stress, we propose a coupling error
model as shown in Figure 1.

Figure 1. A coupling error model of 3-axis force sensors.
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In Figure 1, there are three layers in the coupling error model: the input layer, the output layer, and
the middle layer. Nine nodes in the middle layer are parallel and separated from each other. Functions
ωx(), ωy() and ωz(), are non-coupling functions, linearly relating prime force to prime voltage in each
dimension as shown in Equation (2). 

uxx = ωx(fx) = kxx · fx
uyy = ωy(fy) = kyy · fy
uzz = ωz(fz) = kzz · fz

(2)
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In calibration experiments, only one-dimensional force is applied to a 3-axis force sensor each time,
while the output voltages of all directions are recorded simultaneously. Detailed calibration experiment
process will be described in Section 3. Consequently, as for calibration data, no coupling error exists
in the output voltage corresponding to the direction of the input force and no prime force exists in
the output voltages of other directions. In other words, the output voltage equals the prime voltage
when the direction of the output voltage is the same as the direction of the input force, and the output
voltage equals the corresponding coupling error elements when the direction of the output voltage is
different from the direction of the input force. For instance, during calibration experiment of X direction,
a set of standard fx(c) are applied to the force sensor while fy(c) and fz(c) remain zero (the subscript c
represents “calibration data”). Thus we can get ux(c) = uxx(c), uy(c) = eyx(c), uz(c) = ezx(c). Similarly,
for calibration data in Y direction, ux(c) = exy(c), uy(c) = uyy(c), uz(c) = ezy(c); for calibration data
in Z direction, uz(c) = exz(c), uy(c) = eyz(c), uz(c) = uzz(c).Thus, coefficients kxx, kyy, and kzz in
Equation (2) can be calculated by linear fitting of prime forces and prime voltages of calibration data
using LSM.

Functions respecting nonlinear relationships between disturbing forces and corresponding coupling
error elements in every dimension are ϕyx(), ϕzx(), ϕxy(), ϕzy(), ϕxz(), ϕyz(), called coupling functions
as shown in Equation (3). 

eyx = ϕyx(fx); ezx = ϕzx(fx);

exy = ϕxy(fy); ezy = ϕzy(fy);

exz = ϕxz(fz); eyz = ϕyz(fz);

(3)

Then, corrected coupling functions χ() can be obtained from Equations (2) and (3):

eyx = ϕyx(fx) = ϕyx

(
ω−1x (uxx)

)
= χyx(uxx)

ezx = ϕzx(fx) = ϕzx

(
ω−1x (uxx)

)
= χzx(uxx)

exy = ϕxy(fy) = ϕxy

(
ω−1y (uyy)

)
= χxy(uyy)

ezy = ϕzy(fy) = ϕzy

(
ω−1y (uyy)

)
= χzy(uyy)

exz = ϕxz(fz) = ϕxz

(
ω−1z (uzz)

)
= χxz(uzz)

eyz = ϕyz(fz) = ϕyz

(
ω−1z (uzz)

)
= χyz(uzz)

(4)

During a decoupling process of an actual force perception task, one can hardly obtain the exact value
of prime voltages uxx, uyy, uzz for Equation (4), because the data obtained in a force perception task
(called task data) are different from calibration data. The input forces in all directions are always
non-zero, so the output voltages in all directions contain coupling errors and the output voltages no
longer equal the prime voltages. However, a large number of experiment data show that, in most cases,
coupling errors take up less than 5% of the full scale (F.S.) output voltages and the absolute values of the
slopes of the corrected coupling functions are no more than 0.05. Thus, the output voltages of task data
ux(t), uy(t), uz(t) approximately equal the prime voltages uxx(t), uyy(t), uzz(t) (the subscript t represents
“task data”), and can be used as substitutions of the prime voltages ux(t), uy(t), uz(t) as independent
variables of Equation (4). This approximate substitution may induce second-order coupling errors. Take
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eyx for example: the measured coupling error element eyx(m) = χyx(ux(t)) is calculated instead of the
actual coupling error element eyx(a) = χyx(uxx(t))(the subscript m represents “measured”; the subscript
a represents “actual”). The second-order coupling error Eeyx can be expressed in Equation (5),

Eeyx =
|eyx(m) − eyx(a)|

ux(F.S.)
=
|χyx(ux(t))− χyx(uxx(t))|

ux(F.S.)
(5)

where ux(F.S.) represents the full scale value of output voltages in X direction.
According to the Lagrange mean value theorem, ∃ξ ∈ (uxx(t), ux(t)) such that

Eeyx =
|χ′yx(ξ)||(ux(t) − uxx(t))|

ux(F.S.)
≤

0.05 · (5%ux(F.S.))

ux(F.S.)
= 0.25% (6)

As a result, the rate of second-order coupling errors is less than 0.25% and can be neglected in most
industrial applications.

