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Abstract: This paper presents a two-layer based enhanced map that can support navigation
in urban environments. One layer is dedicated to describe the drivable road with a special
focus on the accurate description of its bounds. This feature can support positioning and
advanced map-matching when compared with standard polyline-based maps. The other
layer depicts building heights and locations, thus enabling the detection of non-line-of-sight
signals coming from GPS satellites not in direct view. Both the concept and the methodology
for creating these enhanced maps are shown in the paper.
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1. Introduction

Many applications based on vehicle localization, such as navigation systems, fleet management or
Electronic Toll Collection (ETC), are a reality today thanks to the so-called Global Navigation Satellite
Systems (GNSS) and digital maps. GNSS devices are exploited to estimate the vehicle location, while
digital maps are used to refer this location to the road segments where the vehicle drives.
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However, location-based applications must face serious drawbacks in urban environments, where
perhaps safety systems and location-based services become of more necessity. Main drawbacks can be
summarized as follows:

• In urban built-up areas, the satellite signals used by GNSS sensors to estimate the vehicle location
are strongly affected by the environment. GNSS signals are reflected, dispersed and attenuated by
buildings, other vehicles, trees, etc. [1].

• While in highways and interurban areas the road layout trends to be simple and the most common
approach to define the road shape based on polylines works well [2], in cities the road layout is far
more complex and the polylines lack the necessary flexibility to accurately define the road shape.
Therefore, standard digital maps are not always suitable as location reference.

• Map-matching algorithms must perform an extremely challenging task if we consider the large
number of possible road segments to match the position of the vehicle, the GNSS errors and the
lack of completeness and accuracy of the digital maps [3].

The concept of Enhanced Digital maps (EDmaps), also known as Enhanced Maps (Emaps), appeared
with the purpose of creating better maps that could satisfy the needs of some vehicular applications
with requirements of terms of map accuracy and completeness higher than those offered by standard
maps [4]. Emaps are meant to be more complete and accurate than standard maps. To do so, Emaps may
store more detailed data or some parameters that are not usual in standard maps based on polylines.

Our Emap proposal aims at supporting positioning and map-matching in urban areas, for which it
stores information in two different layers:

• A road layer, dedicated to describe urban road layouts that is flexible enough to model complicated
shapes. When developing Emaps, most of the authors focus their efforts on the accuracy of the
centerline of the lane and the estimate of the road curvature. However, in this work another relevant
aspect of the map is covered: the accurate representation (in our case, at submeter accuracy) of
the road borders in an urban environment, which is contrary to the most common approach of
depicting the centerlines, the number of lanes and their widths. This allows further possibilities in
map-matching algorithms that can benefit from a more complete description of the road, providing
more precise allocations of the vehicles, that are not necessarily referred to the centerline.

• An elevation layer that contains locations and heights of the buildings along the road. This way,
when a vehicle is on a given point of the road, it will be feasible to create a visibility map of the
GNSS satellites, detecting whether a satellite is in Line-Of-Sight (LOS) or in Non-Line-Of-Sight
(NLOS). When solving the calculation of the vehicle positioning, NLOS satellites can be then
removed, avoiding the biases introduced by the multipath effects caused by faulty measurements
coming from NLOS satellites. Due to the elevation information stored in the map, the model
presented in this paper is named Elevation-Enhanced map, or simply EEmap.

The rest of the paper goes as follows: Section 2 presents most relevant works published in this field.
Section 3 introduces the EEmap concept and model. Next, Section 4 explains the creation process of the
EEmap. Section 5 shows some relevant considerations in terms of accuracy and memory use. Finally,
Section 6 concludes the paper.
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2. Related Works

Due to its benefits, the concept of enhanced road map has been exploited in former works of the
authors in order to achieve lane-level positioning [5], lane-change detection [6] or position integrity [7].
This work follows this research line, adding new contributions to this field.

Some other authors have exploited the information stored in navigable maps for map-aided
positioning [8,9]. Also, new developments are under progress in the R&D teams of most map
providers [10,11] to bridge the gap between the mapping standards and the requirements of advanced
driving assistance applications (ADAS).

To the best of the authors’ knowledge, there are no works in the literature that cover within the same
EEmap concept the two problems addressed in this paper: modelling the vehicle drivable space, and
supporting NLOS with a previously created digital map.

