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Abstract: The development of a real-time monitoring tool for the estimation of water 
quality is essential for efficient management of river pollution in urban areas. The Gap 
River in Korea is a typical urban river, which is affected by the effluent of a wastewater 
treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence 
excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV 
absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities 
for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total 
nitrogen (TN) concentrations of the river samples. Three components were successfully 
identified by the PARAFAC modeling from the fluorescence EEM data, in which each 
fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic 
substances (C2), and protein-like organic substances (C3), and UV absorption indices 
(UV220 and UV254), and the score values of the three PARAFAC components were selected 
as the estimation parameters for the nitrogen and the organic pollution of the river samples. 
Among the selected indices, UV220, C3 and C1 exhibited the highest correlation coefficients 
with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using 
UV220 and C3 demonstrated the enhancement of the prediction capability for TN. 

Keywords: fluorescence spectroscopy; parallel factor analysis; water quality monitoring; 
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1. Introduction  

Continuous water quality monitoring is essential for efficient management of urban rivers and for 
the prompt control of pollution. Due to the rapid responses of urban rivers to intensive land use and/or 
diverse pollution sources, the deterioration of the water quality may be accelerated, immediately 
posing a direct or indirect threat to human health and aquatic ecosystems [1–3]. The degree of organic 
pollution which occurs due to an excessive amount of organic matter, has typically been monitored by 
measuring BOD and COD values in rivers. A high level of BOD deteriorates river water quality by 
rapid decomposition of biodegradable organic matter and the subsequent depletion of dissolved 
oxygen, while COD traditionally represents the total organic matter. However, both concentrations are 
quantified by the amount of oxygen consumed for a particular chemical oxidation of organic 
compounds in samples. Enrichment of total nitrogen in urban rivers may result in excessive growth of 
algae and macrophytes, decreased biodiversity, and odor problems [3,4].  

There are several limitations of the traditional water quality parameters for use in continuous 
monitoring. For example, at least five days are required for the completion of the BOD measurements. 
The presence of toxic substances may influence the biochemical oxidation, resulting in analytical 
errors. Potassium dichromate, a typical oxidant for a COD test, cannot completely decompose organic 
matter in samples, and the degree of the chemical oxidation itself may be affected by organic matter 
composition and the molecular structures involved [5]. Therefore, it is necessary to develop more rapid 
and reliable monitoring techniques to replace the traditional water quality parameter measurements. 
The developed techniques are also expected to serve as a pre-screening tool to select the intensive 
monitoring sites for extensive urban river systems.  

Biosensors based on variations in currents produced from oxygen-consuming microorganisms have 
been suggested as a continuous monitoring tool for organic pollution. However, their short lifetime and 
vulnerability to environmental factors limit their applications for continuous monitoring [6]. Recently, 
fluorescence spectroscopy has emerged as a useful optical sensor-based monitoring technique for 
organic pollution [1,7,8]. In particular, EEM spectroscopy can capture various fluorescent components 
contained in water samples over a wide range of excitation and emission wavelengths. In EEM, 
protein-like fluorescence peaks have been linked to the amount of microbially produced aromatic 
amino acids such as tryptophan and tyrosine, while humic-like fluorescence peaks have been assigned 
to the presence of condensed humified organic materials [8,9]. Hudson et al. [10] have shown that a 
tryptophan-like fluorescence peak designated at excitation/emission wavelengths of 275/340 nm could 
be used as an indicator of the amount of biodegradable organic matters in river water samples. Despite 
its usefulness as a monitoring tool, however, most of the EEM studies simply relied on “peak picking” 
to quantify the desired fluorescent components, neglecting the potential bias related to the spectral 
overlaps from a complex mixture of different fluorophores.  

