
Sensors 2012, 12, 115-147; doi:10.3390/s120100115 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

FPGA-Based Real-Time Embedded System for RISS/GPS 
Integrated Navigation 

Walid Farid Abdelfatah 1,*, Jacques Georgy 1, Umar Iqbal 2 and Aboelmagd Noureldin 2,3 

1 Trusted Positioning Inc., Calgary, AB T2L 2K7, Canada; E-Mail: jgeorgy@trustedpositioning.com 
2 Electrical and Computer Engineering Department, Queen’s University, Kingston, ON K7L 3N6, 

Canada; E-Mails: umar.iqbal@queensu.ca (U.I.); aboelmagd.noureldin@rmc.ca (A.N.) 
3 Electrical and Computer Engineering Department, Royal Military College of Canada, Kingston, ON 

K7K 7B4, Canada 

* Author to whom correspondence should be addressed; E-Mail: wabdelfatah@trustedpositioning.com; 
Tel.: +1-403-305-2885; Fax: +1-403-282-1238. 

Received: 17 November 2011; in revised form: 12 December 2011 / Accepted: 13 December 2011 / 
Published: 22 December 2011 
 

Abstract: Navigation algorithms integrating measurements from multi-sensor systems 
overcome the problems that arise from using GPS navigation systems in standalone mode. 
Algorithms which integrate the data from 2D low-cost reduced inertial sensor system 
(RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS 
receiver via a Kalman filter has proved to be worthy in providing a consistent and more 
reliable navigation solution compared to standalone GPS receivers. It has been also shown 
to be beneficial, especially in GPS-denied environments such as urban canyons and 
tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that 
follows the algorithm development by realizing a low-cost real-time embedded navigation 
system capable of computing the data-fused positioning solution. The role of the developed 
system is to synchronize the measurements from the three sensors, relative to the pulse per 
second signal generated from the GPS, after which the navigation algorithm is applied to 
the synchronized measurements to compute the navigation solution in real-time. Employing 
a customizable soft-core processor on an FPGA in the kernel of the navigation system, 
provided the flexibility for communicating with the various sensors and the computation 
capability required by the Kalman filter integration algorithm. 

  

OPEN ACCESS 



Sensors 2012, 12            
 

 

116 

Keywords: embedded systems; FPGA; soft-core; land vehicle navigation; Global 
Positioning System; inertial sensors; Kalman filter 

 

1. Introduction 

1.1. Navigation 

Navigation is the science which comprises the methods and technologies to determine the time 
varying position, velocity and attitude of a moving object by utilizing either sensor-based or  
satellite-based measurements or by integrating the measurements from both navigation systems [1]. 

The Global Positioning System (GPS) is a satellite-based, absolute-positioning navigation system, 
developed by the US Department of Defense (DoD) in the early 1970s, used to provide time, position 
and velocity information [2]. Although, the navigation solution that is provided by GPS is sufficiently 
accurate, in the order of meters to centimeters, especially when augmented with other satellite-based or 
ground-based augmentation systems, it is unable to fulfill the requirements of continuity and reliability 
in some situations. As a satellite-based navigation system, GPS requires a line-of-sight (LOS) between 
the receiver’s antenna and the satellites. In urban canyons, tunnels, and other GPS-denied environments, 
the LOS requirement can’t be always met, resulting in GPS outages caused by GPS signal blockage, 
interference, jamming and multi-path effects. Signal interruption is one of the main reasons that affects 
the continuity and reliability of the GPS navigation solution. Due to the mentioned reasons, GPS can’t 
provide a continuous and reliable solution when used as a stand-alone navigation system, and a better 
navigation solution can be obtained by integrating the measurements from one or more sensor-based 
systems, with GPS measurements. 

The Inertial Navigation System (INS) is a sensor-based, self-contained, dead-reckoning navigation 
system in which measurements at a high sample rate, provided by an inertial measurement unit (IMU) 
are used by a navigation processor to compute the position, velocity and attitude of the moving object 
relative to a known starting position, velocity and attitude [3]. The IMU consists of a triad of 
accelerometers and a triad of gyroscopes. Measurements are integrated twice for accelerometers and 
once for gyroscopes to yield position and attitude. The calculated navigation states (i.e., position, 
velocity and attitude) drift with time due to the needed integrations and the sensors errors (such as biases, 
scale factors, and noise) which lead to unbounded accumulation of errors. Therefore, inertial sensors 
alone are unsuitable for accurate positioning over an extended period of time. The advantages and 
disadvantages of INS show that its characteristics are complementary with those of absolute positioning 
systems, such as GPS. Thus, proper integration of the measurements from both INS and GPS can provide 
great value by mitigating each other problems. The development of Micro-Electro-Mechanical Systems 
(MEMS) [4] based inertial sensors, made the utilization of MEMS-based INS for consumer 
applications more affordable as they can be provided at a lower cost. Furthermore they are small in 
size, light weight, and have low power consumption. However, the errors present in the inertial 
sensors, materialize by a greater magnitude when using MEMS-based inertial sensors. 

Instead of integrating the GPS with a full IMU [5], containing three accelerometers and three 
gyroscopes, a reduced inertial sensor system (RISS) which utilizes only one gyroscope and an odometer 



Sensors 2012, 12            
 

 

117 

or wheel encoders is integrated with GPS to provide a 2D positioning solution [6,7]. With the 
assumption that the vehicle stays in the horizontal plane most of the time, the vehicle speed derived 
from the odometer is used together with the heading information obtained from the gyroscope to 
determine the velocities along the East and North directions, from which the vehicles’ longitude and 
latitude are determined. The position, velocity and heading errors are estimated by a Kalman filter 
(KF) relying on RISS dynamic error model and GPS position and velocity updates [6]. This method 
requires a dynamic error model for RISS, a measurement model for GPS updates, and a stochastic 
model of the gyroscope sensor error. Since GPS has a relatively consistent, long-term accuracy, it is 
used to update both RISS position and velocity components and thus prevent the long-term growth of 
the RISS errors. On the other hand, the accurate short-term information provided by the RISS is used 
to overcome GPS outages and multi-path errors. In case a GPS outage occurs, KF operates in 
prediction mode only, correcting the RISS information based on the system error model. More discussion 
on the land-based navigation systems, vehicular dead-reckoning and their errors is presented in [8-12]. 

1.2. Embedded Systems 

Embedded systems are data processing systems that are embedded into larger systems (such as 
telecommunication equipment, transportation systems and consumer electronics) and not normally 
visible to the user [13]. Most embedded devices are designed to perform one dedicated function [14] 
which requires collecting data from the surrounding environment via a set of sensors, then manipulating 
the data according to a specific algorithm resulting in useful information for the users. Embedded 
systems are different than general purpose computer systems in many aspects. These systems differ in 
that they are required to be dependable, efficient and meet a set of real-time constraints derived from 
the system to be designed in order not to jeopardize the quality to be provided by the system [13-18]. 
Another characteristic of embedded systems is its method of software development, known as  
cross-platform development, where the embedded system’s (i.e., target) software is developed on a 
host system which employs a general-purpose processor [18]. There exist several hardware platforms 
that can be used for developing an embedded system such as microcontrollers (µC), digital signal 
processors (DSP), field programmable gate arrays (FPGA) and application specific integrated circuits 
(ASIC) [17,19-22]. Choosing one platform over the other depends not only on the requirements of the 
system to be developed such as the performance, power consumption, cost per chip, but also on the 
ease of the tools accompanied by a specific platform to assist the developers in producing the system 
within the constrained system cost and project time.  

The ultimate goal, after which a navigation algorithm is developed, is the realization of the 
algorithm on an embedded system where the measurements from the different sensors are acquired and 
synchronized, after which the navigation algorithm integrating these time-aligned measurements can 
be applied to output a real-time solution at a defined rate. The transition from the algorithm research to 
realization is a crucial step in assessing the practicality and effectiveness of the navigation algorithm 
and consequently the developed embedded system, either for a proof-of-concept or to be accepted as a 
product. In the transition process, there is no unique methodology that can be followed to design an 
embedded system. Depending on the platform of choice, different methodologies are used by the 
system designers to produce the final product. For example, designers which use processor-based cores 



Sensors 2012, 12            
 

 

118 

such as microcontrollers, or digital signal processors make use of embedded software oriented 
methodologies to develop their systems, as their main design is revolving around firmware development 
rather than hardware. However, designers which use FPGAs as their development platforms, have the 
flexibility to use either the processor-based approach, developing their system entirely in firmware or 
hardware-based approach, developing their systems entirely in hardware. In other designs in which 
FPGAs are used, the overall system can be partitioned into hardware and firmware. 

