
Sensors 2012, 12, 13417-13440; doi:10.3390/s121013417

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design and Implementation of Real-Time Software Radio for
Anti-Interference GPS/WAAS Sensors

Yu-Hsuan Chen 1, Jyh-Ching Juang 2, Jiwon Seo 3,*, Sherman Lo1, Dennis M. Akos 4,

David S. De Lorenzo 1 and Per Enge 1

1 Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford,

CA 94305, USA; E-Mails: shinge@stanford.edu (Y.-H.C.); daedalus@stanford.edu (S.L.);

dsd@stanford.edu (D.S.D.); penge@stanford.edu (P.E.)

2 Department of Electrical Engineering, National Cheng Kung University, 1 University Road,

Tainan 70101, Taiwan; E-Mail: juang@mail.ncku.edu.tw

3 School of Integrated Technology, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu,

Incheon 406-840, Korea; E-Mail: jiwon.seo@yonsei.ac.kr

4 Department of Aerospace Engineering Sciences, University of Colorado, 1111 Engineering Drive,

Boulder, CO 80309, USA; E-Mail: dma@colorado.edu
* Author to whom correspondence should be addressed; E-Mail: jiwon.seo@yonsei.ac.kr;

Tel.: +82-32-749-5833; Fax: +82-32-818-5801.

Received: 14 August 2012; in revised form: 14 September 2012 / Accepted: 27 September 2012 /

Published: 1 October 2012

Abstract: Adaptive antenna array processing is widely known to provide significant

anti-interference capabilities within a Global Navigation Satellite Systems (GNSS)

receiver. A main challenge in the quest for such receiver architecture has always been the

computational/processing requirements. Even more demanding would be to try and

incorporate the flexibility of the Software-Defined Radio (SDR) design philosophy in such

an implementation. This paper documents a feasible approach to a real-time SDR

implementation of a beam-steered GNSS receiver and validates its performance. This

research implements a real-time software receiver on a widely-available x86-based

multi-core microprocessor to process four-element antenna array data streams sampled

with 16-bit resolution. The software receiver is capable of 12 channels all-in-view

Controlled Reception Pattern Antenna (CRPA) array processing capable of rejecting

multiple interferers. Single Instruction Multiple Data (SIMD) instructions assembly coding

and multithreaded programming, the key to such an implementation to reduce

computational complexity, are fully documented within the paper. In conventional antenna

OPEN ACCESS

Sensors 2012, 12 13418

array systems, receivers use the geometry of antennas and cable lengths known in advance.

The documented CRPA implementation is architected to operate without extensive set-up

and pre-calibration and leverages Space-Time Adaptive Processing (STAP) to provide

adaptation in both the frequency and space domains. The validation component of the

paper demonstrates that the developed software receiver operates in real time with live

Global Positioning System (GPS) and Wide Area Augmentation System (WAAS) L1 C/A

code signal. Further, interference rejection capabilities of the implementation are also

demonstrated using multiple synthetic interferers which are added to the live data stream.

Keywords: Global Positioning System (GPS) and Wide Area Augmentation System

(WAAS) sensor; software-defined radio; controlled reception pattern antenna (CRPA);

Space-Time Adaptive Processing (STAP); radio frequency interference

1. Introduction

Global Navigation Satellite Systems (GNSS) signals are relatively weak and thus vulnerable to

deliberate or unintentional interference [1]. An electronically-steered antenna array system provides an

effective approach to mitigate interference by controlling the reception pattern and steering

beams/nulls. As a result, so called Controlled Reception Pattern Antenna (CRPA) arrays have been

deployed by organizations such as the U.S. military which seeks high levels of interference rejection.

However, the increased cost and computational complexity has not been acceptable for the civil

commercial market thus far. This paper demonstrates a low cost CRPA implementation developed and

implemented using the flexible software radio approach.

In the literature, CRPA receivers have been implemented by different approaches. Williams et al. [2]

used a four-element antenna array and a CRPA system to implement spatial nulling adaptive array.

The CRPA system used an analogue approach to combine the signals and adopt a correlation feedback

to derive the weight vector. Konovaltsev et al. [3] implemented a MATLAB-based software receiver

to assess the performance of the beamforming algorithms and found the steering vectors by Direction

of Arrival (DoA) algorithms. Li et al. [4] proposed a beamforming architecture for real Intermediate

Frequency (IF) signals and calculated optimum weights from given GPS almanac. Heckler et al. [5]

developed a four-element antenna array and front-ends for dual-band L1/L5 signals. They also

implemented a MATLAB-based software receiver for field test of adaptive beamforming algorithms

with directions of satellites calculated from DoA estimation. These MATLAB-based software

receivers do not have real-time capabilities. Arribas et al. [6] implemented a real-time hardware and

software platform which is capable of digital beamforming. They used a Field Programmable Gate

Array (FPGA) for digital beamforming up to eight antenna elements and delivered the resulting

spatially-filtered digital signals to a Personal Computer (PC) by Ethernet bus. The signal can be stored for

post-processing or processed by a real-time software receiver [7,8]. De Lorenzo et al. [9] describe various

approaches for beamforming (pre- and post-correlation) in a post-processing software radio

architecture. Seo et al. [10] use a quad-core Central Processing Unit (CPU) coupled with a Graphics

Processing Unit (GPU) to implement an all-in-view CRPA software receiver. However, no previous

Sensors 2012, 12 13419

publication has documented the design or implementation of an all-in-view pre-correlation real-time

CRPA software receiver for GNSS sensors using CPU alone.

The bit-wise parallel software correlation algorithm [11] has the potential to enable a real-time

software receiver if digitized GNSS signals have 2-bit resolution. Yet 2-bit resolution does not provide

sufficient dynamic range when the CRPA design is most valuable—in the presence of high power

interferer. Thus, the bit-wise parallel software correlation algorithm is not sufficient for any practical

CRPA implementation which would demand 8 or more bits of sampling resolution.