PARAFAC, a three way-decomposition method, has been found to be very useful in identifying the 
independent spectra of different types of fluorophores [11]. It is advantageous to use it as a monitoring 
technique beyond fluorescence EEM because it can track even small variations in EEM datasets by 
separating several independent groups of fluorophores from the overlapped components with a high 
resolution. In contrast, the weakness of PARAFAC model may include the assumption of the 
independence among the estimated components in the model, and potential inclusion of one or more 
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poorly estimated components, which may significantly affect the spectra and scores of all other 
components [12]. Most of the previous studies using PARAFAC for environmental monitoring have 
focused on tracking organic matter sources and/or characterizing organic matter composition [13–15]. 
Despite the strong implications of the close association between the fluorescence components extracted 
by PARAFAC and the degree of water pollution especially expressed by BOD and COD concentrations, 
only a few related studies have been reported [16]. Furthermore, potential applications of the 
PARAFAC modeling for estimating water quality parameters in typical urban rivers, which are 
affected by treated sewage and various anthropogenic activities, have not been fully explored. 
Therefore, the objectives of this study were: (1) to examine spatial variations in DOM fluorescence 
characteristics of a typical urban river using fluorescence EEM-PARAFAC; and (2) to estimate the 
degree of organic pollution and total nitrogen concentrations based on the correlations between BOD, 
COD, TN concentrations and the PARAFAC components.  

2. Experimental Section  

2.1. Study Area and Sample Collection  

Water samples were collected in September and October, 2005 (09/25/2005, 10/18/2005) from 
eighteen locations of the Gap River watershed, a typical urban river flowing through the city of 
Daejeon, Korea (36°20'N, 127°26'E) with a population of 920,000. The catchment area of the 
watershed is 662 km2 and the land use is 58% forest, 22% agriculture, and 20% urban. A municipal 
WWTP with a treatment capacity of 900,000 ton/day is located at the middle of the main channel of 
Gap River (Figure 1).  

Figure 1. The Gap River watershed. Filled circles indicate sampling locations (adopted 
from Hur et al. [8]). 
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The water quality downstream of the WWTP is deteriorated by the effluent. There are two 
tributaries of Gap River called Yudeung River (St. 4 and 5) and Daejeon River (St. 6, 7, 8), which are 
located upstream of the WWTP but still affected by urban anthropogenic activities (Figure 1). 
Discharge from a dam reservoir (St. 17) finally joins the main channel of Gap River downstream of the 
WWTP. A more detailed description of the sampling locations is provided elsewhere [8]. Collected 
samples were kept refrigerated during transport in field before they were analyzed in a laboratory. 

2.2. Analytical Methods 

Turbidity, temperature, and pH were recorded at the sampling sites. All other analyses were made 
within one week after the sample collection. The collected samples were first filtered through a 0.1 mm 
mesh sieve to remove large sized suspended solids. The concentrations of BOD, COD, TN, and total 
suspended solid (TSS) were determined according to the corresponding standard methods [17]. An 
aliquot (50 mL) of the samples was passed through a pre-ashed GF/F filter and they were acidified 
with 1 M HCl to pH 3.0 for the measurements of dissolved organic carbon (DOC) and fluorescence EEM.  

DOC concentrations of the samples were determined by a Shimadzu V-CPH analyzer. The relative 
precision of DOC measurements was <3% based on repeated measurements. Absorption measurements 
were performed on Varian Cary 300 Conc UV-visible spectrophotometer in a 1 cm quartz cuvette. The 
aliquots of the samples were diluted prior to the fluorescence measurements until UV absorbance  
at 254 nm was below 0.05/cm to avoid the inner-filter correction [8,18]. Fluorescence EEM of the 
diluted samples were generated using a luminescence spectrometer (LS-55, Perkin-Elmer) by scanning 
emission spectra from 300 to 550 nm at 0.5 nm increments by varying the excitation wavelength  
from 250 to 400 nm at 5 nm increments. Excitation and emission slits were adjusted to 10 nm  
and 5 nm, respectively, and the scanning speed was set at 1,200 nm/min. To limit second order Raleigh 
scattering, a 290 nm cutoff filter was used for all the samples. No shift of fluorescence peaks was 
observed by comparing the emission spectra with and without inner-filter correction for this study [8]. 
The fluorescence response to a blank solution (Milli-Q water) was subtracted from the EEM of each  
sample [19]. The measured fluorescence intensities were then standardized to a Raman peak at 395 nm 
emission following a suggestion by Baker [7]. Relative precisions of <2% were routinely obtained by 
three-times repeated fluorescence measurements of randomly chosen field samples.  