The main contribution of this paper is the implementation of an embedded real-time navigation 
system based on the 2D RISS/GPS navigation algorithm. 

2. 2D-RISS/GPS Integrated Navigation System 

The RISS/GPS algorithm is an integrated navigation algorithm that integrates GPS with  
self-contained sensors that, unlike GPS, does not suffer from blockages which lead to the interruption 
of the positioning solution or multipath that leads to the degradation of the positioning solution. GPS 
helps calibrate the errors in the self-contained sensors that otherwise can cause the positioning error to 
grow unbounded. As self-contained sensors, the presented navigation algorithm uses a gyroscope 
whose axis is aligned with the vertical axis of the body of the moving platform and the platform speed 
readings from either wheel encoders (in case of the mobile robot) or from vehicle odometer (in case of 
a full sized land vehicle). The benefit of this integrated system for land-based navigation over the 
traditional INS/GPS integration that utilizes a full IMU (inertial measurement unit) is: (i) the 
elimination of the two horizontally aligned gyroscopes of the full IMU; and (ii) the use of the vehicle 
speed to derive velocity directly instead of using accelerometers to derive velocity in the full IMU 
setting. The first benefit mentioned above is because, during a GPS outage, in a full IMU setting the 
positioning error is proportional to the cube of the outage duration and the residual uncompensated 
horizontal gyroscopes bias drifts after the compensation for these biases by the state estimation 
technique used (such as KF). This is the worst and most influential error in traditional INS/GPS 
solutions during outages. Taking advantage of the fact that land vehicles move mostly in the horizontal 
plane and that any off-plane motion is extremely small compared to the in-plane motion, these two 
gyroscopes and their errors are totally removed from the presented system. The second advantage of 
the presented system is the use of the vehicle speed readings (from wheel encoders or odometer) 
together with non-holonomic constraints on land vehicles to derive the velocities instead of relying on 
accelerometers to derive velocity. Calculating velocity from accelerometers involve a mathematical 
integration operation, while their calculation form speed readings and heading does not involve such 
operation. The problem with mathematical integration operations is that it will cause any bias error to 
lead to a growing unbounded error with time. Using accelerometers, the error in velocity will be 
proportional to the outage duration and the residual uncompensated accelerometers bias drifts after the 
compensation for these biases by the state estimation technique used (such as KF); while the position 
error will be proportional to the square of duration and the uncompensated biases. So the presented 
RISS/GPS navigation solution will be better than the traditional solution an order of magnitude in 
duration of the outage because of the elimination of the first integration operation. 
  



Sensors 2012, 12            
 

 

119 

2.1. RISS Mechanization 

RISS Mechanization [6,7] is the process involved in transforming the measurements of a RISS 
system acquired in the body frame (i.e., vehicle frame) into position, velocity and attitude. It is a 
recursive process based on the initial conditions, or the previous output and the new measurements.  

For a vehicle moving in a 2D plane, five navigation states are computed consisting of two position 
parameters, two velocity parameters and one orientation parameter. The 2D RISS system readings  
(ωz for the gyroscope and Vforward for the odometer ) are given in a coordinate frame known as the 
body frame (b-frame) while the position is expressed in the earth-centered, earth-fixed (ECEF) 
geodetic coordinate frame and the velocity and attitude are usually expressed in another coordinate 
frame known as the local-level frame. The local-level frame coordinates are formed from a plane 
tangent to the Earth’s surface fixed to the current location of the moving object and hence it is 
sometimes known as a “Local Tangent” or “Local Geodetic” plane.  

In 2D, the position parameters are the latitude (ϕ) and the longitude (λ), the velocity parameters are 
the East (VEast) and North (VNorth) velocities, and the only orientation parameter is the azimuth (A). 
Figure 1 shows the measurements of the 2D-RISS system in the body frame, with respect to the  
local-level frame in which the results are expressed.  

Figure 1. The RISS System Measurements in the b-frame. 

 

The equations that describe the RISS mechanization, which comprises the computation of the 
vehicle’s position, velocity and orientation, are given below. The rate of change of the yaw angle 
(where Yaw = −Azimuth) equals the gyroscope measurement, after removing the stationary and  
non-stationary components, is given by: 

 
(1) 

where: 
Y = Yaw angle (radians) 
A = Azimuth angle (radians) 

( )
1 ( 1)

tan( )
( . sin( ). . )east k ke

k k z k s k s s

V
A A T T T

R h
φ

ω ω φ+ +

⋅
= − − ⋅ −

+



Sensors 2012, 12            
 

 

120 

ωz = Angular velocity measured by the gyroscope (radians/second) 
ωe =Earth’s angular velocity (radians/second) 
ϕ = Vehicle’s Latitude (radians) 
VEast = Vehicle’s East component of velocity (meters/second) 
RN = Normal radius of curvature of the Earth’s ellipsoid (meters) 
h = Vehicle’s altitude (meters). 

The subscript (k) stands for the previous time epoch; the subscript (k + 1) stands for the current time 
epoch and Ts stands for the sampling time, the time after which the gyroscope provide a new 
measurement. Initially, when (k = 0), all the variables with the subscript (k) on the right hand side of 
Equation (1), are initialized from the GPS measurements. 

The East and North velocities can then be computed using the following two equations: 

 

(2) 

where: 
VNorth = Vehicle’s North component of velocity (meters/second) 
Vforward = Vehicle’s speed derived from odometer or wheel encoders in the forward direction of the 

vehicle (meters/second). 
After computing the East and North velocities of the vehicle, the position of the vehicle is then 

computed, specified by the latitude and longitude from the following equations: 

 

(3) 

where: 
λ = Vehicle’s Longitude (radians) 
RM = Meridian radius of curvature of the Earth’s ellipsoid (meters). 

2.2. RISS/GPS Data Fusion Using KF 

The conventional KF method is used, in a closed-loop, loosely coupled fashion, to fuse the position 
and velocity measurements from the GPS with the RISS computed position and velocity. KF [5,12,23] 
is a state estimation technique that can integrate measurement data to obtain state estimate by 
recognizing that the measurements are noisy, and might have only a small effect on the state estimate, 
or in some cases to be neglected completely. KF smoothes out the effects of noise in the state variables 
estimated, by incorporating more information from reliable data than unreliable data. If mechanization 
was run in an unaided fashion, the errors in its output are passed from one iteration to another thus 
leading for the navigation states errors to drift with time. Therefore, error models are required for the 
analysis and estimation of different error sources associated with the RISS system. Since the errors in 

( 1) ( 1) 1

( 1) 1( 1)

sin( )

cos( )
East k forward k k

forward k kNorth k

V V A
V AV

+ + +

+ ++

  ⋅ 
  =     ⋅  

( 1)1

1 ( 1)

1

10

1 0
( ) cos( )

East kk k M
s

k k North k

N k

VR h
T

V
R h

φ φ
λ λ

φ

++

+ +

+

 
   +       = + ⋅ ⋅            + ⋅ 



Sensors 2012, 12            
 

 

121 

dynamic systems are variable in time, they are described by differential equations. Linearization of a 
non-linear dynamic system is the most common approach to derive a set of linear differential equations 
that defines the error states of a dynamic system. Figure 2 shows where the KF fits within the 
navigation solution. One of the main advantages of the KF, computation-wise, is that it is very 
convenient for real-time processing. 

Figure 2. RISS/GPS Integrated Navigation Solution. 

 

KF addresses the general problem of trying to estimate the state of a discrete-time process that is 
governed by the models: 

(1) State equation (System model or Process model): 

 
(4) 

where: 
x = Error state vector 
F = State transition matrix 
G = Noise coupling matrix 
w = System/Process noise. 