This paper completely documents a four-element CRPA software receiver implementation capable

of processing 16-bit complex samples generating up to twelve beamformed channels for the Global

Positioning System (GPS) and Wide Area Augmentation System (WAAS) L1 Coarse/Acquisition

(C/A) code signals in real time.

Conventionally, antenna array system receivers perform CRPA processing with the geometry of the

antennas and cable lengths known in advance. In this software receiver, the implemented algorithm

allows CRPA operation without such prior knowledge. Instead, the carrier phase differences between

satellite tracking channels are used as the constraints of adaptive beamforming algorithm as a

simplistic model for Minimum Variance Distortionless Response (MVDR) [12] pre-correlation

beamforming. Further, the implementation includes Space-Time Adaptive Processing (STAP) [13]

which provides best interference rejection performance but has highest computational complexity

among interference rejection techniques [14].

In order to achieve real-time capability, the most computationally expensive functions are

programmed in x86 assembly using Single Instruction Multiple Data (SIMD) instructions. We build on

a structure of SIMD parallel programming [15] and include SIMD assembly code as a real-time

implementation example since it is the fundamental enabler of such an implementation. Multi-threaded

programming, again fully documented, is leveraged to fully exploit the multi-core resources of the

processor [16]. The execution flow is designed to distribute the tasks across multiple cores. For

reducing the operations of the software correlator, local replicas of code and carrier at zero-phase are

generated and stored prior to execution. A software technique to correlate the IF data with local replica

for whole code period without crossing data bit transition is developed and described.

The implementation is validated using actual IF data streams. The signal processing, positioning

and beamforming are accomplished by software approach and shown to function in real time. By

adding synthetic interference to the collected data, the only practical test option given the protected

nature of the GPS L1 frequency band, two test scenarios are used to demonstrate the interference

rejection performance of the CRPA software receiver. The first interference scenario is with high

Interference-to-Signal ratio (J/S). The second scenario is with multiple different interferer types from

different directions. The results are illustrated by angle-frequency responses.

The key contributions of this paper are summarized as follows: (a) this is the first published work

which not only demonstrates a real-time all-in-view CRPA software receiver running on a CPU but

describes the implementation in significant detail with actual code examples critical to the architecture;

(b) This work leverages a mechanism to perform “blind” beamforming (without prior knowledge or

calibration). This mechanism is implemented by realizing up to 60 tracking channels (12 tracking

channels for each antenna element of the four-element array and 12 tracking channels for composite

beamformed signal). (c) This work provides an approach to estimate Radio Frequency (RF)

Sensors 2012, 12 13420

chain/cabling bias upon startup. This information is not necessary for beamforming in our approach

but it can be useful to illustrate the functionality of the receiver. Based on this bias information, which

is used to generate a simplified antenna model, angle-frequency responses are calculated accurately to

show the functionality of the implemented STAP in the spatial and temporal domains in the presence

of multiple interferers with different bandwidths.

The paper proceeds as follows: first, the beamforming algorithm implemented in the software

receiver is introduced and its mathematical properties are outlined. Then, the mechanism used to build

the steering vectors without prior calibration is documented. The architecture of the software receiver,

including hardware and software components, is explained in detail. In order to validate the

implementation and the interference rejection performance, the software receiver is tested with live

GPS/WAAS data and synthetic interferers. The results demonstrate the performance of the software

receiver under multiple interferers in the spatial and temporal domains.

2. Beamforming Algorithm Used in the Software Receiver

The primary goal of CRPA is to enhance the carrier-to-noise ratio (C/N0) of desired signal and

reject the interferers. Digital beamforming approaches are used to implement CRPA by combining the

signals of an antenna array. Various signal combination approaches are well documented in the

literature, which include frequency-processing, spatial-processing, STAP [13] and Space-Frequency

Adaptive Processing (SFAP) [17]. Frequency-processing is primarily against narrowband interference.

Spatial-processing is efficient against both broadband and narrowband interferers, but it can cancel

only N-1 interferers, where N is the number of elements in the antenna array. STAP or SFAP places

nulls both in the frequency and spatial domain and can cancel more than N-1 interferers if some

interferers are narrowband. Despite their benefit, the computational complexity of STAP or SFAP is

high, so implementing them in a real-time software receiver is challenging. Several algorithms have

been proposed to calculate weights for STAP or SFAP. Some algorithms optimize certain conditions

with known signal structure of the desired signal such as maximum signal-to-interference ratio,

minimum mean square error and minimum output power. Other algorithms do not need prior

knowledge of signal structure but minimize output power to certain constraints such as MVDR [12]

and Constrained Least Mean-Squares [18]. The constraints can be set to form a beam in the direction

of satellite or steer a null in the direction of interference. The steering vector associated with the

direction of satellite can be obtained from either satellite ephemeris and array calibration information

or even carrier phase differences between elements of an antenna array can be leveraged as a

simplified model.

In order to be able to reject multiple interferers with different bandwidths, we adopt the STAP with

adaptive MVDR beamforming algorithm [19] to implement CRPA shown in Figure 1. After

down-conversion to zero IF and digitization, the IF signal of each antenna is complex and denoted as

Sn[k]. Each signal is then multiplied by complex weights wn and summed over all antennas to make a

composite signal as follows:

Sensors 2012, 12 13421

 (1)

where N is the number of elements in the antenna array. M is the number of time taps. sn[k − m] is the

signal from nth antenna element and mth time tap. wnm is the weight associated to the nth antenna and mth

tap.

Figure 1. Architecture of STAP with adaptive MVDR beamforming algorithm.