2.3. PARAFAC Modeling 

For this study, PARAFAC was applied to fully utilize the fluorescence EEM data of the samples. 
PARAFAC decomposes the EEM dataset into a set of trilinear terms and a residual array [18] and it 
estimates the underlying EEM spectra by minimizing the sum of squared residual of the trilinear model:  
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where xijk is the intensity of fluorescence for the ith sample at emission wavelength j and excitation 
wavelength k. aif is directly proportional to the concentration of the fth fluorophore in the ith sample 
(defined as scores). bjf and ckf are the estimates of the emission and excitation spectra, respectively, for 
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the fth fluorophore. F represents the number of components in the model and εijk is the residual 
element, representing the variability not accounted for by the model [11]. 

PARAFAC modeling was performed using the MATLAB 7.0 (Mathworks, Natick, MA, USA) with 
the DOMFluor toolbox (http://www.models.life.ku.dk). The appropriate number of components was 
determined primarily based on the three diagnostic tools including residual analysis, core consistency 
and visual inspection of spectral shapes of each component, which are widely used by other similar 
studies [20,21]. The components extracted by PARAFAC represent groups of the organic fractions that 
exhibit similar fluorescence properties. The component scores indicate the relative concentration of the 
groups, not the actual concentration of a particular fluorophore. However, it is typically assumed that 
the scores are proportional to the concentrations of the different components [20]. In this study, the 
final component scores were obtained after the dilution factors of the samples were fully considered.  

2.4. Statistical Analyses 

Regression and correlation analyses were performed using XLSTAT (Addinsoft, New York, NY, 
USA). Significances of the correlations in the statistics were evaluated using p-values. The total 
number of the data for the statistical analyses was 35.  

3. Results and Discussion  

3.1. General Water Quality Parameters for Organic Matter  

The concentrations of BOD and COD ranged from 0.5 mg/L to 25.4 mg/L and from 1.6 to 20.6 mg/L, 
respectively (Table 1).  

Table 1. Monitoring data of turbidity, SS, BOD, COD, and TN concentrations for the Gap 
River watershed (September/October) a. 

Sites Location Turbidity 
(NTU) 

SS 
(mg/L) 

BOD 
(mg/L) 

COD 
(mg/L) 

TN 
(mg/L) 

St. 1 

Upstream sites of the WWTP 

2.5/1.4 2.3/1.6 0.7/1.1 3.2/2.6 1.9/1.9 
St. 2 1.7/1.4 1.0/1.4 0.8/1.4 3.3/3.1 1.8/2.0 
St. 3 5.6/3.4 6.0/3.4 1.3/1.8 4.0/4.2 2.3/2.4 
St. 4 1.6/1.2 1.0/1.6 0.5/0.9 2.7/1.6 2.0/1.8 
St. 5 1.2/1.5 0.5/1.6 1.0/1.2 3.6/2.3 2.0/1.9 
St. 6 0.8/0.7 0.7/1.0 0.8/1.3 3.8/2.1 3.9/4.9 
St. 7 1.5/1.0 1.8/1.2 1.2/1.6 4.3/3.6 4.3/4.8 
St. 8 1.7/1.5 1.7/2.8 1.3/1.7 3.4/3.1 2.1/2.6 
St. 9 4.3/4.1 4.8/5.4 1.4/2.4 5.7/4.9 2.3/2.1 

St. 10 

Near the WWTP 

2.1/2.1 3.8/4.8 24.4/25.4 16.9/20.6 15.6/17.1 
St. 11 3.0/ND b 4.5/ND 19.1/ND 11.7/ND 11.8/ND 
St. 12 2.8/2.7 3.5/4.6 7.5/10.3 8.0/10.9 5.9/10.2 
St. 13 1.6/1.7 2.5/4.2 20.2/11.7 14.2/16.4 18.4/20.0 
St. 14 2.6/2.0 5.5/4.9 9.7/15.2 10.8/15.0 12.5/15.5 
St. 15 Downstream sites of the WWTP 4.2/2.7 8.8/5.8 7.8/15.5 11.5/13.1 10.7/12.1 
St. 16 4.1/3.7 7.0/6.4 6.1/14.2 9.0/12.1 8.0/11.8 
St. 17 Discharge of a dam reservoir 2.2/2.4 2.5/3.4 1.5 /1.3 5.9/5.1 1.5/1.5 
St. 18 Downstream sites of the WWTP 3.3/2.8 5.3/5.6 0.6 /4.0 7.0/8.1 4.4/4.6 