(2) Observation equation (Measurement model): 

 (5) 

where: 
z = Observation vector (i.e., Measurement vector) 
H = Measurement Design matrix 

 = Measurement noise. 

RISS Mechanization

Aiding Measurement 
of the body’s 

position, velocity and 
attitude

+

–
Kalman Filter

+

–

RISS output (Including RISS errors)

Aiding output 
(Including Aiding 

errors)

Estimation of 
RISS errors

RISS output – 
Aiding output

RISS/GPS 
results

RISS 
Measurements

( Single-axis 
Gyroscope and 
speedometer )

GPS

1 1, .k k k k k kF G+ += +x x w

1 1 1 1.k k k kH+ + + += +z x ν

ν



Sensors 2012, 12            
 

 

122 

The corresponding error-state system model used by KF is presented in Equation (6) where 𝛿𝛿𝐱𝐱k+1 is 
the error-state vector, 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the acceleration derived from odometer data, Ts is the sampling time, 
wk is a unit variance white Gaussian noise. The error-state vector has 7 error states. These are the 
latitude and longitude errors (δφ, δλ), the East and North velocities errors (δVEast, δVNoth), the azimuth 
error (δA), the stochastic gyroscope error (δωZ) and the residual errors associated with the  
odometer-derived acceleration (𝛿𝛿𝛿𝛿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ). The stochastic errors associated with the gyroscope and 
the odometer-derived acceleration are modeled by Gauss-Markov models, 𝛾𝛾𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the inverse of 
the autocorrelation time for odometer-derived acceleration noise, 𝜎𝜎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

2  is the variance of  
odometer-derived acceleration noise, 𝛽𝛽𝜔𝜔𝑍𝑍  

is the inverse of the autocorrelation time for gyroscope 
noise,𝜎𝜎𝜔𝜔𝑍𝑍

2  is the variance of gyroscope noise. 

 

(6) 

Since loosely coupled integration is used, GPS position and velocity updates are used during the 
update stage of KF. The measurement model used by KF is:  

 

(7) 

3. Embedded System Design 

Due to the complexity of the embedded systems, design methodologies are needed to guide the 
decisions of the designers when developing large systems. The selected design process, shown in 
Figure 3, also defines the constraints between different teams that are working on the system. The 
design methodology acts as a framework that will direct the work flow and organize the tasks in 
relation to the different phases in the system life cycle. It has to be noted that, unlike the waterfall 
model in which the flow of information and work from higher levels of abstraction (i.e., earlier phases) 
to more detailed steps (i.e., later phases) involves a limited amount of feedback to the upper higher 
levels of abstraction, the work focus can move from one phase to another in the backward direction 
allowing system refinement and optimization according to the experiences gained through the  
work [9,10]. 

 
 

7 7

10 0 0 0 0 0

10 0 0 0 0 0
( )cos

0 0 0 0 cos sin 0
0 0 0 0 sin cos 0
0 0 0 0 0 0 1
0 0 0 0 0 0

0 0 0 0 0 0
1

M

N
East

forward
k North

forward

forward
forward

z

R h

R hV
a A A

V a A A
A

a
a

zk

I

δϕ
δλ

ϕδ
δ δ

δ
δ γ
δω

βω

×

 
   +         +     = = +  −      −   

−
 +

x



0
0
0
0
0

22

22

East

kNorth

forward forward
forward

V
T ws V

A a a
a

z z zk

δϕ
δλ

δ

δ
δ γ σ

δ
δω β σω ω

                                 +                                  


1

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

1
1

k

RISS GPS

RISS EastGPS

k NorthRISS GPS
East East

RISS GPS
North North forward

z

V

V
V V A
V V ak

k

δϕ
δλϕ ϕ

δ
λ λ

δ δδ
δ

δ
δω

+

 
  −            −     = = +      −          −    +
   +

z ν



Sensors 2012, 12            
 

 

123 

Figure 3. Embedded System Design Life Cycle. 

 

3.1. System Requirements and Specifications Definition Phase 

The process of designing an embedded system starts with the definition of the system—the goal of 
the research work. The system definition describes what the embedded system is to be and do. The 
functional requirements for the real-time navigation embedded system are as follows: 

1. Interface with the NovAtel SPAN unit [24] which includes the OEM4 GPS receiver [25], 
Crossbow inertial measurement unit (IMU) IMU300CC-100 (the Crossbow IMU is a MEMS grade 
low-end device that uses three orthogonal accelerometers and gyroscopes. However, the 2D RISS/GPS 
algorithm uses the vertical gyroscope only within the IMU which is aligned with the vehicle’s  
z-axis) [26] and a mobile robot’s encoders or the vehicle’s odometer via the ElmScan vehicle speed 
scan tool [27], using the universal asynchronous receiver transmitter (UART) serial communication 
interface. For each sensor, a UART channel is required.  

2. Synchronize the data from the three sensors using the pulse per second (PPS) signal from the 
GPS, for a more reliable fusion solution. 

3. Extract the information required from these sensors to get the position, velocity and heading from 
the GPS receiver; the angular rotation rate from the vertical gyroscope within the IMU which is 
aligned with the vehicle’s z-axis; and the vehicle’s speed from the wheel encoders or the odometer. 

4. Once the synchronized extracted information is available, the KF for 2D RISS/GPS navigation 
algorithm is applied, to yield a consistent navigation solution per second. The rate of the navigation 
solution is 1 Hz due to utilizing the robot’s wheel encoders or the vehicle’s odometer in the system, 
where the speed readings are acquired at 1 Hz relative to the PPS synchronization signal. The 
navigation solution has to be computed and available before the new incoming GPS PPS synchronizer 
signal and measurements from the three sensors are available as shown in Figure 4. 

It has to be noted that the navigation solution computed by the RISS/GPS algorithm is bounded by 
the rate of system sensors. The solution computed by the developed real-time system is at a rate of  
1 Hz due to the speed reading which is acquired from the robot’s wheel encoders or the vehicle’s 
odometer at a 1 Hz rate with respect to the arrival of the PPS signal from the GPS receiver. This rate is 
not a limitation of the RISS/GPS algorithm or the real-time system implementation. To improve the 
bounded rate of the navigation solution which is bounded by the 1 Hz rate measurements generated 
from the robot’s wheel encoders and the vehicle’s odometer OBDII, high resolution wheel encoders 
can be used for both the robot and the land vehicle. High resolution encoders will enable the reading of 
the encoder data at a higher rate while still preserving the accuracy of the measurements which can 



Sensors 2012, 12            
 

 

124 

generate higher rate measurements; lower resolution encoders will cause quantization errors if read at 
higher rate, furthermore the OBD-II does not provide high rates. 

Figure 4. Measurements Synchronization, Information Extraction and Processing at 1 Hz rate.  

 

5. The system is required to communicate with a PC via the UART interface to upload the 
measurements and the computed navigation solution to retrieve, visualize, and analyze the data. 

The two approaches that are adopted to test the implemented real-time system are: 

1. Using the measurements that are uploaded to the host machine, the solution of the navigation 
system in real-time is compared to the offline solution computed using the main algorithm that is 
coded in C which makes use of the uploaded measurements. If the results from both solutions are 
comparable, then the developed system has succeeded in delivering a real-time navigation solution. 

2. The reference solution, which is generated from the NovAtel SPAN unit that contains a GPS 
receiver and a high-end high-cost tactical grade Honeywell IMU, the HG1700, will be used as a 
general reference, for assessing the performance of the low-cost developed navigation solution and the 
offline C solution. 

3.2. Design Phase 

In the design phase, two questions are answered. The first is concerned with the platform to be 
chosen that will fulfill the specifications of the embedded systems acquired in the first phase. The 
designer has the option to choose a µC, a DSP, an FPGA, or a combination of these platforms for the 
application to be developed. Once the platform is chosen, the designer has to decide on the tools that 
will assist the developers in programming the chosen platform. 