The MVDR algorithm minimizes the output power and constraints the gain of the direction of desired

signal to unity as follows [18]:

1 subject to

 minimize
2

=

=

CW

RWWy
H

H

 (2)

where R is the covariance matrix of input signals and C is the constraint vector toward the target

satellite. The covariance matrix R is estimated by computing sample covariance matrix with assuming

the sample mean is zero as follows:

[]
[]
[]][][][][

)]1([]1[][][

][][][

21

)1(011102010

1

1

0

ksksksks

MkskskskS

wwwwwwwW

kSWmkswky

N

T

T
MNNNN

H
N

n
n

M

m
nm






=
−−−=

=

=−=

−

=

−

=


Sensors 2012, 12 13422

[]

[] []
−

=

−⋅−=





























=

−−−

−−−

−−

1

0

1

2212

1111

1111

121111111

1

1101

0001

1101

1101

1000101000

s

lk

MMM

MMM

MM

N

t
baba

NNN

N

ltskts
N

r

rr

rr

rr

rr

rrrrr

kR









 (3)

where Ns is the number of samples to compute the covariance matrix. The overline sign is defined as

complex conjugation. For each entity in the R matrix, a and b stand for the index of antenna

elements.

The constraint vector C is composed of a steering vector T as the first to Nth elements and zeros as

the remaining (M − 1)N elements:

[]TN

T

NM

N

tttT

tttC



 

21

)1(

21 00

=












=

−
 (4)

Traditionally, the signal of the first antenna element is set as the reference and its component in the

steering vector is set to 1. The other components are set as phase shifts relative to the reference

antenna, which are represented by:

()()11exp i
l
ii jt γϕ Δ+Δ−= (5)

where l
i1ϕΔ is the phase difference based on antenna geometry and the direction of desired satellite.

1iγΔ is the phase resulting from the difference of cabling and RF chain including down converter and

digitization among elements of antenna array. l
i1ϕΔ can be calculated as:

λ
θφπϕ),(ˆ2 1

1

l
il

i

rp ⋅=Δ


 (6)

where 1ip


is the baseline vector of the ith antenna and),(ˆ θφlr is the unit vector to satellite l shown in

the Figure 2.

Figure 2. Antenna geometry and direction of a satellite showing calculation of l
i1ϕΔ .

baab rr =

Sensors 2012, 12 13423

The baseline vector 1ip


 is known from the array geometry, and),(ˆ θφlr can be obtained through

positioning. Only 1iγΔ needs to be re-calibrated whenever any part of hardware of antenna array is

changed. From the derivation in [18], the solution of Equation (2) is:

() 111 −−−= CRCCRW T (7)

Two matrix inversions are needed to compute in Equation (7). Alternatively, the Frost algorithm [18]

derived an adaptive approach which iteratively updates the weight:

[]() C
N

iWiRICC
N

IiW

C
N

W

T 1
][

1
]1[

1
]0[

+−





 −=+

=

μ
 (8)

where μ is the adaptation step size which can be constant or variable related to covariance matrix. i is

the iteration count. In our software receiver, μ is calculated by:

(9)

where α is a constant dependent on the number of entries in the R matrix.

3. Obtaining the Steering Vector without Prior Calibration

For adaptive MVDR beamforming, obtaining the steering vector is the key to implementing a

CRPA. However, as mentioned in the previous section, some parameters of the steering vector need to

be calibrated. Direction vectors toward satellites can be obtained after positioning. A software receiver

has the flexibility of implementing multiple channels to track multi-antenna signals separately.

Integrated Carrier Phase (ICP) is one of the tracking outputs of the phase lock loop. The ICP is often

used to smooth code pseudorange for improving accuracy of positioning. In our software receiver, ICP

differences between different antenna elements are taken to build the steering vectors instead of

deriving the vectors from the azimuths/elevations of the satellites and the baseline vectors of antenna

elements [20]. Figure 3 shows the block diagram of the approach used to obtain the steering vector in

our software receiver. This approach enables us to perform beamforming without a prior calibration.

However, if ICP cannot be extracted from individual antenna elements due to weak signal, this

technique does not work. If the ICP cannot be extracted due to interference, the steering vector is kept

as previously calculated value. For our implementation, it is assumed that the receiver is initiated in

interference free conditions.

The IF data of each antenna is processed by K tracking channels (K = 12 in our case) in which each

channel is assigned to track one satellite. Each satellite is tracked by N channels (N = 4 in our case)

assigned to N antenna elements. Once the N channels assigned to a given satellite are simultaneously

tracked, the ICPs are initialized by filtered phases of the in-phase (I) and quadrature (Q) components of

correlator outputs. Then, the ICPs are continuously integrated and the phase differences between the

reference antenna and other antennas are computed at runtime. The differences of ICPs between

different antennas provide elements of the steering vector. This phase difference, which is the same as

()Rtrace
αμ =

Sensors 2012, 12 13424

 in Equation (5), can also be used to calculate the cabling/RF chain part because

is obtained after positioning.

Figure 3. Mechanism to obtain the steering vectors in the software receiver.

4. Architecture of Software Receiver

The developed CRPA real-time software receiver runs on a PC platform and uses IF datasets as

input where the detailed description of the data collection hardware is presented in [7]. It currently

operates on GPS and WAAS L1 C/A code signals and supports four-element antenna array.

There are a total of 60 channels, of which 48 channels are used to process data from four antennas

(12 channels for each antenna element) and are dedicated to obtain the ICP differences only. The other

12 channels are used to process the beamformed composite signal using the pre-correlation

beamforming approach shown in Figure 4. The STAP algorithm, which is capable of rejecting more

than N-1 interferers is implemented in the pre-correlation approach. Each beamformed channel uses

one set of weights to steer a beam toward a satellite. The weights are updated by adaptive MVDR

algorithm. The steering vectors, which are inputs to the weight update, are obtained from ICP

differences between tracking channels as described in the previous section. Hence, the software

receiver can form beams before positioning in the pre-correlation sense.

The weight update rate of MVDR algorithm is 1 kHz for adapting highly dynamic interferers. The

current platform can achieve real-time performance with up to five time taps for STAP processing.

There exists a tradeoff between the number of antenna elements, tracking channels, time taps, and

weight update rates. Given the four-element antenna array, our software receiver can reject at most

three broadband interferers. It can reject more than three interferers if some of them are narrowband

nature. Positioning is dedicated to the beamformed composite signals. In order to illustrate the

interference rejection performance, the cabling/RF chain biases need to be calculated after positioning.