We choose ε-SVR for nonlinear approximations for the corrected coupling functions, which is
much less likely to subject to overfitting problems. Also, the fitting processes of those functions are
independent from one dimension to another, hence the fitting result of one dimension does not affect that
of another dimensions.

2.2. Approximation of Corrected Coupling Functions Using ε-SVR

Six ε-SVRs are utilized to approximate six corrected coupling functions for its generalization ability.
ε-SVR learns the relationship between the input (i.e., prime voltages) and the output (i.e., corresponding
coupling error elements) by adjusting the structure and parameters of a flexible model directly from
training data to minimize the prediction error.

The basic idea for the case of nonlinear regression by ε-SVR is to project the input space xi to a
higher dimensional feature space by a map Φ. Then, the ε-SVR defines a linear prediction model over
the mapped samples in the feature space. A nonlinear function is learned by this model while the capacity
of the model is controlled by a parameter that does not depend on the dimensionality of the space [16].
As calculation with the map Φ can easily become computationally infeasible (because it is too complex),
a kernel function k is introduced as the dot product of Φ, as expressed in Equation (7).

< Φ(xi),Φ(xj) >= k(xi, xj) (7)

Typical kernels include the linear k(xi, xj) = xTi xj , the polynomial k(xi, xj) = (xTi xj + 1)d, and the
Gaussian Function(RBF) k(xi, xj) = exp(−||xi − xj||2/2δ2). The RBF kernel is most frequently used
and it is also the one used in our implementation.

Briefly, the ε-SVR is to solve a convex optimization problem:

minimize
1

2
||w||2 + C

Q∑
i=1

(ξi + ξ∗i ) (8a)

subject to


yi − wΦ(xi)− b ≤ ε+ ξi

wΦ(xi) + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(8b)
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where i = 1, 2, . . . , Q are training data points, the parameter w indicates the flatness of regression
function f due to the fact that kernels can be associated with flatness properties via regularization
operators [19]. ξi, ξ∗i are slack variables introduced by Vapnik’s ε-insensitive loss function [20], in which
errors up to ε are not penalized, and all further deviations will incur a linear penalization [21]. C > 0 is
the regularization parameter determining the trade-off between the flatness of regression function f (i.e.,
1
2
||w||2) and the total tolerance on deviations larger than ε (i.e.,

∑Q
i=1(ξi + ξ∗i )). A graphical description

of ε-SVR model is shown in Figure 2. Points on the boundaries and outside the boundaries are called
Support Vectors.

Figure 2. Graphic description of the ε-SVR model for a linear case.
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To solve the optimization problem of Equation (8), a Lagrange function is constructed by introducing
Lagrange multipliers ai and a∗i . Partial derivatives of the Lagrange function with respect to the primal
variables (w, b, ξi, ξ∗i ) are calculated. Finally, the dual optimization problem can be derived by partial
derivation of the Lagrange function and taking into account that ξiξ∗i = 0:

maximize − 1

2

Q∑
i,j=1

(ai − a∗i )(aj − a∗j)k(xixj)− ε
Q∑
i=1

(ai + a∗i ) +

Q∑
i=1

yi(ai − ai∗) (9a)

subject to
Q∑
i=1

(ai − a∗i ) = 0 and ai, a
∗
i ∈ [0, C] (9b)

Note that Support Vectors correspond to training data whose Lagrange multipliers ai’s are non-zero
in Equation (9). Training data for which ai = C are called Bounded Support Vectors, and they are
located on the two boundaries in Figure 2. Training data with 0 < ai < C are called Free Support
Vectors and they are outside the boundaries [22]. Only Support Vectors contribute to the penalization
in Equation (8a). Equation (9) can be solved by optimization algorithms such as Sequential Minimal
Optimal, Chunking and Decomposing. The Sequential Minimal Optimal [23] is most frequently used
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due to its fast calculation speed. Solving the quadratic problems of Equation (9) yields the final solution
of ε-SVR:

f(x) =

Q∑
i=1

(ai − a∗i )k(xi, x) + b (10)