A processor-based system based on off-the-shelf (OTS) microprocessor solutions is the traditional 
approach that designers have used in creating embedded systems. These types of traditional  
processor-based systems are available with a wide range of features and peripherals from a multitude 
of vendors. The process of selecting an OTS processor that can meet specific cost and functional 
requirements is time-consuming. It needs all the requirements to be gathered and solidified before the 
project development begins, which is seldom the case. Also, some of the low-end OTS solutions lack a 
dedicated floating-point unit which can boost the system performance for math centric algorithms. Due 



Sensors 2012, 12            
 

 

125 

to the mentioned reasons, another approach is sought, which can allow the designer to tailor a 
processor and a specific set of features and peripherals for the application to be implemented [28]. 

Based on the above reasons, Xilinx’s MicroBlaze [29] soft-core processor was selected to develop 
the mobile multi-sensor navigation system. Similar to the OTS processors, an FPGA-based soft-core 
processor like the MicroBlaze can be programmed using high-level languages such as C/C++. 
MicroBlaze also provides many advantages compared to OTS processor solutions such as [28,30]. 

(1) Customization: The designer of the FPGA-based embedded processor system has the total 
flexibility to add any combination of peripherals and controllers. A unique set of peripherals can also 
be designed for specific applications, and the designer has the privilege to add as many peripherals to 
meet the system requirements, which cannot be done when using an OTS processor. Future system 
features that didn’t have reason to exist in the initial release can also be added due to the space that is 
provided by an FPGA. 

(2) Multi-Processor System: As more complex embedded systems can benefit from the existence of 
multiple processors which can execute the tasks in parallel, by using a soft-core processor 
accompanying tools, the system designer can easily create a multi-processor based SOC. The only 
restriction to the number of processors that can be added is the availability of FPGA resources. 

(3) Hardware Acceleration: Hardware and software concurrent development and co-existence on a 
single chip, is one of the compelling reasons for choosing a soft core processor. System designers need 
not to worry, if a segment of the algorithm was found to be a bottleneck, as a custom co-processor or a 
hardware circuit that utilizes the FPGA parallelism can be designed to eliminate such problem.  

(4) Obsolescence Mitigation: Supporting extended project life expectance and component 
obsolescence mitigation is a difficult issue. FPGA soft-processors are an excellent solution in this case 
since the HDL code for the soft-processor can be purchased, and ownership of the HDL code can 
fulfill the requirements for product lifespan extension. 

The soft-core processor is not without disadvantages. The processor will not operate at the same 
speeds or have the same performance as a hard-core processor. Unlike an off-the-shelf processor, the 
hardware platform for the FPGA embedded processor must be designed, where the embedded designer 
becomes the hardware processor system designer when an FPGA solution is selected. Also, due to the 
integration of the hardware and software platform design, the design tools are more complex, and the 
learning curve is steeper. The increased tool complexity and design methodology requires more 
attention from the embedded designer [30]. 

The MicroBlaze is a 32-bit reduced instruction set computer (RISC) for use in FPGA designs 
targeting supported Xilinx Spartan or Virtex families of physical FPGA devices. Figure 5 shows a 
functional block diagram of the MicroBlaze core [29]. The MicroBlaze soft core processor is highly 
configurable, allowing the selection of a specific set of features for the system to be designed. Xilinx 
XPS software tool version 10.1.3 is used which corresponds to MicroBlaze version 7.10.d (For every 
Xilinx EDK version, there is only one corresponding MicroBlaze version which can be used. Newer 
MicroBlaze versions can be used only with a new Xilinx EDK release). The fixed feature set of the 
processor includes: (a) Thirty-two 32-bit general purpose registers (b) 32-bit instruction word with 
three operands and two addressing modes (c) 32-bit address bus and (d) Single issue pipeline. In 



Sensors 2012, 12            
 

 

126 

addition to these fixed features, the MicroBlaze processor can be parameterized to allow selective 
enabling of additional functionality [29]. Some of the optional features are introduced in Table 1. 

Figure 5. MicroBlaze Core Block Diagram [29].  

 

Table 1. MicroBlaze Optional Features. 

Feature MicroBlaze Version 7.2 
Processor pipeline depth 3/5 
Hardware barrel shifter option 
Hardware divider option 
Hardware debug logic option 
Pattern Compare Instructions option 
Fast simplex link interfaces Single-precision 
Instruction and Data cache memory option 
Hardware exception support option 
Single-precision Floating Point Unit option 
Area or speed optimized option 
Floating-point conversion and square root instructions option 

3.3. Development Phase 

For developing an embedded system based on a soft-core processor, unlike the discrete processors 
where the hardware is already defined, the developer needs to start by customizing the soft-core 
processor to fit the application. Specific optional features and interfacing peripherals tailored for the 
application are added to the processor’s core. 

Xilinx’s Embedded Development Kit (EDK) is a suite of tools and Intellectual Property (IP) that 
enables designing a complete embedded processor system for implementation in a Xilinx FPGA 
device. The EDK enables the design and integration of both the hardware and software using two main 
tools, Xilinx Platform Studio (XPS) and Software Development Kit (SDK). 



Sensors 2012, 12            
 

 

127 

The Xilinx Platform Studio is the development environment or graphical-user interface (GUI) used 
for designing the hardware portion of the embedded processor system. The SDK is an integrated 
development environment, complimentary to XPS, that is used for C/C++ embedded software 
application creation and verification. SDK is built on the Eclipse™ open-source framework, so this 
software development tool might appear familiar to software developers (Prior to EDK version 12.1 
released in 2010, the designer had the option to use only XPS to develop both the hardware and 
software. Starting from 12.1, XPS is used for customizing the system hardware only, and the software 
has to be implemented on SDK.) [31]. Figure 6 illustrates the hardware design flow, starting from the 
hardware customization and resulting in the processor bit-stream, and the software design flow starting 
from C/C++ code development and resulting in the object code. The system bit-stream which contains 
both the processor bit-stream and the object code is then downloaded to the FPGA.  

Figure 6. Hardware Customization and Software Development Flows Using Xilinx’s EDK. 

 

3.4. Hardware Customization 

Virtex-4 ML402 evaluation kit powered by Xilinx Virtex-4 SX35 FPGA was utilized for building 
the real-time navigation system with the MicroBlaze processor in its core running at 100 MHz. The 
MicroBlaze was customized with four serial channel interfaces to communicate with the three sensors 
and the monitoring PC. In addition, general-purpose input-output (GPIO) channels were required for 
PPS and user interfacing, a timer for code profiling and an interrupt controller for the event-based 
system. The customized processor was also augmented with an IEEE-745 compliant single-precision 
floating point unit (FPU) provided via Xilinx cores in order to execute the navigation algorithm once 
the measurements are available in the least time possible. Although the FPU used is single-precision, 
the algorithm was developed making use of double-precision arithmetic which gives more accurate 



Sensors 2012, 12            
 

 

128 

results. Consequently, software libraries were used by the compiler, provided with Xilinx SDK, to 
emulate the double-precision operations using the single-precision FPU, resulting in a slightly denser 
code but a far better navigation solution. 

Regarding the memory option that is used to store the instructions and data; the local memory [30], 
which utilizes Xilinx’s Block RAM (BRAM) memory blocks was selected and preferred over the 
choice to use the external SRAM or DDR memory combined with the cache option. Two memory 
cores of 128 KB each are used for storing the instructions and data. MicroBlaze accesses to BRAM 
take a single bus cycle. Since the processor and bus run at the same frequency in MicroBlaze, 
instructions stored in BRAM are executed at the full MicroBlaze processor frequency, thus the design 
achieves optimal memory performance as the code including the navigation algorithm was optimized 
to fit within the customized local memory. The customized MicroBlaze-based navigation system is 
shown in Figure 7. 

Figure 7. Customized MicroBlaze-based Navigation Embedded System. 

 

3.5. Software Development 

In designing the software, the bottom-up approach is used, where low abstraction modules are 
coded first, before moving to higher abstraction modules. We started by interfacing the sensors, and 
synchronizing the measurements according to the PPS signal, and then we moved to convert the 
MATLAB code to C and optimize the code for performance and code density. The lower level 
modules are tightly coupled with the system peripherals, while the higher level modules are generic 
modules that aren’t tied to specific hardware. Due to the use of interrupts, the system is event-triggered 
that is invoked when specific events occur such as acquiring one byte or one whole data packet from 
one of the UARTs that are used for interfacing the sensors, or the transition of the PPS signal from the 
low to high edge used for synchronization. Instead of using an operating system to control the 
hardware resources, the standalone Board Support Package (BSP), provided by Xilinx, is used to 
access the board/processor features directly without the use of a kernel or an operating system.  