a One sample was taken per site for each sampling event (09/25/2005, 10/18/2005); b Not determined due to the failure of 
the sampling. 
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As expected, the highest and the lowest concentrations were observed for the WWTP effluent and 
for the samples collected from the uppermost sites of the watershed, respectively. The concentrations 
of BOD exceeded the COD concentrations for the sampling sites near the WWTP, indicating that the 
BOD measurements may be influenced by nitrogenous BOD in sewage due to the presence of 
ammonia [22]. The organic matter-related water quality was substantially recovered after joining the 
effluent (St. 17) from the Daecheong reservoir, presenting the average BOD and COD concentrations 
of 2.3 mg/L and 7.6 mg/L, respectively. Total nitrogen concentrations in the watershed exhibited 
similar spatial variations, ranging from 1.8 mg/L to 20.0 mg/L. The levels of the three water quality 
parameters tend to increase downstream at the sites located upstream from the WWTP, suggesting that, 
aside from the WWTP effluent, the river water quality may be deteriorated by various uncontrolled 
pollution loads from the residential areas [23]. Additional work including the measurement of the 
specific pollutant loads into the main channel is required to fully justify the reasons. 

3.2. Fluorescence EEM Characteristics 

Three distinctive peaks can be identified from the fluorescence EEM of the collected samples 
(Figure 2). The tryptophan-like peak located at the excitation/emission wavelengths of 275 nm/340 nm 
(Peak T) was the most pronounced for the WWTP effluent samples (St. 10). The tryptophan-like 
substances may be associated with freely dissolved aromatic amino acid as well as the molecules 
bound with proteins and humic substances [10,24]. The peak has been used as an indicator of 
anthropogenic activities related to organic pollution. Many previous studies revealed a high association 
of the EEM peak with the presence of bioavailable and labile organic substrates and/or the product of 
microbial or algal activities [10,25–27]. Two types of humic-like EEM peaks were also found for all 
the collected samples (Figure 2). The peaks were located at the excitation/emission wavelengths  
of 250 nm/400–450 nm (Peak A) and 330–340 nm/350–400 nm (Peak C). The two peaks result from 
the presence of both carbon-carbon double bonds and aromatic carbon bonds in fulvic acid-like and/or 
humic-acid-like components. The relative ratio has been used as a tracer to distinguish between coastal 
and oceanic samples [28]. In general, higher relative ratios of the humic-like peaks to the tryptophan-like 
peak have been observed for river samples with low levels of organic pollution [10]. In this study, the 
fluorescence intensities of all the three EEM peaks exhibited an increasing trend with a higher degree 
of organic pollution (i.e., higher BOD and COD concentrations). However, the relative peak ratios of 
the humic-like to the tryptophan-like fluorescence (i.e., Peak A to Peak T or Peak C to Peak T) were 
lower for the sites near the WWTP and downstream of the WWTP compared to the upstream sites 
(Table 2). Our results suggest that although all the three EEM peaks tend to increase with the degree of 
organic pollution, Peak T may serve as a more sensitive surrogate for the point source pollution. Thus, 
the ratio of Peak A to Peak T or Peak C to Peak T appears to be useful as an evaluation index for the 
impact of treated sewage on urban rivers [8]. 
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Figure 2. Fluorescence EEM spectra of the representative samples. 
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Table 2. Cont. 