Most commonly, Emaps with an emphasis on the road layer focus on the accurate description of the
road centerline or its curvature. Bétaille et al. [12] present a lane-level Emap based on clothoids with
submeter accuracy at the lane-centerline, although complex crossroads and roundabouts are not included
as a part of the Emap. Wang et al. in [13] include intersection points aiming at better describing the
road curvature at them. Following a different approach, the French Institut National de l’Information
Géographique et Forestière (IGN) has developed a triangle-based road/street model available only in
certain areas, introducing an interesting alternative to the centerline based description [14]. Although
triangles represent the most general geometrical shape for describing a surface, it is the authors’ opinion
that some other figures may represent the road shape with better accuracy and less memory demand.

With regard to the elevation layer, some related works such as [15] introduced the idea of creating a
map of the obstacles for sky visibility, in this occasion applied to the railways domain. In [16], a fish-eye
infrared camera was used to map the satellite positions with respect to the surrounding buildings. More
recently, Marais et al. [17] addressed this issue for guided transport in urban environments, using also
a fish-eye camera on the vehicle and aiming at building in real-time a 3D model from the successive
images.

Contrary to the approach of creating visibility maps of the sky on the spot while driving, our
work focuses on previously created and stored maps that can be accessed when needed. In particular,
only the road elevation itself plus buildings are considered, since buildings are the elements that play
the most relevant role in multipath effects [18–20]. In this line, Costa [18] employs a simulation
model that includes a digital elevation model, building databases and a vegetation model to process
an azimuth-elevation map of path states (clear, shadowed and blocked) for a large number of observers.
This simulation model is exploited for studying and planning satellite-based location and navigation
applications. In [20], the authors employ a sophisticated 3D city model to determine the building
boundaries for GPS visibility, although the 3D model itself and its creation are not explained in the
paper. Peyret et al. in [21] exploit a GIS map and a graphic tool to estimate the heights of the buildings,
what is further applied to NLOS detection. The map employed in the tests carried out in [21] is a project
of the French IGN that adds information about the buildings along the urban streets. At the time of
developing our work, a few districts of France were covered by the IGN Batimap project. A comparison
between this map and our proposal is presented later on in the paper.
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Finally, let us remarks that a first concept of the elevation layer presented in this work was introduced
in [22].

3. EEmap Concept

An schematic vision of the EEmap and its two layers is shown in Figure 1. The road layer is presented
in dark grey and it depicts the road flooring, opposite to the light grey color of the sidewalks (or more
precisely any non-drivable space). The characteristics of our road layer model makes it feasible to
describe the surface of such shapes as the one presented in this figure, with both straight and rounded
elements. This will be described in more details in Section 3.1. Buildings are drawn in blue and represent
the obstacles that block the GPS satellite signals from reaching the receiver antenna in a direct ray. The
principle of how this layer can support positioning is also shown in Figure 1. For a given vehicle position,
the azimuth and elevation angles of each i GPS space vehicle (SVi) are calculated, respectively Asi, Esi.
Then, a first comparison between the Asi and the blockage azimuth angle of a given j building, Abj , is
performed. If Asi is within the Abj interval, a second comparison is made between the elevation angle
of Esi and the elevation angle of the building Ebj . In the image of Figure 1, examples of two different
cases are represented. SV1 is blocked by building 1 and therefore SV1 is classified as in NLOS at that
instant. On the contrary, no buildings block the SV2 signal and consequently this satellite is assumed to
be in LOS. This is the concept of the NLOS detection algorithm based on our EEmap.

Both layers complement each other and may be exploited at different instants of the positioning
and map-matching loop. A scheme of this process is presented in Figure 2. After the GNSS receiver
collects measurements from tracked satellites, the NLOS detection algorithm decides whether a satellite
is in LOS or in NLOS. Inputs of this algorithm are the satellite measurements, the EEMap, and a prior
estimate of the vehicle position obtained for instance from a particle filter (PF). NLOS satellites are
discarded, and only satellites in LOS are used as inputs of the second step, the GPS solving algorithm,
that provides the position of the antenna. For this step, a Least Squares algorithm was developed and
presented in [22]. After that, it is evaluated whether or not the estimated position belongs to the drivable
road. Following the example of the PF, particles that are out of the road limits will be eliminated.
This will lead to a new PF centroid that considers only feasible options. Finally, this best estimate is
reintroduced in the positioning loop to be used in the next step. This way, the road layer of the EEmap
supports the NLOS detection by adding more information into the loop, both horizontally (the vehicle
shall be within the road bounds) and vertically (the vehicle shall be on the road and not over or under
it). Consequently, thanks to the road layer, NLOS detection can be more accurate, resulting in a more
accurate location estimate of the vehicle.