Then, the biases combined with weights are used to calculate the accurate angle-frequency response

which provides a coarse visualization of the outputs of STAP given the electrical layout of the

individual elements.

11 i
l
i γϕ Δ+Δ 1iγΔ l

i1ϕΔ

Sensors 2012, 12 13425

Figure 4. Beamforming architecture for steering 12 beams simultaneously using the

MVDR algorithm.

4.1. Software Architecture

The software is developed using Microsoft Visual Studio under 64-bit version of Microsoft

Windows 7. Most source codes are programmed using C++. The functionalities with high

computational complexity, such as correlation operation and covariance matrix calculation, are

programmed by assembly. The component list of the software is in Table 1, and detailed explanations

of the components are given in the following subsections.

Table 1. Component list of the software architecture including short descriptions and how

often each component is called.

Component Description Frequency

Automatic gain control Equalize noise power of all elements of
antenna array to full 16-bit representation.
Hand-coded assembly.

Call right after reading
every 1 ms data from
solid state drive.

Software correlator Perform 16-bit complex data correlation by
software approach.
Hand-coded assembly.

every 1 ms

Acquisition/Tracking
and Positioning

Signal processing and positioning function for
GPS/WAAS satellites.

every 1 ms for
acquisition/tracking,
every 100 ms for
positioning

Sensors 2012, 12 13426

Table 1. Cont.

ICP initialization and
calculation of the
differential ICP

Perform the initialization and difference
calculation of ICP for determining the steering
vectors.

every 1 ms

Adaptive MVDR
beamforming
-Covariance calculation
-Weight updating

Implement the adaptive MVDR beamforming
including covariance matrix calculation and
weight updating.
Hand-coded assembly for covariance
calculation.

every 1 ms

Weight and sum Perform the signal combination as Equation
(1).
Hand-coded assembly.

every 1 ms

Bias calculation for
receiver performance
validation

Perform the calculation of cabling/RF chain
bias.

One time after first
positioning

Calculation of angle-
frequency response for
performance validation

Perform the calculation of angle-frequency
response.

every 5 s

System Program Schedule threads to achieve real-time
capability.

every 1 ms

Figure 5. Flowchart of the software from reading IF data to validating receiver

performance.

4.1.1. Automatic Gain Control

Software receiver processing starts from reading the IF data from the disk. The MVDR algorithm

works efficiently when the data received from different antenna gains/RF chain has similar

distribution. Hence, IF data from each antenna is amplified by a gain term which is managed by an

automatic gain control function. The objective of the gain control is to equalize the different noise

Sensors 2012, 12 13427

power of all elements of antenna array caused by different RF chains/antenna gains. The gain is

updated iteratively by finding a maximum value across one ms data as follows:

()
])[(][]1[

/12

max
1

kGgkGkG

MAXg

sMAX

b

s

N

i

N

i

−+=+
−=

=
=

β
 (10)

where si is ith digitized sample of the IF signal, Ns is the number of samples in one ms, Nb is the number

of bits for representing data, and β is updating step.

4.1.2. Software Correlator

In the software correlator, the code and carrier of IF signals are wiped off. The 16-bit complex data

(I/Q) are correlated with local code and carrier replica. Due to its high computational complexity, the

software correlator is programmed in assembly using SIMD instructions. Based on the SIMD library

correlator in Hecker and Garrison [15], an assembly code architecture optimized for the specific code

and carrier tables are created prior to execution. The structures of code, carrier table and input IF data

are depicted in Figure 6. These tables are formatted as 16-bit short integers. The code table is made by

Ns + 2Ps phase for each PRN code where Ps is the number of samples between Early-to-Prompt

spacing and Ns is the number of samples in one ms. The carrier table is divided by sine and cosine

tables and starts from zero phase for each Doppler frequency. I and Q of IF data are bundled together

to make a pair. The correlation operation is done between IF data with the nearest sample to zero

carrier phase and local Early/Prompt/Late replicas according to code phase measurement.

Figure 6. Structure of code table, carrier table, and IF data used in the software correlator.

Sensors 2012, 12 13428

The correlation operation with complex IF data is performed as follows:

()()







−

=

−

=

−

=

−

=

−

=

=×+×=

=×−×=

++=+

1

0

1

0

1

0

1

0

1

0

ss

ss

s

N

k
k

N

k
kkkkkk

N

k
k

N

k
kkkkkk

N

k
kkkkk

CQICOSQCOCSCQ

CIQCOSICOCSCI

jQIjSCSCOCQjCI

 (11)

where CI and CQ are the real part and imaginary part of correlator output, respectively. The other

terms are defined in Figure 6.

Table 2. Procedure to implement software correlator with complex IF data for a single

sample.

Step Description Operations

1. Multiply I and Q of IF data by PRN code and interleave the
result

1 multiplications
2 interleaving

2. Arrange Sine and Cosine tables in complex data format 4 interleaving

3. Perform complex multiplication by multiply-and-add 2 multiply-and-add

4. Accumulate the complex results 3 additions
1 interleaving

Using SIMD instructions and 128-bit-wide SSE registers [21], one can simultaneously operate on

eight 16-bit-wide words by a single instruction. For example, in the step 3 in Table 2, the complex data

format for executing the parallel multiply-and-add (PMADDWD) instruction is depicted in Figure 7.

In total, eight multiplications and four additions are performed in one instruction cycle for processing

two complex IF samples, so it would reduce computational load approximately 12x.

Figure 7. Complex data format for executing PMADDWD instruction and operations

inside PMADDWD.

An assembly code of the software correlator, which is compatible to SSE2, SSE3, and SSE4.1 [21],

is programmed and shown in Figure 8 as an example. This code is built upon the library in Heckler and

Garrison [15]. Additionally, instructions from the new version of SSE such as interleaving and parallel

addition are incorporated to further increase performance. This code implements the inner part of the

summation in Equation (11) and follows the operation procedure in Table 2. Four complex samples are

Sensors 2012, 12 13429

processed in parallel within 30 instructions. This code is the key component to process 60 tracking

channels in real time and thus its complete description has been included.