Sensors 2012, 12            
 

 

129 

3.6. Measurement Synchronization 

Time synchronization between GPS, IMU and odometer measurements is a common concern when 
implementing integrated systems. Since the NovAtel SPAN unit, the Crossbow IMU and the ElmScan 5 
compact scan tools are three separate, self-contained subsystems, the clock difference and data 
transmission latency could cause data alignment discrepancies during the data fusion stage, using KF. 
Such alignment discrepancies may render the data fusion suboptimal [32]. 

The GPS time is typically used as a time reference for multi-mobile sensor systems [32]. In addition 
to outputting positioning data and time messages through a serial data link, the NovAtel GPS receiver 
provide a one pulse-per-second electrical signal indicating the time of the turnover of each second. The 
alignment of the PPS signal edge to the standard GPS time is accurate to +/−50 ns [25]. The width of 
the PPS signal is 1 millisecond. Figure 8 shows the PPS signal with respect to the measurements from 
the three sensors. 

Figure 8. Timing Diagram showing the PPS Signal with respect to the GPS, IMU and speed 
data derived from either the odometer or the wheel encoders. 

 

For synchronizing the measurements, the PPS signal is connected to a GPIO core which is linked to 
an interrupt controller. The PPS signal is considered the system’s heartbeat and is tied to the highest 
interrupt priority within the interrupt controller. When an edge transition occurs on the line of the 
GPIO, from low-level to high-level, an interrupt occurs signaling the occurrence of a new second. The 
occurrence of the new second results in 2 operations, down-sampling all the yaw rate measurements 
from the z-axis gyroscope and acquiring a new speed measurement from the ElmScan tool or the 
robot’s wheel encoder processor. Shortly after the PPS signal is generated, the GPS data is received. 
When the GPS data is received, along with the down-sampled yaw rate measurement and the instant 
vehicle’s speed, the navigation algorithm processing can start. While the navigation algorithm is 
processing the synchronized measurements, the processor is forced to switch context to the IMU 
UART interrupt handlers in order to acquire the high-rate gyroscope measurements which occur at the 
rate of 200 Hz. Thus, no yaw rate measurements are lost. 

3.7. Navigation Algorithm Conversion from MATLAB to C and Optimization 

The conversion from MATLAB to C is done manually, instead of automatically using, for instance, 
the Embedded MATLAB approach. The embedded MATLAB approach, although is a faster way for 



Sensors 2012, 12            
 

 

130 

algorithm conversion, needs the main MATLAB code to be altered in order to be compatible for the 
conversion process. It provides also less control over the generated C code, where the developer might 
need to optimize the code for a specific processor. 

Although, the floating-point unit used in the MicroBlaze core is a single-precision, the algorithm 
was developed making use of the double-precision arithmetic. Consequently, the double-precision 
arithmetic operations are emulated using software libraries on the single-precision FPU, resulting in a 
slightly denser code but far better navigation solution. It has to be noted, that if the double-precision 
arithmetic was to be emulated on fixed-point hardware, the code would have been much denser. 

After the navigation C code is implemented, the process of optimizing the code starts, that can 
result in faster code execution and less code density. For instance, instead of using the math power() 
function provided in C, to raise a specific variable to a power of 1.5, and using another sqrt() function, 
which is equivalent to raising a variable to the power of 0.5, the developer can choose the power() 
function to be used instead of the sqrt() function, Thus, extra memory that is needed to add the code 
space for both functions is eliminated resulting in a smaller code density. 

3.8. Hardware Resources and Software Profiling 

Table 2 presents the hardware resources that are utilized for building the whole navigation system. The 
logic cells used are 20% of the total available and the BRAM is 33.3% of the total available, which means 
that a lower-density FPGA can be used for implementing the system. Furthermore, if the same FPGA is 
used, then there is additional space to augment the system with more peripherals and coprocessors.  

Table 2. Hardware Resources and Memory Profiling. 

Resource Used Total Available Utilization % 
Hardware Resources 
Logic 5,935 30,720 19.3 
Input/output 36 450 8.0 
Block RAM 64 192 33.3 
DSP 7 192 3.6 
Software Memory Profiling 
Instruction Memory 117.3 KB 128 KB 91.6 

The code used on the MicroBlaze consumes 92% of the customized available memory and one 
iteration of the code takes a maximum of 35 milliseconds. The code profiling was done using the 
profiling timer which was initiated at the beginning of each iteration, and the number of clock cycles 
was then saved at the end of the iteration, to be sent to the host machine. 

4. Experimental Results 

4.1. Mobile Robot Testing Platform 

The real-time navigation system was implemented on Xilinx FPGA evaluation board ML402 
featuring Virtex-4 SX35 and connected to the various sensors for acquiring the measurements. Figure 9 
presents the experimental setup of the sensors and the FPGA evaluation kit on the robot. Figure 10 



Sensors 2012, 12            
 

 

131 

shows the wiring connections of the sensors mounted on the robot with the ML402 evaluation board. 
The power connections to the sensors and the evaluation board are also shown. It has to be mentioned 
that the host machine is not externally powered and depends on batteries which made the experiments 
on the mobile robot limited to a maximum of 1–1.5 hours. 

Figure 9. The Mobile Robot Testing Platform. 

 

Figure 10. Mobile Robot Equipment Wiring Connections. 

 

A total of fifty trajectories were acquired using the mobile robot around the Royal Military College 
of Canada over 45 days, which were used in debugging the firmware on the navigation system. This 
number of trajectories would have been hard to acquire for testing and debugging the system using a 
land vehicle, which is more costly and requires more man power. Extensive trajectories were 
performed for both platforms, the mobile robot and the vehicle, and due to the results being consistent 



Sensors 2012, 12            
 

 

132 

and similar, sample trajectories were selected that convey different information and trajectory 
challenges. 4.2. Mobile Robot—Trajectory (1) 

Trajectory (1) was acquired in an open sky area, where no natural GPS outages can be experienced 
and simulated GPS outages were not inserted. Figure 11 shows the trajectory that was computed by the 
developed real-time navigation system, and its comparison with the NovAtel SPAN reference solution 
and the GPS navigation solution. Figure 12 shows the robot’s dynamics represented by the azimuth 
and the horizontal speed from the NovAtel reference over the whole trajectory. The duration of 
trajectory (1) is 9.6 minutes.  

Figure 11. Mobile Robot Trajectory (1): Open Sky Area, with no Natural or Simulated 
GPS Outages. 

 
 

Figure 12. Mobile Robot Dynamics (Azimuth and Horizontal Speed) over Trajectory (1) 
from the Reference. 

 

- Reference (SPAN) 
- GPS 
- MicroBlaze (Real-time) 



Sensors 2012, 12            
 

 

133 

In Figure 13, the difference between the positioning solutions from the C double-precision offline 
algorithm (i.e., The offline solution was computed using the main algorithm that is coded in C on the 
host machine which makes use of the uploaded measurements from the embedded system via the 
UART channel) and the C single-precision offline algorithm is presented, where the difference is in the 
range of 0.5 meter. The results show that the choice of emulating the double-precision on the 
MicroBlaze core is far more convenient in terms of accuracy, compared to using single-precision 
arithmetic which would have consumed less memory and less processing time. 

Figure 13. Mobile Robot Trajectory (1): Difference between C Double-Precision Offline 
and C Single-Precision Offline Solutions. 

 

In Figure 14, the difference between the C double-precision offline solution evaluated on a PC and 
the MicroBlaze real-time solution with emulated double precision is presented, were the difference is 
in the magnitude of 10−9 meters. The difference can be due to the emulation of double-precision 
floating-point operations on the single-precision floating point unit present in the MicroBlaze core; 
however, the difference is negligible and it consequently shows that the real-time system succeeded in 
providing the same navigation solution as the one generated from the offline system.  