It is shown that ε-SVR has properties of robustness to noises and gross errors even though the gross
errors are part of the set of Support Vectors [24,25]. This is because the Lagrange Multipliers solved in
the objective function of Equation (9) are upper bounded by the constraint of Equation (9). All Support
Vectors, including the gross errors, will have Lagrange Multipliers with absolute value no more than the
upper bound C. From aspect of Equation (8), as C searches for trade-off between flatness and empirical
risk, if necessary, ε-SVR will sacrifice the tolerance to get a good flatness. ε-SVR also has many other
advantages such as global minima and reduced likelihood of overfitting.

2.3. Decoupling Process

The whole decoupling process consists of two stages. The first stage is for establishment of the
coupling error functions. The second stage is in an actual on-line force perception task. During the task,
the output voltages of all directions are obtained and the coupling error model is utilized to eliminate
coupling errors and calculate measured forces. Our decoupling process is described as follows:

(1) Conduct the static calibration experiment of a 3-axis force sensor and get the calibration data, which
contain sets of input forces and output voltages (fx(c), fy(c), fz(c) and ux(c), uy(c), uz(c)).

(2) Do linear fitting of fx(c) and ux(c) from calibration data in X direction using LSM, to get the slope kxx
in Equation (2). In the same way, get coefficients kyy and kzz in Equation (2) from the calibration
data in Y direction and Z direction respectively. In this way, three non-coupling functions ωx(),
ωy() and ωz() and three inverse functions of the non-coupling functions ω−1x (), ω−1y () and ω−1z ()

are obtained.

(3) Do nonlinear function approximation for ux(c) and uy(c) from the calibration data in X direction by
ε-SVR to get the corrected coupling function χyx(), do nonlinear function approximation for ux(c)
and uz(c) from the calibration data in X direction by ε-SVR to get the corrected coupling function
χzx().

(4) Calculate the corrected coupling functions χxy() and χzy() from calibration data in Y direction and
χxz() and χyz() from calibration data in Z direction respectively in the same way as in step 3.

The above steps establish the entire coupling error model. The following steps are designed for
decoupling based on the model using a 3-axis force sensor in an actual force perception task.

(I) Obtain task data, namely, a set of output voltages (ux(t), uy(t), uz(t)) of a 3-axis force sensor, during
an actual force perception task. Compute each coupling error elements of measured data using the
corrected coupling functions.
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(II) Subtract the coupling errors from the output voltages to get prime voltages as shown in Equation (1).
Then calculate prime forces of measured data, namely, the measured three dimensional forces
by ω−1x (), ω−1y () and ω−1z (). The measured forces fx(m),fy(m),fz(m) can also be expressed in
Equation (11). 

fx(m) = w−1x [ux(t) − χxy(uy(t))− χxz(uz(t))]

fy(m) = w−1y [uy(t) − χyx(ux(t))− χyz(uz(t))]

fz(m) = w−1z [uz(t) − χzx(ux(t))− χzy(uy(t))]

(11)

Figure 3 shows the flow chart of the whole decoupling process. The blue arrows indicate off-line
process of the establishment of the coupling error model with calibration data. The red arrows indicate
on-line process of decoupling in an actual force perception task. Note that the coupling error model and
decoupling process are proposed with respect to a predefined frame based on the structural characteristics
of the sensor. During an actual force perception task, if the orientation of the predefined frame is different
from that of the reference frame used for force perception, the measured forces after decoupling with
respect to the predefined frame should be transformed by a rotation matrix in order to align with the
reference frame.

Figure 3. The flow chart of the whole decoupling process.
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3. Calibration Experiment

As an example 3-axis force sensor, we consider a 3-axis force sensor designed and fabricated in our
lab. The force measurement range in both X direction and Y direction is −100 N to +100 N, and the
force measurement range in Z direction is −150 N to 0 N. The corresponding output voltages range in
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X direction and Y direction is −1.4 V to +1.4 V, and the output voltages range in Z direction is −1.2 V
to +1.2 V.