Figure 8. Assembly code example of software correlator using SIMD instructions.

In order to avoid performing correlation across data bit transition point, two ms long buffers are

used in parallel and one ms segment is selected to perform the correlation. The selection approach is to

use the code phase measurement to set the starting sample of correlation window. Then, this

zero-code-phase segment is correlated with zero-phase PRN code and carrier tables for whole code

period. Figure 9(a) shows the architecture of IF data buffer. When new data comes in, the oldest data

will emerge, the second entry is shifted to the first entry, and the new data is loaded to the second

entry. Figure 9(b) shows the correlation window which is set by current code phase measurement.

However, code phase would shift forward or backward due to Doppler frequency. A strategy is

adopted to account for code phase movement. According to the direction of code phase movement,

there are three possible cases as shown in Figure 9(c–e) and listed as follows

1. Forward phase movement to zero (phase Np-1in 1st entry and phase 0 in 2nd entry): perform

correlation two times for the first and the second buffers.

2. Backward phase movement to Np-1 (phase 0 in 1st entry and phase Np-1 in 2nd entry):

perform a correlation for the second buffer and skip next correlation.

Sensors 2012, 12 13430

3. Others: perform a correlation across two entries.

Figure 9. (a) IF data buffer architecture (b) correlation window (c-e) three cases for

correlation operation which avoid performing correlation with data bit transition.

4.1.3. Acquisition/Tracking and Positioning

These functions adopt open source codes from Greenberg and Ebinuma [22] by replacing its

interface which controls hardware correlator by our software correlator. Additionally, the WAAS

signal processing and Viterbi decoder for messages are added to support positioning with the WAAS

GEO. The structure of carrier tracking loop of software receiver for the specific formats of code and

carrier table is described in Juang and Chen [23]. And, the phase compensation for carrier wipe-off is

implemented using a technique in Ledvina et al. [11].

4.1.4. ICP Initialization and Calculation of Differential ICP

The ICP is obtained by integrating IF carrier frequency over time as follows:

0

1

0
00

][][φωφωϕ +≈+= 
−

=
I

k

i

t

p Tidtk
k

 (12)

where 0φ is the initial phase, ω is the Doppler frequency and T1 is the PRN code period which is one

msfor C/A code. Juang and Chen [23] derived the phase of correlator outputs as:

() ()
012

][],[atan2][φωωωθ −−−== −k
IR

c t
T

kCIkCQk (13)

where θc[k] is the phase at k ms based on the correlator outputs and the rounded Doppler frequency, ωR.

The correlator outputs, CI[k] and CQ[k], are calculated using the carrier table which has limited

frequency resolution. ωR is the frequency after rounding the Doppler frequency ω to the nearest

frequency grid of the carrier table. Hence, the compensated phase of incoming signal at time tk can be

obtained by:

Sensors 2012, 12 13431

()
2

][][01
IR

cIkp

T
kTtk

ωωθωφωϕ ++−=++= − (14)

The effect from the rounded frequency in θc[k] is compensated in φp[k] by Equation (14). Since this

compensated phase is noisy, an averaging filter is used to reduce the noise for estimating initial phase

0φ :

[] []()() ap
a

Ip
a

p

pp

Mkk
M

k
Tkk

M

k
k ≤≤








−+⋅−+−=

=

2],[12,11mod][

]1[]1[

ϕπωφφ

ϕφ
 (15)

where][kpφ is the averaged phase with less noise, and Ma is the number of ms to perform the

initialization. k denotes kth ms. After the initialization process, the residual of []ap Mφ is set as the

initial phase 0φ as follows:

[]()πφφ 2,mod0 ap M= (16)

Once the initial phase is obtained, the ICP is calculated every ms by adding ITi][ω as in Equation (12).

In order to build the steering vector, differential ICPs between antennas are calculated for every

channel. Then, the differential ICPs of several ms are averaged to obtain the steering vectors as follows:

[] []()
()l

n
l
n

L

i

ll
n

l
n

jt

ii

1

1
11

exp φ

φφφ

Δ−=

−=Δ 
= (17)

where L is the number of ms to average the differential ICP. l and n stand for lth channel and nth

antenna. l
nt is lth channel and nth antenna element of the steering vector.

4.1.5. Adaptive MVDR Beamforming

The adaptive MVDR beamforming function starts from computing the covariance matrix. The

covariance matrix in Equation (3) is a Hermitian matrix, so only the elements of the upper triangular

part need to be computed and the remaining elements can be obtained by the conjugation operation.

The computational complexity of Equation (3) is significant. Indeed, in the four antennas and five time

taps case, there are 210 elements to be computed. The computational load for each element is Ns

complex 16-bit multiply-and-add operations. With the sampling rate of 4 MHz, 4,000 multiply-and-add

operations per element need to be completed within 1 ms. Hence, two approaches are adopted to

expedite the computation. First, multithreaded programming approach is used to assign operations to

multiple threads for exploiting the resources of multi-core CPU. Second, SIMD assembly

programming is leveraged to accelerate the complex multiply-and-add operations. The procedure to

compute covariance matrix initializes with the loading of the complex IF samples from both ath and bth

antenna element. Then, the multiply-and-add and accumulation operations, as the 3rd and 4th steps in

Table 2, are performed. After computing the covariance matrix, the adaptation step size is decided by

Equation (9). Lastly, the adaptive procedure in Equation (8) for each channel is performed to update its

weight using calculated covariance matrix, steering vector, and adaptation step size.