Although both EEmap layers can be exploited by independent algorithms with different purposes, it
is the authors’ intent to present them as a single EEmap concept, in which the interaction between both
layers may bring extended benefits to the positioning estimate thanks to the redundant information.
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Figure 1. EEmap concept with relevant angles for the NLOS detection algorithm.

Figure 2. Positioning loop with the NLOS algorithm, the GPS algorithm and the position
feasibility algorithm.

In the next two sections, the principles of both the road and the elevation layers models are described.
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3.1. Road Layer

The concept of road layer is based on a small set of plane figures located in a 3D environment
and defined by a certain number of descriptors. Each figure represents a portion of roadway and the
succession of these figures arranged next to one another defines the complete form of the road.

In our model, there are four basic types of figures to describe the road shape. Figure 3 shows a small
area of the city of Murcia, Spain, where these four elements are depicted. The next sections describe
these figures in detail.

Figure 3. Superposition of some EEmap figures (in green, blue, red and yellow) over the
roads of the city of Murcia, Spain.

3.1.1. Trapeze

This figure is used to define straight portions of the road (see green figures in Figure 3). These
stretches can vary in width along the longitudinal axis, which is being modelled by adapting the width
of the trapeze bases v and w, as shown in Figure 4(a). Its descriptors are as follows:

• w: width of the base opposite to the reference point.
• v: width of the base containing the reference point.
• x, y, z: coordinates East, North, Elevation (UTM) of the central point of the base.
• j: argument (between 0 and 2π) of the vector joining the midpoints of the bases with respect to

the plane XY .
• jz: argument (between +π/2 and −π/2) of the vector joining the midpoints of the bases with

respect to the Z axis.
• l: distance of the projection of the trapeze height with respect to the plane XY .
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Figure 4. EEmap road figures with descriptors.

(a) (b)

(c) (d)

3.1.2. Crown Sector

The crown sector aims to describe roundabouts with both an outer and an inner radius that adjust to
the width of the road (see yellow figures in Figures 3 and 4(b) for a description of its parameters). Values
of j and k, measured in radians, are used to determine the argument of the polar coordinates of the crown
lateral bounds in the radial direction of the crown sector with respect to its center. The descriptors of a
crown sector are:

• x, y, z: coordinates East, North, Elevation (UTM) of the central point of the roundabout.
• j: argument (between 0 and 2π) of the vector joining one side of the crown to the center of the

roundabout.
• k: argument (between 0 and 2π) of the vector from the other side of the crown to the center of the

roundabout.
• jz: argument (between +π/2 and −π/2) of the vector from the center of the roundabout to the side

described by j with respect to the Z axis.
• kz: argument (between +π/2 and −π/2) of the vector from the center of the roundabout to the side

described by k with respect to the Z axis.
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• r1: radius of the inner arc.
• r2: radius of the outer arc.

3.1.3. Arrowhead

The borders of the road in an intersection are rarely composed of sharp-pointed or well-defined angles
but are described by rounded shapes (see red figures in Figure 3). This figure is similar to a triangle, but
having one of its sides curved, making it easy to describe those portions of the road by varying point (cx,
cy) and radius r as shown in Figure 4(c).

• x, y, z: coordinates East, North, Elevation (UTM) of the main vertex (between both straight sides).
• j: argument (between 0 and 2π) of the vector that describes one side of the arrowhead with respect

to the main vertex in the plane XY .
• k: argument (between 0 and 2π) of the vector that describes the other side of the arrowhead with

respect to the main vertex in the plane XY .
• jz: argument (between +π/2 and −π/2) of the vector described by j with respect to the Z axis.
• kz: argument (between +π/2 and −π/2) of the vector described by k with respect to the Z axis.
• cx, cy: coordinates East, North (UTM) of the center of the circle that describes the lateral curve.
• r: radius of the arc whose center is cx, cy.
• v: this parameter represents the largest of the lengths of the straight sides in the arrowhead.

Although its inclusion is not necessary, it is introduced to improve the computational efficiency
when checking if a point is inside the figure.

3.1.4. Triangle

Since the triangle is the cornerstone of any polynomial geometric figure, its inclusion is necessary to
complete the remaining portions of the roadway that cannot be well depicted by the three aforementioned
EEmap elements (see blue triangles in Figure 3). The triangle data descriptors define its vertices in a
three-dimensional environment (Figure 4(d)).