Finally, the difference between the NovAtel SPAN reference solution and the real-time solution is 
shown in Figure 15. Both solutions are real-time, and the difference is due to the use of the low-cost 
MEMS-based IMU in the developed solution while the SPAN unit uses the high-end tactical grade 
HG1700 IMU. In general, the trajectory is open sky trajectory; however the part of the trajectory 
around 300 seconds from the start is when passing by a bleacher in the “Parade Square” area at the 
Royal Military College of Canada where some events take place. The GPS positioning solution was 
not the best at this point and it had about 3 to 4 meters of errors because of multipath, but still the 
standard deviation provided by the GPS receiver was good. 



Sensors 2012, 12            
 

 

134 

Figure 14. Mobile Robot Trajectory (1): Difference between C Double-Precision Offline 
and MicroBlaze Real-Time Solutions. 

 

Figure 15. Mobile Robot Trajectory (1): Difference between NovAtel SPAN Reference 
and MicroBlaze Real Time Solutions.  

 

The off-the-shelf reference solution using a high-end tactical grade IMU, the HG1700, was able to 
provide the correct positioning solution despite the GPS with undetected multipath, because when using 
such high-end IMUs the balance of effect (i.e., the balance of the covariance matrices) between the 



Sensors 2012, 12            
 

 

135 

inertial and the GPS solutions inside the integrated solution is different than when using MEMS-based 
sensors. When using MEMS-based sensors, the integrated solution uses higher values in the covariance 
matrices because of the large errors present in these sensors which lead to relying more on GPS in the 
integrated when its standard deviation is good (i.e., its covariance matrix will be good). So, the 
presented low-cost solution was slightly misled by GPS because of its good standard deviation. This 
fact can be seen when taking a closer look at Figure 11, in the middle of the bottom side of the 
rectangular trajectory, where the presented low-cost solution (blue) follows GPS (green) while the 
high-end reference solution (red) does not. It is to be noted that this scenario is still not a big problem 
in the presented low-cost solution because other scenarios with noticeably bad GPS position with 
misleading good standard deviation will not affect the integrated navigation solution because it will be 
detected and rejected by a GPS assessment routine that uses, in addition to the standard deviation, the 
motion constraints on land vehicles and speed readings (from wheel encoders or odometer) to detect 
and reject degraded GPS readings. However, since the GPS error in the current scenario was in the 
range of 3 to 4 meters and was not conflicting with the motion constraints it was still accepted and 
gained its way through to update the KF of the integrated solution. 

The RMS and maximum errors in the east velocity, north velocity, North position and East position 
over trajectory (1) entirely are presented in Tables 3 and 4, respectively.  

Table 3. RMS Error in the East Velocity, North Velocity, North and East Positions over 
Mobile Robot Trajectory (1). 

East Velocity (m/s) North Velocity (m/s) North Position (m) East Position (m) 
RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 

4.12788 × 10−2 7.98887 × 10−3 2.96969 × 10−1 4.91848 × 10−1 
RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 

7.83599 × 10−10 1.44185 × 10−9 4.16753 × 10−9 1.85211 × 10−9 
RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 

9.60578 × 10−2 1.11987 × 10−1 9.05270 × 10−1 9.39925 × 10−1 

Table 4. Maximum Error in the East Velocity, North Velocity, North and East Positions 
over Mobile Robot Trajectory (1). 

East Velocity (m/s) North Velocity (m/s) North Position (m) East Position (m) 
Maximum Error between the C Double-Precision and C Single-Precision Offline Solutions 

7.49309 × 10−2 3.54033 × 10−2 6.65903 × 10−1 8.85448 × 10−1 
Maximum Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 

1.15944 × 10−8 2.82925 × 10−8 9.18873 × 10−9 1.11810 × 10−8 
Maximum Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 

4.06407 × 10−1 4.43351 × 10−1 3.34354 2.56632 
 
The first row of values in Tables 3 and 4 shows the RMS and maximum errors between the solution 

generated from both the C double-precision and C single-precision solutions. Again, the values reflect 
on the fact that the double-precision emulation was important to provide a more accurate navigation 
solution. This point is further confirmed by the 2nd row of values in Table 3, where it shows that the 
performance of the offline and real-time systems is essentially the same as the RMS error between 



Sensors 2012, 12            
 

 

136 

solutions from both systems is in the order of 10−9 which is negligible. The 3rd row of values in  
Table 3 shows the RMS error from both the reference and real-time systems where the RMS error in 
the North and East positions is less than 1 meter. 

4.3. Mobile Robot—Trajectory (2) 

Trajectory (2) is different from trajectory (1) as simulated outages were pre-programmed and 
inserted in the code at specific instants during the real-time processing. Simulated outages are used to 
imitate the effect of a GPS outage in areas where natural GPS outages aren’t experienced. Outages are 
introduced in the code to test how the navigation algorithm will perform in the absence of an update 
from the GPS, i.e., in prediction mode based on the RISS only. The duration of all the simulated 
outages is 60 seconds. Trajectory (2) follows the same path as trajectory (1), and its duration is  
9.3 minutes. Four outages were inserted at the seconds 120, 230, 400 and 525 respectively. Figure 16 
shows trajectory (2) on an aerial map, from which the open sky area where the trajectory was acquired 
can be seen; the simulated outages locations are circled on the map. 

Figure 16. Mobile Robot Trajectory (2): Open Sky Area with Four Simulated GPS Outages. 

 

Trajectory (2) was intended to be the same as trajectory (1) in order to show the effects of the 
intentionally simulated outages and the performance of the real-time system with respect to 
trajectory(1) which was analyzed before. Unlike trajectory (1), where the errors where analyzed over 
the whole trajectory; in trajectory (2), the performance of the real-time system was analyzed within the 
intentionally inserted outages. In Table 5, the RMS and the maximum horizontal position errors (i.e., 
The horizontal position error is the square root of the square of the North and East position errors) 
during the four 60 second outages are presented, which indicate the performance of the real-time 
solution with respect to the NovAtel SPAN reference solution during the absence of the GPS update. 
The RMS error between the real-time and reference solutions reaches a maximum of 2.16 meters 

4 

3 

2 

1 

- Reference (SPAN) 
- GPS 
-MicroBlaze (Real-time) 
- GPS outage 



Sensors 2012, 12            
 

 

137 

through outage (4). The performance of the position solution generated from the offline C double and 
single precisions is again analyzed for the four 60-second outages in trajectory (2) and is shown in 
Table 6. Again, the difference between both solutions is within a couple of meters indicating the 
importance of choosing the double-precision arithmetic for the RISS/GPS navigation algorithm instead 
of the single-precision. The difference between the position solution generated from the offline and the 
real-time systems is also analyzed within the four outages as shown in Table 6, where the RMS error is 
in the order of 10−6 for outage (2). The difference between the reference and the real-time systems’ 
solutions is then presented where it can be seen that the RMS error in the East and North positions over 
outage (4) is less than 2 meters to indicate that the performance of the real-time system which contains 
low-cost MEMS-based inertial sensors is very competitive with respect to the high-end, high-cost 
reference system. 

Table 5. RMS and Maximum Horizontal Position Error for the Four 60 seconds Outages 
Introduced in Mobile Robot Trajectory (2). 

Outage (1) Outage (2) Outage (3) Outage (4) 
RMS Horizontal Position Error between the SPAN Reference and MicroBlaze Real-Time Solutions (m) 

9.38501 × 10−1 1.40681 1.06658 2.16077 
Maximum Horizontal Position Error between the SPAN Reference and MicroBlaze Real-Time Solutions (m) 

1.65584 2.48860 1.79489 3.08822 

Table 6. RMS Error in the Latitude and Longitude Solutions over the Four Outages 
introduced in Mobile Robot Trajectory (2).  

 North position (m) East position (m) 

O
ut

ag
e 

(1
) 

RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 
3.00674 6.42866  

RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 
1.37906 × 10−8 4.92348 × 10−8 

RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 
7.91314 × 10−1 5.04586 × 10−1 

O
ut

ag
e 

(2
) 

RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 
3.39406 4.07745 

RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 
1.38649 × 10−6 4.47223 × 10−7 

RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 
4.42573 × 10−1 1.33538 

O
ut

ag
e 

(3
) 

RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 
1.45689 3.67700 

RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 
3.14829 × 10−7 2.40989 × 10−7 

RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 
7.32207 × 10−1 7.75539 × 10−1 



Sensors 2012, 12            
 

 

138 

Table 6. Cont. 