Sensors 2012, 12 13432

4.1.6. Weight and Sum

After a set of updated weights is obtained from adaptive MVDR beamforming function, the

weight-and-sum function performs the combination of IF data as Equation (1). The results are sent to

software correlator as composite IF data input. Assembly code using SIMD instructions implements

the weight-and-sum operation by an architecture shown in Figure 10. By arranging the complex data

format, one multiply-and-add (MADD) instruction processes the complex multiplication of two

samples and outputs a product including I and Q components. In the end, all products are summed as

composite IF data.

Figure 10. Architecture of weight and sum including data formatting and used SIMD

instructions.

4.1.7. Bias Calculation

Even though this approach can perform beamforming without any calibration/modeling, the RF

chain/cabling bias information is useful to show the performance of interference rejection of the CRPA

receiver by angle-frequency response. Hence, these biases are estimated in the software receiver. This

bias information is not necessary for the beamforming process as previously explained. The bias

estimation process starts from obtaining the differential ICPs and unit vectors to satellites through

positioning. The differential ICP for kth satellite between ith and first antenna is given by:

Sensors 2012, 12 13433

k
i

k
ii

k
ik

i N
rp εγ

λ
πϕ ++Δ+⋅=Δ

ˆ2
1


 (18)

where k
iN is the integer associated to k

i1ϕΔ , and k
iε is the phase error. Then, with known baseline

vectors, the fractional part of bias can be estimated by:


=

⋅
−Δ=Δ

K

k

k
ik

ii

rp

K
fr

1
1)2,

ˆ2
mod(

1
)(π

λ
πϕγ


 (19)

where K is the number of channels. Only the fractional part of bias is required to calculate the

angle-frequency response because integer part of bias can be ignored inside exponential function. This

bias estimation does not consider the biases from mutual coupling and phase-center variations.

4.1.8. Calculation of Angle-Frequency Response

After the STAP processing, antenna array response in the direction of θφ, in Figure 2 and at the

frequency f is given by:


=

−

=














 −Δ+

⋅
×=

N

n
sn

n
M

m
nm fmT

rp
jwfGP

1

1

0

2
),(ˆ2

exp),,(πγ
λ

θφπθφ


 (20)

where Ts is sampling time. There are three dimensions of the response, two for the spatial domain and

one for the spectral domain. If one would like to show the spatial response such as the gain pattern,

then the frequency is fixed and gain values of two direction angles are shown on the polar plot. The

gain pattern is useful to show the spatial performance of beamforming because directional beams and

nulls are clearly illustrated. As another representation of array response, assuming that one of the

directional angles of interference is known, one fixes one directional angle and shows the gain of

the other directional angle versus frequency, which is called angle-frequency response. The

angle-frequency response is used to simultaneously show the spatial and spectral performance of

STAP where narrowband notch filter and broadband null steering are simultaneously illustrated.

4.2. Multi-Threaded Programming and Real-Time Execution Flow

The system program schedules the threads to execute the software receiver for fully exploiting the

resource of CPU. Figure 11 shows the execution flow plan for the receiver using 4 antennas and 5 time

taps. To achieve real-time capability, the execution flow must be finished within 1 ms for 1 ms input

signals. The MultiAntsThread masters the whole flow to synchronize the threads using event objects.

At first, MultiAntsThread sets events to receiver threads and an adaptation thread for initiating the

individual receiver operation and weight updating. For the composite beamformed signal, RcvrThread

performs the weight-and-sum using weight from previous iteration, software correlator,

acquisition/tracking and positioning. The positioning result will be given by this thread. For each

antenna element, each RcvrWoNavThread performs software correlation and acquisition/tracking only.

The ICPs are measured by these threads. For adaptation, the AdaptApplebaumThread first sets events

to multiple CalculateCovarThread to calculate the elements of the covariance matrix, and then

perform the MVDR algorithm to update the weights. Finally, the MultiAntsThread uses the differential

ICPs to build the steering vectors.

Sensors 2012, 12 13434

Figure 11. Execution flow of the software receiver within 1 ms. Multithread programming

is used to make the software capable of real-time execution.

5. Interference Rejection Performance of CRPA Software Receiver

A dataset is collected by the signal collection hardware [24] in open field (low multipath

environment) to examine the interference rejection performance of the CRPA software receiver. The

RF front-end of signal collection hardware is a Universal Software Radio Peripheral (USRP) [25] with

a Bitshark USRP Broadband configurable RF receiver (BURX) daughter board [26]. Its electrical

details are as follows. Sampling rate is set as 4 MHz. Intermediate frequency bandwidth is set as

4 MHz. Noise figure is 6.8 dB. Gain is set as 20 dB. Bits per sample at ADC output are 14 bits for both

I/Q. For injecting the interference, a MATLAB script is written to generate the synthetic interferers

and combine them with original dataset. The direction and signal specification of interferers can be

specified in the script. Two scenarios are built. In the first scenario, a single, broadband and high J/S

interferer is injected. In the second scenario, multiple broadband/narrowband with moderate J/S

interferers are injected. The power spectral density of broadband and narrowband interferers is shown

in Figure 12. The 3dB-bandwidth of broadband interferer is 2 MHz and narrowband interferer is a

continuous sinusoidal wave.

Sensors 2012, 12 13435

Figure 12. Power spectral density of broadband and narrowband interferers.

5.1. Single Interferer with High J/S

A single interferer specified by 40 dB J/S, 30° elevation angle, and 60° azimuth angle is simulated

to examine the software receiver performance. The interferer is added into dataset starting from 60th

second. Figure 13 (left) shows the filtered C/N0 of all-in-view CRPA. All channels are still in tracking

when high J/S interferer is injected. Figure 13 (right) shows the C/N0 of three WAAS GEOs to

compare performance of CRPA and single antenna. Before injecting the interferer, there is about 5 dB

gain in C/N0 of CRPA over single antenna. When the interferer is injected, the C/N0 of all WAAS

GEO channels in the single antenna lose lock, but the channels of CRPA continue tracking without

losing more than 5 dB of the original C/N0. Figure 14 shows Earth-North (EN) plots with and without

interference. The interferer affects the positioning result with worse Circular Error Probable (CEP)

because the interferer increases the noise level.