• xA, yA, zA: coordinates East, North, Elevation (UTM) of the vertex A.
• xB, yB, zB: coordinates East, North, Elevation (UTM) of the vertex B.
• xC, yC, zC: coordinates East, North, Elevation (UTM) of the vertex C.

3.2. Elevation Layer

The elevation layer stores information of the buildings’ location and heights. For each building,
the UTM coordinates of the two corners nearest to the road are stored, as well as its width and height
(Figure 1). The description of the buildings follows the format given in Table 1, where subscripts 1 and
2 stand for the 2D position ends of the facade under consideration. In this approach, both corners of the
facade share a single value of altitude. This can be done since buildings are normally horizontal, even if
the road is tilted, and it will be the roof of the building (and not the ground) that defines the sky visibility.
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Table 1. Building model parameters.

Bldg Id Up East1 North1 East2 North2 w h

4. EEmap Creation

4.1. Road Layer

The creation of this layer is carried out by means of computer-assisted photogrammetry. To do so, a
specific web tool that was presented in [23] was created. The application uses AJAX technology [24] to
maintain communication with the server, and contains a database where the descriptors of the figures of
the map are stored. The images used to carry out the task of photogrammetry are supplied by Google
Maps, offering a resolution in the satellite images suitable for the purpose of this work. This web tool
is quite simple and fast to use without detriment to the accuracy. The process of map-making exploits a
set of drawing tools of the web application that assist the manual draw of figures on a map image. An
overview of it is shown in Figure 5.

Figure 5. Overview of the web tool developed to create the road layer of the EEmap. On the
right, the toolbar and drawing assistant; on the left, the map drawing overlaying the aerial
image of an urban area of Murcia, Spain.
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4.2. Elevation Layer

Two methods for extracting the model parameters of the buildings presented in Table 1 were
developed and are presented in the next sections. The first method, named Building Image-based
Method, depends on the complete visibility of the building. Building images are obtained from Google
Earth using the Street Viewer tool. This allows fast prototyping, avoiding extensive field campaigns for
extracting the building features. However, since the complete view of the building is not always available,
a second method named Story-based Method based on the number of stories is proposed. It consists in
applying the same art as the “Building Image-based Method” in images that only show isolated parts
of buildings, such as the ground or the first floor, something common in urban canyons. In subsequent
discussions, a comparison of both methods will show the consistency of our approach.

4.2.1. Building Image-Based Method

A dedicated algorithm based on Google Earth images processing is proposed for simply and efficiently
obtaining building heights. The first step employs a frontal view of the building facade provided by the
Street Viewer tool of Google Earth. Then, a border detector algorithm is implemented to get an edge
intensity image. The small-scale model obtained with the low-level detector provides edge information
of the scene, which is used to calculate the relationship between the width and the height of the building.
Since its real width can be measured in the aerial image provided by Google Earth, it is possible to
extrapolate feature information to calculate the real height of the building. As it will be shown later on in
the paper, experimental results show that the proposed algorithm works well in cases where a complete
frontal view of the building is available in the Street Viewer tool of Google Earth.

4.2.2. Story-Based Method

An entire view of the facade of the building is not always available in Google Earth, especially in
narrow streets with limited visibility where the only visible features correspond to the ground and first
floors. In these cases, it is possible to use the prior algorithm to detect edges only of available parts and
then extrapolate measurements to the whole building just by counting the number of stories. Given that
the heights of the regular stories of a building are all the same, by applying this technique the height of
the entire building can be computed as follows:

h = k1 × s+ k2

where s denotes the number of stories, k1 represents a constant value of the height of an arbitrary floor
and k2 is the height of the ground floor along with any extra element not included in a standard story of
the building. Both parameters are obtained with the detector estimation method.

5. Considerations of Accuracy and Memory Use

The EEmap concept presented in this paper will be valid as long as the information stored in it is
accurate enough and the corresponding memory needs will not be a stopper. These two aspects are
analyzed in the next sections.
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5.1. Accuracy

5.1.1. Road Bounds

The main purpose of this layer is to describe urban roadways with better accuracy than standard maps
based on polylines. In particular, since the area to be mapped is modelled with figures that adapt to the
road shape, the borders of the roadways are defined with much more accuracy. This results in interest for
vehicle positioning and map-matching algorithms, especially when techniques based on particle filters,
bounded-errors, interval analysis or belief theory are used [7,25].