 North position (m) East position (m) 
O

ut
ag

e 
(4

) 

RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 
8.03891 × 10−1 3.30091 

RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 
6.60678 × 10−9 2.16253 × 10−9 

RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 
1.84932 1.11755 

4.4. Mobile Robot—Trajectory (3) 

Figure 17 shows trajectory (3), which is different from the previously presented trajectories, in 
having a portion of the trajectory acquired inside of a building. A natural GPS outage of 100 seconds 
occurred, which is equivalent to the time taken by the mobile robot from the entrance to the exit of the 
building. The natural outage was detected by the system which acted accordingly in providing a 
navigation solution in prediction only mode based on RISS readings; the solution still shows a very 
competitive performance with respect to the high-end, high-cost NovAtel SPAN reference system.  
The RMS error in the horizontal position during the outage is 2.39 meters, while the maximum error is 
10.25 meters. Figures 18 and 19 show the error in North and East positions between the high-end 
reference solution and the developed low-cost real-time solution. 

Figure 17. Mobile Robot Trajectory (3): Inside a building with a natural GPS Outage of 
100 seconds duration. 

 

  

- Reference (SPAN) 
- GPS 
-MicroBlaze (Real-time) 
- GPS outage 



Sensors 2012, 12            
 

 

139 

Figure 18. North Position Solution and Error in North Position between the Real-time and 
Reference Solutions during Trajectory (3). 

 

Figure 19. East Position Solution and Error in East Position between the Real-time and 
Reference Solutions during Trajectory (3). 

 

4.5. Land Vehicle Testing Platform 

After the firmware of the navigation system was debugged on the mobile robot and proven to give 
the same results as the C-code offline solution, the next step was to test the navigation system on a 



Sensors 2012, 12            
 

 

140 

land vehicle where the wheel encoders on the mobile robot are replaced with the ElmScan vehicle 
speed scan tool that reads the vehicle speed readings through OBD-II interface. The experimental setup 
of the sensors and the FPGA evaluation kit on the land vehicle platform is shown in Figure 20.  

Figure 20. The Land Vehicle Experimental Setup. 

 

Figure 21. Land Vehicle Equipment Wiring Connections. 

 



Sensors 2012, 12            
 

 

141 

Figure 21 shows the wiring connections of the sensors with the ML402 evaluation board featuring 
Xilinx Virtex-4 FPGA on which the MicroBlaze soft-core processor is running. The power connections 
to the sensors and the evaluation board are also shown.  

4.6. Land Vehicle—Trajectory (1) 

Trajectory (1) was acquired in an open sky area in Kingston around Queen’s University, where a 
small number of natural GPS outages can be experienced and simulated GPS outages were not 
inserted. Figure 22 shows the trajectory that was computed by the developed real-time navigation 
system, and its comparison with the NovAtel SPAN reference solution and the GPS navigation 
solution. Figure 23 shows the vehicle’s dynamics over the whole trajectory from the NovAtel reference 
solution. The duration of the trajectory is 9.2 minutes. 

Figure 22. Land Vehicle Trajectory (1): Open Sky Area, with Minimum Natural Outages 
and no Simulated GPS Outages. 

 

The differences between the offline, real-time and reference navigation solutions are presented in 
Tables 7 and 8 where the RMS and maximum errors in the East velocity, North velocity, East position, 
and North position over the whole trajectory are shown. The results for the land vehicle are 
comparable to the results for the mobile robot, from which it can be shown that the performance of the 
offline and real-time systems is very similar as the RMS error between the solutions generated from 
both systems is in the order of 10−7. It is to be noted that although the trajectory was taken in nearly 
open-sky, as mentioned previously a small number of natural GPS outages was experienced and GPS 
was also rejected in some areas mainly due to multipath caused by the trees on both sides of the street 
in these areas. This is the reason for the position error seen in Tables 7 and 8.  
  



Sensors 2012, 12            
 

 

142 

Figure 23. Land Vehicle Dynamics (Azimuth and Horizontal Speed) for Trajectory (1). 

 

Table 7. RMS Error in the East Velocity, North Velocity, North and East Positions over 
Land Vehicle Trajectory (1). 

East Velocity (m/s) North Velocity (m/s) North Position (m) East Position (m) 
RMS Error between the C Double-Precision and C Single-Precision Offline Solutions 

1.78523 × 10−1 9.60298 × 10−3 3.76213 × 10−1 4.98008 × 10−1 
RMS Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 

5.85936 × 10−8 1.48418 × 10−8 1.19570 × 10−7 3.67245 × 10−7 
RMS Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 

6.73738 × 10−1 5.757354 × 10−1 6.42297 7.79358 

Table 8. Maximum Error in the East Velocity, North Velocity, North and East Positions 
over Land Vehicle Trajectory (1). 

East Velocity (m/s) North Velocity (m/s) North Position (m) East Position (m) 
Maximum Error between the C Double-Precision and C Single-Precision Offline Solutions 
1.405039 × 10−1 6.68926 × 10−2 1.24497 2.82222 
Maximum Error between the C Double-Precision Offline and MicroBlaze Real-Time Solutions 

4.55655 × 10−7 1.47957 × 10−7 1.02348 × 10−6 3.84857 × 10−6 
Maximum Error between the NovAtel SPAN Reference and MicroBlaze Real-Time Solutions 

4.50865 3.02078 2.01342 × 10 3.63886 × 10 

4.7. Land Vehicle—Trajectory (2) 

Land vehicle Trajectory (2) is different from trajectory (1) as simulated outages were pre-programmed 
and introduced in the code at specific instants during the real-time processing. Four 60-second 
simulated outages are inserted in trajectory (2) at the seconds 300, 600, 1,000 and 1,300 respectively. 
The duration of the trajectory is 23.9 minutes. Figure 24 shows trajectory (2) in a map view, and the 
inserted GPS outages locations are encircled. Figure 25 shows a zoom-in view for simulated outage (3) 
in the trajectory; it can be seen that coincidently the GPS solution has some jumps outside the road, 
and of course the prediction-only real-time integrated solution was more consistent. This fact, 



Sensors 2012, 12            
 

 

143 

however, clarify how the integrated solution, even when it runs in prediction-only mode is better than 
the GPS errors that might be caused by reflections without direct line of sight. Figure 26 shows a 
zoom-in view for outage (4) in the trajectory where again coincidently the error in the GPS solution 
was for a longer portion and larger in magnitude than outage (3); the developed system solution even 
in prediction-only mode is much more consistent. In Table 9, the RMS and the maximum horizontal 
position errors during the four 60-second outages are presented. 

Figure 24. Land Vehicle Trajectory (2): Open Sky Area with Four Simulated GPS Outages. 

 

Table 9. RMS and Maximum Horizontal Position Error for the Four 60 seconds Outages 
Introduced in Land Vehicle Trajectory (2). 

Outage (1) Outage (2) Outage (3) Outage (4) 
RMS Horizontal Position Error between the SPAN Reference and MicroBlaze Real-Time Solutions (m) 

8.91707 1.40813 × 10 1.12782 × 10 1.63253 × 10 
Maximum Horizontal Position Error between the SPAN Reference and MicroBlaze Real-Time Solutions (m) 

1.66452 × 10 2.37866 × 10 1.57619 × 10 2.39850 × 10 
 

  

2 

1 

3 

4 



Sensors 2012, 12            
 

 

144 

Figure 25. Land Vehicle Trajectory (2): Zooming-in outage (3). 

 

Figure 26. Land Vehicle Trajectory (2): Zooming-in outage (4). 