The key component of the 3-axis force sensor is composed of a cross-beam elastic body with strain
gauges, Wheatstone bridges, and a sampling circuit [26]. The principle of the 3-axis force sensor can
be briefly described as follows: under the effect of loading forces, the cross-beam elastic body begins
to deform measurably. Strain gauges that are pasted firmly on the surface of the cross-beam elastic
body can sense the strains and transform them to changes in resistance. Resistance changes of strain
gauges are measured by Wheatstone bridges and transformed to voltages. Finally, the sampling circuit
amplifies the output voltages of Wheatstone bridges and transmits the amplified voltage signals to the
robot controller.

The common calibration method for medium range multi-axis force sensors [27–30] are utilized. A
series of standard input forces in three directions are loaded on the sensor separately, and output voltages
in all three directions are recorded simultaneously. The diagram of the static calibration experiment
setup is shown in Figure 4, which consists of a loading plate, a calibration shaft, a 3-axis force sensor,
an indexing plate, a pulley block, weights and a base.

Figure 4. Diagram of static calibration experiment setup: (1) loading plate, (2) calibration
shaft, (3) three-axis force sensor, (4) indexing plate, (5) pulley block, (6) weights, (7) base.

The force sensor is fixed on a horizontally rotatable indexing plate with scale to ensure the direction
of loading forces. The maximum error of the weights is ±5 mg. Loading forces in X direction and
Y direction are generated by pulley block and weights while indexing plate is rotated by laboratory
technicians to ensure the loading direction. During force loading process in Z direction, a series of
standard weights are put directly on the loading plate. All loading forces are transferred from weights to
force sensors through the calibration shaft. The experiment platform of static calibration experiment is
shown in Figure 5.

The calibration range is from −100 N to +100 N with an increment step of 10 N in X direction and Y
direction. The calibration range in Z direction is from−150 N to 0 N with an increment step of 5 N. The
whole calibration experiment is carefully repeated six times. Six sets of calibration data are obtained and
zero-corrected. No gross errors are tested in the zero-corrected data.
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Figure 5. The static calibration experiment setup.

4. Results

4.1. Decoupling by a Standard RBF

Cross validation is used to estimate the performance of decoupling by a standard MIMO RBF NN.
The cross validation is repeated three times while each two sets of the zero-corrected calibration, named
as “test data I” and “test data II”, are used for verification and the other four sets are used as training
data. Matlab Neural Network Toolbox is used for simulations. The variance is set to 1, the maximum
MSE error tolerance is set to 2.4 × 10−6.

The maximum MSE error tolerance is chosen to be small enough to ensure that all training data be
selected as centers of the MIMO RBF NN.

In order to test the decoupling accuracy, interference errors γ are calculated. Taking calibration data
in X direction for example, the interference error γx is calculated in Equation (12),

γx =
max |fy(m)|+ max |fz(m)|

fx(FS)

(12)

where fx(FS) denotes the full scale value of loaded force in X direction. The interference error γx
accounts for maximum coupling errors in Y direction and Z direction induced by loaded force in X
direction. γy and γz are calculated in the same way. Interference errors of initial data and data after
decoupling by a standard MIMO RBF NN are shown in Table 1.

Table 1. Error analysis of initial data and decoupling by a standard MIMO RBF.

γx γy γz

initial decoupled initial decoupled initial decoupled
data by RBF data by RBF data by RBF

the first test I 2.54% 0.42% 2.57% 3.73% 2.36% 0.17%
cross-validation test II 2.37% 0.61% 2.52% 7.99% 2.55% 0.23%

the second test I 2.31% 1.02% 2.59% 2.32% 2.98% 0.71%
cross-validation test II 2.73% 3.45% 2.65% 0.74% 2.81% 0.69%

the third test I 2.40% 0.49% 2.68% 0.31% 2.57% 0.34%
cross-validation test II 2.32% 0.26% 2.71% 0.31% 2.14% 0.32%
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Table 1 shows that the decoupling algorithm by a standard MIMO RBF is unreliable, because although
some interference errors are reduced to less than 1%, some interference errors are even worse than initial
data (in boldface). This is because compared with the number of training data, there are too many
parameters in the MIMO RBF NN. Also, different coupling error elements are not well related. For
example, there is little relationship between exy and exz. However, decoupling by a standard MIMO
RBF NN means all the relationships are regarded as the same in the training process. The standard
MIMO RBF NN does not have a good conformability with the calibration data shape. As a result,
random noise in the training data may easily contribute to overfitting.