St. 12 2.03/1.91 1.28/1.32 0.80/0.90 0.75/0.90 2,210/3,247 1,152/1,702 888/1343 
St. 13 1.80/1.85 1.33/1.74 4.32/3.92 4.23/3.92 5,485/5,133 2,960/2,691 2,425/2,046 
St. 14 2.00/1.95 1.37/1.45 2.46/2.92 2.39/2.92 4,096/3,872 2,168/2,041 1,677/1,827 
St. 15 1.87/1.93 1.51/1.67 1.79/1.77 1.72/1.77 3,279/3,680 1,685/1,863 1,325/1,428 
St. 16 2.26/2.18 1.55/1.78 1.54/1.84 1.49/1.84 2,486/3,301 1,212/1,644 877/1,170 
St. 17 4.63/4.33 3.93/2.93 0.38/0.36 0.32/0.36 1,860/1,480 1,079/822 361/303 
St. 18 3.22/2.65 2.19/1.79 0.99/0.95 0.94/0.95 1,939/2,027 1,031/1,001 511/600 

a One sample was taken per site for each sampling event (09/25/2005, 10/18/2005); b Not determined due to 
the failure of the sampling. 

3.3. PARAFAC Components from EEM Data  

The diagnostic tools used for this study revealed that three components are adequate for the 
PARAFAC model. In other words, all the fluorescence EEM data could be successfully decomposed 
into a three-component model by the PARAFAC analysis. Figure 3 shows each contour plots of the 
three PARAFAC components. A single peak, located at the excitation/emission wavelengths  
of 250 nm/405 nm, was observed for the contour of component 1 (C1) whereas component 2 (C2) 
showed two peaks at 250 nm/450 nm and at 350 nm/450 nm of the excitation/emission wavelengths. 
C1 and C2 may be associated with the presence of humic-like substances because the peak locations 
are very similar to those of Peak A and Peak C previously observed in our EEM data. However, the 
two fluorescent components were different from each other, not only in the number of the peaks, but 
also in their locations. C1 possesses a peak at a shorter emission wavelength than C2, suggesting that, 
despite their similar origins, the fluorophores responsible for component 1 may contain less conjugated 
and less condensed structures than C2 [29]. The blue-shifting of fluorescence spectra is also related to 
a lower degree of the humification in the DOM samples. Thus, component 1 can be interpreted as a 
group of less humified fluorescent substances with low molecular weights [11]. Although C1 appears 
to exhibit a single peak, the width of the excitation maximum (50–100 nm) indicates that it may be  
a mixture of fluorophores. The high ratio of Peak A to Peak C for C1 may be associated with 
photobleaching and/or new production of fluorophores having high excitation in Peak A region [30]. 
Component 3 (C3) resembles the tryptophan-like fluorescence EEM pattern, indicating the origin of 
the fluorophore group may be related to microbial derived amino acid and/or protein-like substances. 
The observed spectral characteristics of the components determined in this study generally agree with 
those reported in the literature based on different aquatic environments [31–33]. For particular, our 
PARAFAC component patterns were very consistent with a recent study by Zhang et al. [16], who 
characterized DOM in Lake Tianmuhu and its catchment basin in China using PARAFAC modeling of 
the fluorescence EEM data. In their study, C1 has been explained as microbial humic-like components 
as a result of the microbial transformation from terrestrially-derived organic matter, and C2, as a 
mixture of the traditional humic-like fluorescence peaks [16]. 
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Figure 3. Contour plots of the three PARAFAC components decomposed from our samples. 

 

The score values of all the components exhibited a similar trend in the variation with the 
concentrations of BOD and COD. The most dramatic change was observed for C3 (Table 2), 
suggesting that the component can be used as a good tracer for the degree of organic pollution. For the 
sites of the tributaries (i.e., Daejeon River and Yudeung River) located upstream of the WWTP, the 
ratio of C1 to C2 showed an increasing trend downstream, indicating the influent rivers may 
continuously receive the input of less humified organic matters (i.e., microbial humic-like) before they 
join the main channel.  

A plot of the ratios of C1/C3 and C2/C3 showed spatial differences depending on the location of the 
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the two ratios while the highest ranges were observed for the upstream sites of the WWTP. The 
downstream sites of the WWTP corresponded to the intermediate range. Our results suggest that C3 is 
highly associated with the source of the WWTP effluent. In contrast, C1 and C2 appear to reflect the 
characteristics of DOM in the upper sites, in which terrestrial humic-like and microbially transformed 
organic materials may be relatively more enriched.  