The final accuracy of the EEmap depends on several factors:

• The quality and accuracy of the aerial image. The web tool developed for EEmap creation is
supported by Google Maps. In the tests made in several cities of Spain, its quality was found
sufficient to achieve at least sub-meter accuracy at the road border. Although there may be some
absolute errors caused by drifts in the aerial view, in the tests carried out no significant errors were
found. Nevertheless, solving this problem is out of the scope of this work. In addition, occasionally
trees and other objects may block the view of the road border although these situations are very
unusual.

• Model limitations. The figures presented in this work have been selected because they can
represent the road shape with good accuracy and they complement one another. In addition to
that, the computational complexity of determining whether certain UTM coordinates are within
the figures was also taken into consideration. Due to the limited number of figures, there may
be situations where the suitability is not optimal. Although these situations are unusual in urban
environments, even in these cases the intended accuracy can be achieved by means of modelling
the road with the option free drawing, where the polygon entered by the user is automatically
broken down in an optimal number of triangles.

• The operator skills. As with any other human-driven process, the capabilities of the EEmap web
tool user to develop the best strategies will condition the final quality of the EEmap. Nevertheless,
it is the authors’ belief that the tool developed is simple to use.

The benefits in terms of accuracy achieved when characterizing urban roadways with the EEmap
model compared with the conventional maps based on polylines depend on the area under consideration,
the shape of its roadway and the quality of the standard maps there.

Figure 6(a) shows an example of an interesting area near a roundabout. In the upper image, the
EEmap (in blue) is superimposed on the aerial view of the area. In the lower image, the polyline-based
map is displayed together with the EEmap figures in blue. It can be observed that the polyline-based
map differs from the middle of the street, which would add errors in map-matching. Some errors caused
by the map model are also visible (remarked with red arrows in the image).

Figure 6(b) shows another example of this situation. At the bottom of the image, lanes on the direction
from right to left are represented in the commercial map with a common centerline (solid black) and the
road width (black dashed line). Two intersecting roads are also depicted in the same way. The EEmap
of this area is superimposed in green. Brown areas are overlaps between both the commercial and the
enhanced maps.
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Figure 6. (a) Top: aerial view of the scenario under consideration with superimposed
EEmap (in blue); Bottom: inaccuracies in the polyline-based map with an overlaying EEmap
(in blue). (b) Black: centerline of the polyline-based map. The inaccuracies committed
in the assumption of a fixed lane-width can be seen (superimposed in red) together with
the imprecision of the mid-lane. Black-dash lines show the limit of these lanes. Green:
superimposed EEmap.

(a) (b)

In our tests performed in the South of Spain, it was usual to detect errors of several meters in
commercial city maps. Most commonly, errors are at the level of 4 or 5 meters, but in some situations
its value can reach more than 10 meters. These error values in the maps entail insuperable barriers for
positioning and map-matching algorithms, especially when lane-level is aimed.

5.1.2. Elevation

As aforementioned, two different methods named building image-based method and story-based
method are used to create the EEmap, depending on the visibility of the buildings in the Google street
viewer. The former will be used when there is good visibility of a building in the Google Street Viewer,
and the latter will be used when only the height of the lower stories and its number are available. To
disentangle the possible influence of using one method or another on the accuracy of the EEMap, both
techniques have been compared with buildings located in Murcia, Spain. A sample of the results is given
in Table 2. As it can be seen, the difference between heights computed using one or another method is
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only slightly different with a median relative difference of 0.0048. Therefore, it can be assessed that the
use of one method or another makes no significant difference.

The goodness of the buildings’ measurements obtained following our methodology has been validated
by using the data of the French IGN Batimap, formerly introduced in Section 2. The differences in ten
buildings of France are shown in Table 3. Heights are always consistent, and the relative difference
between both datasets is always lower than 0.05 with an average of 0.032. In absolute terms, maximum
differences are around half a meter.

Table 2. Comparison of building height estimates between image-based method and story-
based method.

Bldg Id Method 1 Method 2 Absolute Difference Relative Difference

1 26.27 26.36 0.09 0.0034

2 38.99 38.70 0.29 0.0074

3 26.65 26.85 0.20 0.0075

4 25.07 25.01 0.06 0.0025

5 19.92 19.98 0.06 0.0033

Table 3. Comparison of building height estimates with the French IGN Batimap reference.