4.2. Decoupling by the Coupling Error Model and ε-SVR

We also use cross validation to test the performance of our proposed decoupling algorithm. Here we
take the first round of cross validation for example. To quantify the strong linearity of non-coupling
functions, linear fittings are performed on the training data (plotted as blue points) to determine the
slopes and strength of the correlations (plotted as black lines) as shown in Figure 6.

Figure 6. Linear fittings of non-coupling functions.
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(b) Approximation of ωy().
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The linear correlation coefficients for all three directions are calculated to be more than 0.99, which
correspond to assumption 1 (see Section 2). The inverse functions of non-coupling functions are obtained
as: 

fx = ω−1x (ux) = 75.065ux

fy = ω−1y (uy) = 77.788uy

fz = ω−1z (uz) = 125.17uz

(13)

The six corrected coupling functions are approximated by ε-SVRs. Each corrected coupling function
is fitted by a separate ε-SVR, where the pre-specified parameters are set as the same value. The
ε-SVR based approximations of corrected coupling functions are carried out using MATLAB and
LIBSVM [31] software applications. LIBSVM [31] is an integrated software for support vector
classification, distribution estimation and regression. It implements an SMO-type optimization
algorithm [32] and provides an efficient interface for MATLAB. The initial parameters used to train
the ε-SVR model by LIBSVM tool are listed in Table 2.

Table 2. Initial parameters used by the LIBSVM train tool.

Parameter Value

SVM type 3(ε-SVR)
Kernel function 2(RBF)

δ2 (Standard deviation of kernel function) 1
C (Regularization parameter) 1000

ε (Deviation) 0.0001
Tolerance 0.001

Here we also employ six separate Single Input Single Output(SISO) RBF NNs to do nonlinear
approximations of the corrected coupling error functions to make a comparison with ε-SVRs. Parameters
of the SISO RBF NNs are defined the same as the MIMO RBF NN, which is mentioned in Section 4.1.

Figure 7 shows the fitting results of the six corrected coupling functions.The blue points represent
training data, the red points and magenta points represent two groups of test data respectively, the black
curves represent fitted corrected coupling functions using ε-SVR and the red curves represent fitted
corrected coupling functions using SISO RBF NN. Relationships between disturbing forces and related
coupling error elements are nonlinear and distinct from one another, which correspond to assumption 2
and assumption 3 (see Section 2.1). In Figures 7(a) and 7(d), obvious overfittings happen in the fitting
results of χxy and χyz using SISO RBF NNs, but the ε-SVR provides a good generalization ability to
approximate different kinds of nonlinear functions without overfitting.

In the same fashion, the other two rounds of cross validation are calculated and interference errors are
listed in Table 3. In Table 3, all interference errors are reduced to less than 1.6% F.S. after decoupling
by ε-SVR. Compared with Table 1, the decoupling accuracy is much more stable because no overfitting
happens. Therefore, the proposed decoupling algorithm based on our coupling error model and ε-SVR
is more robust.
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Figure 7. Approximation of corrected coupling functions by ε-SVR vs. by RBF NN.
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(a) Approximation of χxy().
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(b) Approximation of χxz .
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(c) Approximation of χyx.
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(d) Approximation of χyz .

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Input uz(v)

O
u

tp
u

t 
e

zx
(v

)

 

 

training data
test I
test II
fitting results by NN
fitting results by SVR

(e) Approximation of χzx.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
2

4

6

8

10

12

14

16
x 10

−3

Input uz(v)

O
u

tp
u

t 
e

zy
(v

)

 

 
training data
test I
test II
fitting results by NN
fitting results by SVR

(f) Approximation of χzy .



Sensors 2012, 12 14551

Table 3. Error analysis of decoupling algorithm by ε-SVRs.

γx γy γz

the first test I 1.69% 1.33% 0.82%
cross-validation test II 1.45% 1.28% 0.59%

the second test I 1.30% 1.47% 0.86%
cross-validation test II 1.56% 1.24% 0.76%

the third test I 1.43% 1.52% 0.67%
cross-validation test II 1.48% 1.57% 0.83%

4.3. Processing Time

Besides decoupling accuracy, another crucial criterion for a successful decoupling algorithm is the
processing speed of both model establishment and decoupling an output voltage vector in an actual
force perception task, especially the latter for on-line task purposes. To evaluate the processing speed,
the elapsed time of the above two stages is recorded and the whole process is repeated 10 times. All
calculations are done on a Windows XP Inter(R) Xeon(TM) 2 QUAD CPU, 3.0 GHz processor with
3.00 GB RAM. An overview of the averaged elapsed time is shown in Table 4. Table 4 shows that the
elapsed time of the proposed algorithm in both the model establishment and the decoupling of an output
voltage vector is less than decoupling by a standard RBF NN. ε-SVR proves to be fast regressions. The
elapsed time of decoupling a certain output voltage vector using a coupling error model based on ε-SVR
is less than 0.001 s. This means that the decoupling frequency is higher than 1,000 Hz. The speed of
testing process based on ε-SVR is fast.