Figure 4. A plot of the C2/C3 ratios against the C1/C3 ratios for the discrimination of the 
sampling sites (Site 17 is excluded). 
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3.4. Correlations between General Organic Matter Parameters and PARAFAC Results  

Correlation coefficients between some selected spectroscopic indices and water quality parameters 
including BOD, COD, and TN were calculated and are compared in Table 3. UV absorption values at 
the wavelengths of 220 nm and 254 nm, which are designated as UV220 and UV254, respectively, were 
chosen as non-fluorescence indices because nitrate ions are known to strongly absorb UV light at a 
wavelength of 220 nm [15], and UV absorbance at the wavelengths between 250 nm and 280 nm has 
been widely used to monitor BOD and COD concentrations in river and wastewater samples [34,35]. The 
estimation capability of each index was evaluated using Spearman’s rho as well as Pearson’s r values 
because most of our water quality data is highly skewed and distributed in low concentration ranges.  

Table 3. Correlation coefficients a (Pearson r values and spearman rho values) between 
selected spectroscopic indices and some water quality parameters (n = 35). 

 TN BOD COD 

UV220 
0.911 b 
0.971 c 

0.706 
0.720 

0.770 
0.750 

UV254 
0.914 
0.747 

0.892 
0.813 

0.973 
0.954 

UV220–254 
0.905 
0.968 

0.696 
0.704 

0.759 
0.741 

C1 
0.951 
0.806 

0.948 
0.861 

0.977 
0.949 

C2 
0.927 
0.772 

0.938 
0.823 

0.967 
0.937 

C3 
0.950 
0.806 

0.948 
0.889 

0.977 
0.936 

a Significant levels p values are all lower than 0.001 (p < 0.001); b Pearson r values; c Spearman rho values. 

In this study, all the selected spectroscopic indices showed significant correlations with BOD, COD 
and TN concentrations (p < 0.001). As expected, TN concentrations exhibited the highest correlation 
with UV220 based on Spearman’s Rank correlation coefficient. However, such a good correlation was 
not very pronounced considering Pearson r values. For example, the r value based on UV220 was even 
lower than the value calculated between UV254 and TN concentrations, which did not agree with the 
common observation of the little UV absorption of nitrate at a wavelength of 254 nm. Our result 
suggests that Spearman’s Rank correlation coefficients should be included in evaluating the estimation 
indices for a particular water quality parameter.  

In this study, the difference of UV absorbance at the wavelength between 220 nm and 254 nm, 
UV220–254, did not enhance the estimation capability for TN concentrations (Table 3; Figure 5). The 
two types of the correlation coefficients (both Pearson correlation and Spearman’s Rank correlation) 
between TN and UV220–254 were both lower than those obtained based on UV220, indicating that the 
removal of the interference from the presence of UV-absorbing organic components did not result in 
the improvement of UV220 estimation capability for TN. The failure of the effort may be attributed to 
similar trends of the variations in the organic and the nitrogen pollution, and/or similar sources of the 
two types of the pollution in the watershed. For example, the typical sources of nitrogen pollution in 
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urban areas may include fertilizer use on lawns, WWTP discharge, unattended sewage disposal, and 
leaks from sewer lines [36], which can also be considered as organic pollution sources. The result also 
suggests that nitrogen species other than nitrate ions (e.g., ammonia and organic nitrogen) may be 
present in an appreciable amount in the river samples.  

Figure 5. Correlations between selected spectroscopic indices (UV absorption indices or 
PARAFAC components) and water quality parameters (TN, BOD, and COD). 

 

For BOD estimation, all the PARAFAC components presented higher correlation coefficients than 
the absorbance-based indices, suggesting that fluorescence measurements are a superior monitoring 
tool for biodegradable organic matters in urban rivers. C3 exhibited the highest correlation coefficient 
with BOD among the PARAFAC components (Table 3; Figure 5), suggesting that microbial derived 
amino acid and/or protein-like substances may be good indicators for labile and biodegradable organic 
matters in typical urban rivers. Our results are consistent with many prior reports, in which amino  
acid-like or protein-like fluorescence characteristics were highly correlated with BOD concentrations 
in rivers [1,25,37]. 