Figure 13. (left) C/N0 of all-in-view CRPA channels. (right) C/N0 of three WAAS GEO

channels (CRPA and single antenna cases).

Sensors 2012, 12 13436

Figure 14. (left) Positioning results of the software receiver without interference. (right)

Positioning results of the software receiver with interference.

5.2. Multiple Interferers

In order to examine the rejection capabilities of the software receiver to multiple interferers, six

interferers are injected to the data set as indicated by the sequence shown in Table 3.

Table 3. Injecting sequence of multiple interferers.

Sequence Interferer Type J/S IF Frequency Direction

1B Broadband 30 dB 0.42 MHz Azimuth: 0° Elevation: 30°
2N Narrowband 30 dB 0.42 MHz Azimuth: 60° Elevation: 30°
3B Broadband 30 dB 0.42 MHz Azimuth: 120° Elevation: 30°
4N Narrowband 30 dB 1.42 MHz Azimuth: 180° Elevation: 30°
5N Narrowband 30 dB −1.58 MHz Azimuth: −120° Elevation: 30°
6N Narrowband 30 dB −0.58 MHz Azimuth:−60° Elevation: 30°

Using a four-element array, the maximum number of broadband interferers that can be nulled using

spatial adaptation is three. In this scenario, two broadband and four narrowband interferers are injected

to examine the performance of STAP. Figure 15 shows the sky plots, antenna gain patterns and

angle-frequency responses of four cases. The antenna gain patterns and angle-frequency responses are

averaged over all the channels for showing common nulls in the plots. The represented gains are

obtained by fixing the elevation angle as 30°.

Each column in Figure 15 stands for each interferer case. The interferers are shown by red dots in

the sky plot. In the first column, there is no interferer, so no obvious null or notch is present. In the

second column, when one broadband and one narrowband interferers are injected, one null appear at

the azimuth angle 0° in the gain pattern and one narrowband notch appear at the frequency of

0.42 MHz in the angle-frequency response. In the end, total four narrowband and two broadband

interferers are injected. There are two nulls in the direction of broadband interferers and four notches at

the frequency of the narrowband interferers. Note that adaptation using the time taps makes notches in

Sensors 2012, 12 13437

the frequency domain instead of steering nulls in the spatial domain. It is the reason why the number of

interferers which can be rejected is more than the number of elements in the antenna array minus one.

Figure 16 shows all-in-view CRPA C/N0 when adding multiple interferers. All channels continue

tracking throughout the injecting sequence of interferers. This validates the CRPA software receiver is

capable of mitigating multiple interferers.

Figure 15. Sky plots and angle-frequency responses of four cases with injected interferers

marked by red dots in the sky plots.

Figure 16. All-in-view CRPA channels C/N0 under two broadband and four narrowband

interferers

Sensors 2012, 12 13438

6. Conclusions

This paper describes the implementation of a software receiver for GPS/WAAS L1 C/A code

signals to demonstrate the feasibility of CRPA technology for civil applications. The developed

approach performs pre-correlation beamforming without any prior calibration. The architecture of

STAP is constructed in a software approach to achieve a CRPA. The optimum weights obtained by

adaptive MVDR algorithm provide the interference rejection performance capable of rejecting multiple

interferers.

The components of software receiver are implemented and constructed efficiently using the SIMD

assembly and C/C++ multithreaded programming. In particular, the SIMD assembly code has been

developed and optimized to achieve a fast correlation process of high resolution (16 bits) samples and

is fully documented within the paper.

The software receiver implementation is validated, demonstrating it can perform all-in-view pre-

correlation beamforming up to twelve channels in real-time. The angle-frequency response calculation

is also included in the software to illustrate the interference rejection performance of the receiver. The

results of our experiments demonstrate interference rejection capability in the presence of a single

higher power broadband interference with 40 dB J/S or six lower power broadband/narrowband

interferers with 30 dB J/S.

In the next generation of x86 CPUs, a new instruction set called Advanced Vector Extensions

(AVX) will be incorporated which will have the capacity to further expedite the computation of the

vector operations. The width of the SIMD register will be 256 bits, two times wider than that of the

current registers. This would reduce the computational load by two times. Moreover, the AVX

instruction set introduces a three-operand format where two source operands and one destination

operand. This would decrease the number of instructions for moving data. Using the AVX instruction

set, the software receiver would gain the ability to process wider bandwidth signals such as

GPS/WAAS L5 signals in real time, which require a higher sampling rate. The structure of our

software receiver is flexible to extend to GPS/WAAS L5 processing with minimal modifications. The

Federal Aviation Administration (FAA) Alternative Position Navigation and Timing (APNT) study is

interested in the use of CRPA with the WAAS L5 signal for robust time transfer under GPS

interference [24].

Acknowledgments

The authors gratefully acknowledge Stuart Riley and Trimble Navigation for the loan of multi-band

GPS antennas. This work was supported by the Federal Aviation Administration (FAA) CRDA

08-G-007 and the MKE (The Ministry of Knowledge Economy), Korea, under the “IT Consilience

Creative Program” support program supervised by the NIPA (National IT Industry Promotion Agency)

(NIPA-2012-H0201-12-1001).

Sensors 2012, 12 13439

References and Notes

1. Pullen, S.; Gao, G.; Tedeschi, C.; Warburton, J. The Impact of Uninformed RF Interference on

GBAS and Potential Mitigations. In Proceedings of the 2012 International Technical Meeting of

The Institute of Navigation, Newport Beach, CA, USA, 30–31 January 2012, pp. 780–789.

2. Williams, D.; Clark, S.; Cook, J.; Corcoran, P.; Spaulding, S. Four-Element Adaptive Array

Evaluation for United States Navy Airborne Applications. In Proceedings of the 13th

International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake

City, UT, USA, 19–22 September 2000, pp. 2523–2532.