Table 4. Mean elapsed time (in seconds) of the training process and the testing process.

a RBF NN ε-SVRs

Establishment of the model 80.5603 3.3702
Decoupling of an output voltage vector 0.1404 0.00093

Summarizing, the calculation results of the decoupling methods demonstrate that our decoupling
method based on our coupling error model and ε-SVRs has high reliability and fast running speed when
no gross errors exist in the calibration data. In the next section, we will artificially add gross errors to
the calibration data and analyze the decoupling method’s robustness to gross errors.

4.4. Robustness to Gross Errors

Now we simulate the decoupling algorithm’s reaction to gross errors. The gross errors in calibration
data are also called outliers. As the quantity of gross errors in calibration data is always small, in
our research, only one gross error is generated in one dimension while the calibration data of other
dimensions remain the same. Here we take the first round of cross validation for example. The
decoupling process is the same as Section 4.2. We artificially generate a gross error into the calibration
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data in X direction to test the gross error’s effect on the decoupling accuracy in all dimensions. The gross
error is added artificially by arbitrarily moving a point away from its initial location.

As no gross errors are introduced into the calibration data of other dimensions, the fitting results of
functions in Y direction and Z direction will remain the same as shown in Figures 6 and 7. The fitting
results of the non-coupling function ωx() and corrected-coupling functions χxy() and χxz() in X direction
with the gross error (plotted with red circles) are shown in Figures 8 and 9. The inverse function of ωx()

is obtained as:

fx = ω−1x (ux) = 74.193ux (14)

Figure 8. The fitting result of the ωx for calibration data with gross error.
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Figure 9. The fitting results of χxy() and χxz for calibration data with the gross error.
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(a) Approximation of χxy().
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(b) Approximation of χxz .

Comparing Figure 9 with Figure 7, when the obtained calibration data contain a gross error (outlier),
the ε-SVR is not sensitive to the gross error and performs with high reliability, which correspond to the
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analysis in Section 2.2.2. Consequently, the proposed decoupling algorithm based on ε-SVR displays a
strong robustness to the gross error. The calculated interference errors of test data I and test data II under
the gross error’s effect are listed in Table 5. Comparing Table 5 with Table 3, when the gross error is
artificially introduced, γx, γy and γz after decoupling by ε-SVR of both test data I and test data II seem
almost unchanged. The comparison of interference errors also confirms that ε-SVR is robust to gross
errors.

Table 5. Error analysis of decoupling by ε-SVRs when a gross error is introduced.

γx γy γz

the first test I 1.41% 1.51% 0.71%
cross-validation test II 1.44% 1.56% 0.87%

5. Conclusions

In this paper, a robust decoupling algorithm to efficiently reduce coupling errors for 3-axis force
sensors is presented. The decoupling algorithm is based on the establishment of a novel coupling
error model and ε-SVR. In the coupling error model, input forces are partitioned into prime forces
and disturbing forces, and the corresponding output voltages are partitioned into prime voltages and
coupling error elements. The structure of the coupling error model makes the decoupling process in
one dimension separated from other dimensions. Linear relationships between prime forces and prime
voltages in every dimension are fitted by LSM. Nonlinear relationships between disturbing forces and
corresponding coupling error elements are fitted by ε-SVR.

The experimental results show the effectiveness of the decoupling method. All interference errors
are reduced to less than 1.6%. Compared with decoupling algorithm using one standard MIMO RBF
NN, the proposed decoupling algorithm demonstrates a better tolerance to noises and faster calculation
speed (with the decoupling frequency higher than 1,000 Hz). It also shows robustness to gross errors. As
a result, compared with existing decoupling methods, the decoupling algorithm based on the proposed
coupling error model and ε-SVR is much more reliable in complex scenarios.
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