UV254 showed the highest estimation capability for COD among the selected indices based on the 
Spearman’s Rank correlation coefficients [38] while the Pearson’s correlation coefficient was the 
highest with C1 (Table 3). C3 also presented good correlation coefficients with COD (r = 0.977), 
suggesting that the protein-like component and microbial humic-like (or less humified) organic matter 
may constitute a dominant fraction of the total organic matter in the watershed. Our results are in 
contrast with other river samples not much affected polluted by sewage wastewater [16], in which 
COD concentrations are highly correlated with humic-like components but not with the protein-like 
component. Based on our individual estimation indices showing the highest correlation coefficients 
with TN, BOD, and COD, the regression equations are suggested as TN = 5.26 × UV220 + 0.456,  

BOD = 0.0082xC3 - 0.5679
r = 0.948; ρ = 889
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BOD = 0.0082 × C3 + 0.5679, COD = 0.0029 × C1 + 1.0132, and COD = 177.0 × UV254 – 0.8893, 
respectively. 

3.5. Improvement of the Estimation of TN Using Multiple Regression Analysis  

Our previous observation of the close association between TN concentrations and the PARAFAC 
components (particularly C1) implies that the UV220 estimation capability for TN concentrations may 
be improved by using a multiple regression analysis based on the fluorescence indices. In this respect, 
a multiple regression equations based on a PARAFAC component and UV220 was established, and the 
associated correlation coefficients were calculated. Compared to the previous regression method based 
on a single index, the multiple regression analysis showed the enhancement of the estimation (i.e., the 
increase in the correlation coefficients) (Figure 6).  

Figure 6. Correlations between the measured TN concentrations and the predicted values 
by multiple regression method. 

 
 
For example, the deviation of the data points from the regression line became much less pronounced 

after the multiple regression analysis was applied (Figure 6). The final equation was TN = 2.709 × 
UV220 + 0.003765 × C3 + 0.3101, and the correlation coefficients were 0.984 and 0.943 for Pearson’s r 
value and Spearman’s rho value, respectively, exhibiting the enhancement of the estimation precision 
compared to the single linear correlations.  

Although the fluorescence data obtained here are based on data from a standard laboratory 
instrument, we expect that our proposed procedure and the methodology will be useful for developing 
in situ real-time monitoring of TN, BOD, and COD concentrations in typical urban rivers. Many 
handheld fluorometers with various scanning function are already available, and fluorescence sensing 
devices are easy to make in different sizes and at a desirable level of the signal-to-noise ratio according 
to the purpose of the operator. More future work should be undertaken to prove successful applications 
of our results to in situ real-time monitoring techniques. For example, in-situ software programs to 
directly link the measurement data with PARAFAC modeling need to be developed. It should be noted 
that the regressions developed here are based on only a limited number of the samples collected during 
the dry season. For more successful applications, rain sampling events should be considered so that water 
quality and organic matter characteristics examined can be fully representative of a typical urban river.  
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4. Conclusions 

Three components were successfully identified by PARAFAC modeling from the fluorescence 
EEM data of the samples collected from a typical urban river, which is influenced by the effluent of a 
WWTP and various urban anthropogenic activities. The components represented the groups of the 
fluorophores representing protein-like (C3) and two humic-like organic substances (C1 and C2). 
UV220, UV254, and the score values of the three identified PARAFAC components were chosen as the 
estimation indices for TN, BOD, and COD concentrations of the river samples. Among the selected 
indices, UV220, C3 and C1 exhibited the highest correlation coefficients with TN, BOD, and COD 
concentrations, respectively. For TN, multiple regression analysis using the equation, 2.709 × UV220  
+ 0.0038 × C3 + 0.3101, demonstrated the enhancement of the estimation capability. The 
corresponding Pearson’s r values and Spearman’s rho values were 0.98 and 0.94, respectively. The 
selected spectroscopic indices and the associated methodology proposed here are expected to be 
usefully employed for the development of real-time monitoring techniques.  
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