Bldg Id Method 1 Method 2 Absolute Difference Relative Difference

1 13.40 13.98 0.58 0.043

2 15.32 15.89 0.57 0.037

3 15.20 15.16 0.33 0.002

4 15.60 15.71 0.11 0.007

5 14.29 14.62 0.33 0.023

6 5.79 6.06 0.27 0.047

7 15.71 15.42 0.29 0.018

8 14.99 15.39 0.40 0.027

9 7.60 7.06 0.54 0.071

10 14.66 15.28 0.62 0.042

5.2. Memory Use

5.2.1. Road Layer

With regard to the memory storage of maps, enhanced maps usually require more memory than
conventional cartographic systems. This is because a larger amount of data descriptors is needed.
An example of this can be seen in Figure 7(a). This example has been used to perform a numerical
comparison between a polyline-based map and our EEmap. To do so, it is assumed that polylines
employ four descriptors (x, y, z and lane width) to describe the stretches between nodes and/or shape
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points (separated by black dashes in the image of Figure 7(a)), with the exception of the last section
that will also have three extra values, x, y, z, corresponding to the end of the polyline. Table 4 shows
the results of this comparison. While 264 values are needed to describe this area with the EEmap, the
polyline-based map requires only 78 values. However, depending on the shape of the road, the use of
our EEmaps can lead to a reduction of the amount of memory use, as shown in Table 5. This table shows
the results obtained when carrying out the same analysis made in Table 4, but this time for the image
presented in Figure 7(b). In this case, only 36 values are needed to describe the roundabout with the new
enhanced maps, while 123 values are needed in order to make a description based on polylines.

Figure 7. (a) Situation where the use of our EEmap leads to an increase in memory
requirements. Left image: polyline-based map where black dashes indicate nodes or shape
points; Right image: EEmap of the same area. (b) Example of a roundabout area where the
figure-based EEmap uses a lower number of figures than a polyline-based map. Left image:
polyline image with black dashes that separate the lines at the shape points; Right image:
EEmap split of the same area that uses less parameters.

(a) (b)

Table 4. Comparison of the number of parameters needed to describe the image shown in
Figure 7(a) with a polyline-based map and our EEmap.

Map Type Elements Descriptors Total
by element Descriptor

Polyline-based 29 segments 4

Map 6 final 7 78

segments

Figure-based 10 Trapezes 8

EEmap 18 Triangles 9 264

2 Arrowhead 11
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Table 5. Comparison of the number of parameters needed to describe the image shown in
Figure 7(b) with a polyline-based map and our EEmap.

Map Type Elements Descriptors Total
by element Descriptor

Polyline-based 29 segments 4

Map 1 final 7 123

segment

Figure-based 4 Crown 9 36

EEmap Sectors

A detailed comparison of the demanded storage capacity is strongly dependent on the layout of the
urban roadways. Nevertheless, since in most cases the description based on an EEmap will cause higher
memory occupation, the decision of whether its exploitation is worthy will depend on the accuracy
requirements of the intended application.

5.2.2. Elevation Layer

The memory needed to store the elevation layer of an EEmap depends on the density of buildings in
the area under consideration. Since the focus of this paper is urban scenarios, let us consider the case of
a dense built-up area.

Along one kilometer of street in the city center of Murcia, Spain, we counted 139 relevant facades
considering both sides of the road. For this count, relevant facades are those that could block the direct
view of a GPS satellite from a receiver installed in a vehicle on this road. Typically, for a building with
four facades, only three are relevant since the fourth is hidden behind the other three. Each facade needs
eight parameters according to Table 1, which results in 1112 parameters per kilometer in a highly dense
built-up scenario.

Considerations about the compression of these data or its optimization are out of the scope of
this paper.

6. Conclusions

A new model of enhanced map, called Elevation-Enhanced map (EEmap), was presented. Our EEmap
is based on two layers. The first layer, which is the road layer, includes accurate information of the road
bounds, thus enabling advanced positioning and map-matching techniques to provide more accuracy
and consistency. Secondly, the elevation layer complements the road layer with the description of the
elevation environment, which in urban areas (the focus on this paper) consists of mostly buildings.
By knowing the location and height of the buildings, an azimuth-elevation map of the GPS satellites
visibility can be built for a given vehicle position. Therefore, satellites in direct view (LOS) can be
distinguished from those in NLOS, supporting multipath detection and elimination. The concept and
the creation process of the EEmap have been presented in the paper. The paper is completed with the
analysis of accuracy and memory use for both layers of the enhanced map. Results show how the concept
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and methodology for creating EEmaps can provide accurate maps of urban roads and its environment
that are also affordable in terms of memory use.
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