3. Konovaltsev, A.; Antreich, F.; Hornbostel, A. Performance Assessment of Antenna Array

Algorithms for Multipath and Interferers Mitigation. In Proceedings of the 2nd Workshop GNSS

Signals and Signal Processing, Noordwijk, The Netherlands, 24–25 April 2007.

4. Li, M.; Wang, F.X.; Balaei, A.T.; Dempster, A.G.; Rizos, C. A GNSS Software Receiver

Beamforming Architecture. In Proceedings of International Symposium on GPS/GNSS 2008,

Tokyo, Japan, 25–28 November 2008, pp. 904–909.

5. Heckler, M.V.T.; Cuntz, M.; Konovaltsev, A.; Greda, L.A.; Dreher, A.; Meurer, M. Development

of robust Safety-of-Life navigation receivers. IEEE Trans. Microw. Theor. Tech. 2011, 59,

998–1005.

6. Arribas, J.; Bernal, D.; Fernández-Prades, C; Closas, P.; Fernández-Rubio, J.A. A Novel

Real-Time Platform for Digital Beamforming with GNSS Software Defined Receivers. In

Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute

of Navigation, Savannah, GA, USA, 22–25 September 2009; pp. 2329–2343.

7. Akos, D.M. A Software Radio Approach to Global Navigation Satellite System Receiver Design.

Ph.D Thesis, Ohio University, Athens, OH, USA, 1997.

8. Borre, K.; Akos, D.M.; Bertelsen, N.; Rinder, P.; Jensen, S.H. A Software-defined GPS and

Galileo Receiver: A Single-Frequency Approach; Birkhäuser: Boston, MA, USA, 2007.

9. De Lorenzo, D.S.; Gautier, J.; Enge, P.K.; Akos, D.M. GPS Receiver Architecture Effects on

Controlled Reception Pattern Antennas for JPALS. In Proceedings of the 17th International

Technical Meeting of the Satellite Division of The Institute of Navigation, Long Beach, CA, USA,

21–24 September 2004; pp. 2010–2020.

10. Seo, J.; Chen, Y.-H.; De Lorenzo, D.S.; Lo, S.; Enge, P.; Akos, D.M.; Lee, J. A real-time capable

software-defined receiver using GPU for adaptive anti-jam GPS Sensors. Sensors 2011, 11,

8966–8991.

11. Ledvina, B.M.; Psiaki, M.L.; Powell, S.P.; Kintner, P.M. Bit-wise parallel algorithms for efficient

software correlation applied to a GPS software receiver. IEEE Trans. Wirel. Commun. 2004, 3,

1469–1473.

12. Applebaum, S.P. Adaptive arrays. IEEE Trans. Antennas. Propagat. 1976, 24, 585–598.

13. Fante, R.; Vaccaro, J. Wideband cancellation of interference in a GPS receive array. IEEE Trans.

Aerosp. Electron. Syst. 2000, 36, 549–564.

14. Trinkle, M.; Gray, D. GPS Interference Mitigation; Overview and Experimental Results. In

Proceedings of the 5th International Symposium on Satellite Navigation Technology &

Applications, Canberra, Australia, 24–27 July 2001; pp. 1–14.

Sensors 2012, 12 13440

15. Heckler, G.W.; Garrison, J.L. GPS Toolbox: SIMD correlator library for GNSS software

receivers. GPS Solutions 2006, 4, 269–276.

16. Humphreys, T.E.; Bhatti, J.A.; Pany, T.; Ledvina, B.M.; O’Hanlon, B.W. Exploiting Multicore

Technology in Software-Defined GNSS Receivers. In Proceedings of the 22nd International

Technical Meeting of The Satellite Division of the Institute of Navigation, Savannah, GA, USA,

22–25 September 2009; pp. 326–338.

17. Gupta, I.J.; Moore, T.D. Space-frequency Adaptive Processing (SFAP) for radio frequency

interference mitigation in spread-spectrum receivers. IEEE Trans. Antennas Propagat. 2004, 52,

1611–1615.

18. Frost III, O.L. An algorithm for linearly constrained adaptive array processing. Proc. IEEE 1972,

60, 926–935.

19. Van Trees, H.L. Detection, Estimation, and Modulation Theory, Part IV, Optimum Array

Processing; John Wiley and Sons: New York, NY, USA, 2002.

20. De Lorenzo, D.S.; Lo, S.C.; Enge, P.K.; Rife, J. Calibrating adaptive antenna arrays for

high-integrity GPS. GPS Solutions 2012, 16, 221–230.

21. Intel Corp. Basic Architecture, In Intel® 64 and IA-32 Architectures Software Developer’s

Manual, March 2010; Volume 1. Available online: http://www.intel.com/content/www/us/

en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html

(accessed on 28 September 2012).

22. Greenberg, A.; Ebinuma, T. Open source software for Commercial Off-the-Shelf GPS receivers.

In Proceedings of the 18th International Technical Meeting of the Satellite Division of The

Institute of Navigation, Long Beach, CA, USA, 13–16 September 2005; pp. 2820–2829.

23. Juang, J.-C.; Chen, Y.-H. Accounting for data intermittency in a software GNSS receiver. IEEE

Trans. Consum. Electron. 2009, 55, 327–333.

24. De Lorenzo, D.S.; Lo, S.C.; Seo, J.; Chen, Y.-H.; Enge, P.K. The WAAS/L5 Signal for Robust

Time Transfer : Adaptive Beamsteering Antennas for Satellite Time Synchronization. In

Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of

Navigation, Portland, OR, USA, 21–24 September 2010; pp. 2106–2116.

25. Ettus Research. USRP™ n200/n210 Network Series. Available online:

https://www.ettus.com/content/files/06983_Ettus_N200–210_DS_Flyer_HR_1.pdf (accessed on 6

September 2012).

26. EPIQ Solutions. Bitshark USRP Broadband Configurable RF Receiver. Available online:

http://epiqsolutions.com/Bitshark_USRP_flyer_v3.pdf (accessed on 6 September 2012).

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