 

5. Conclusions 

This paper discussed the process and challenges of realizing a mobile multi-sensor navigation 
algorithm such as the KF for 2D RISS/GPS integration algorithm. An embedded system design model 
was chosen to act as a framework for the work flow to be carried through the system life cycle starting 
from the system specification phase and ending with the system release. The realized system is capable 
of interfacing and communicating with a GPS receiver, a gyroscope and a vehicle’s odometer or a 
robot’s wheel encoders, synchronizing the sensors’ measurements with respect to the PPS signal and 
then applies the navigation algorithm yielding a reliable and accurate integrated navigation solution. 
Xilinx’s soft-core processor, MicroBlaze, on Virtex-4 FPGA was selected as the most suitable 
candidate for implementing the navigation system, where it provides the flexibility to choose or 
implement a set of features and peripherals that are tailored to the navigation system. The MicroBlaze 



Sensors 2012, 12            
 

 

145 

also provides a single-precision floating point unit which was used to emulate the double-precision 
arithmetic embodied in the navigation algorithm, as the accuracy of the double-precision solution was 
higher than that of the single-precision solution. The error between the real-time emulated  
double-precision solutions when compared to the offline double-precision solution was in the range of 
10−9 meters. The navigation system on the high-density Virtex-4 FPGA, utilized 20% of the total 
available logic cells 33.3% of the total available BRAM, which means that a lower-density FPGA can 
be used for implementing the system. The developed navigation system was tested first on a mobile 
robot to reveal system bugs and integration problems, and then on a land vehicle testing platform for 
further testing. The real-time solution from the implemented system when compared to the solution of 
a high-end navigation system, proved to be successful in providing a competitive consistent real-time 
navigation solution. 

Using FPGA-based processors offer system designers the maximum flexibility to customize the 
processor to specific applications. The designers have even more flexibility to use multi-MicroBlaze 
cores for parallel computation. Co-designing software and hardware is also another option offered 
where designers can implement the bottleneck segments of the algorithm as a custom coprocessor or a 
hardware circuit that speeds up the algorithm. All these options promote the utilization of soft-core 
processors in a more attractive and feasible approach than the traditional OTS approach.  

This paper doesn’t promote a soft-core processor from a specific vendor; however, it promotes 
using soft-core processors for implementing multi-sensor navigation systems as the future platform 
due to the offered advantages discussed in the paper. The paper demonstrated in length how embedded 
system design and development for FPGA-based processors is different than the traditional OTS 
processors, with an emphasis on navigation applications. 

Acknowledgments 

This research was supported in part by research grants from Natural Sciences and Engineering 
Research Council (NSERC), Geomatics for Informed Decision (GEOIDE) Network Centers of 
Excellence, and Defence Research and Development Canada (DRDC) Ottawa. The equipment was 
acquired by research funds from Canada Foundation for Innovation, Ontario Innovation Trust and the 
Royal Military College of Canada. 

References 

1. Bekir, E. Introduction to Modern Navigation Systems; World Scientific Publishing Company: 
Singapore, 2007. 

2. El-Rabbany, A. Introduction to GPS: The Global Positioning System; Artech House Publishers: 
Boston, MA, USA, 2002. 

3. Woodman, O.J. An Introduction to Inertial Navigation. Available online: http://www.cl.cam.ac.uk/ 
~ojw28/ins.html (accessed on 27 September 2011). 

4. Maluf, N.; Williams, K. An Introduction to Microelectromechanical Systems Engineering, 2nd ed.; 
Artech House Publishers: Boston, MA, USA, 2004. 

5. Farrell, J. Aided Navigation: GPS with High Rate Sensors; McGraw-Hill Professional: New York, 
NY, USA, 2008. 



Sensors 2012, 12            
 

 

146 

6. Iqbal, U.; Okou, A.F.; Noureldin, A. An integrated reduced inertial sensor system—RISS/GPS for 
land vehicle. In Proceedings of the Position, Location and Navigation Symposium (2008 
IEEE/ION), Monterey, CA, USA, 5–8 May 2008; pp. 1014-1021. 

7. Iqbal, U.; Noureldin, A. Integrated Reduced Inertial Sensor System/GPS for Vehicle Navigation: 
Multi-Sensor Positioning System for Land Applications Involving Single-Axis Gyroscope ... 
Vehicle Odometer and Integrated with GPS; VDM Verlag Dr. Müller: Saarbrücken, Germany, 
2010. 

8. Bevly, D.M. GNSS for Vehicle Control; Artech House Publishers: Boston, MA, USA, 2009;  
pp. 1-266. 

9. Carlson, R.; Gerdes, J.; Powell, J. Error Sources When land vehicle dead reckoning with 
differential wheelspeeds. Navigation 2004, 51, 13-27. 

10. Dissanayake, G.; Sukkarieh, S.; Nebot, E.; Durrant-Whyte, H. The aiding of a low-cost strapdown 
inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE 
Trans. Robot. Autom. 2001, 17, 731-747. 

11. Obradovic, D.; Lenz, H.; Schupfner, M. Fusion of sensor data in siemens car navigation system. 
IEEE Trans. Veh. Technol. 2007, 56, 43-50. 

12. Skog, I.; Handel, P. In-car positioning and navigation—A survey. IEEE Trans. Intell. Transp. 
Syst. 2009, 10, 4-21. 

13. Marwedel, P. Embedded System Design; Springer: Berlin, Germany, 2005. 
14. Noergaard, T. Embedded Systems Architecture: A Comprehensive Guide for Engineers and 

Programmers; Newnes: Waltham, MA, USA, 2005. 
15. Wolf, W. High-Performance Embedded Computing: Architectures, Applications, and 

Methodologies; Morgan Kaufmann: Waltham, MA, USA, 2006. 
16. Anemaet, P.; As., T.V. Microprocessors Soft-Cores: An Evaluation of Design Methods and 

Concepts on FPGAs. Available online: http://pretopia.net/files/paper_softcores.pdf (accessed on 
27 September 2011). 

17. Dubey, R. Introduction to Embedded System Design Using Field Programmable Gate Arrays; 
Springer: Berlin, Germany, 2008. 

18. Li, Q.; Yao, C. Real-Time Concepts for Embedded Systems; CMP Books: San Francisco, CA, 
USA, 2003; p. xii. 

19. Choosing a DSP Processor; Berkeley Design Technology, Inc.: Berkeley, CA, USA, 2000. 
Available online: http://www.bdti.com/MyBDTI/pubs/choose_2000.pdf (accessed on 27 
September 2011). 

20. Eyre, J.; Bier, J. The Evolution of DSP Processors, 2000. Available online: http://www.bdti.com/ 
articles/info_articles.htm (accessed on 27 September 2011). 

21. Lapsley, P. DSP Processor Fundamentals: Architectures and Features; IEEE Press: New York, 
NY, USA, 1997; p. xiii. 

22. Stringham, G. Hardware/Firmware Interface Design: Best Practices for Improving Embedded 
Systems Development; Newnes: Waltham, MA, USA, 2009. 

23. Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and 
Integration, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; p. xxvi. 



Sensors 2012, 12            
 

 

147 

24. SPAN Technology System User Manual; NovAtel Inc: Goleta, CA, USA, 2005; Available online: 
http://www.novatel.com/Documents/Manuals/om-20000062.pdf (accessed on 27 September 
2011). 

25. OEM4 Family, Installation and Operation; OM-20000046 Rev 19, User Manual—Volume 1, 
NovAtel Inc: Goleta, CA, USA. Available online: http://www.novatel.com/support/firmware-
software-and-manuals/product-manuals-and-doc-updates/archive-oem4-oem3-oem2/ (accessed on 
27 September 2011). 

26. IMU300—6DOF Inertial Measurement Unit; Crossbow Technology Inc.: San Jose, CA, USA, 
Available online: http://www.instrumentation.it/main/pdf/crossbow/IMU300CC_ID.pdf (accessed 
on 27 September 2011). 

27. ELM327 OBD to RS232 Interpreter. Available online: www.elmelectronics.com/DSheets/ 
ELM327DS.pdf (accessed on 27 September 2011). 

28. Arbinger, D.; Erdmann, J. Designing with an embedded soft-core processor. Available online: 
http://www.eetimes.com/design/signal-processing-dsp/4006632/Designing-with-an-embedded-soft-
core-processor (accessed on 27 September 2011). 

29. Xilinx Inc. MicroBlaze Processor Reference Guide Embedded Development Kit EDK 10.1. 
Available online: http://www.xilinx.com/ise/embedded/edk_docs.htm (accessed on 27 September 
2011). 

30. Fletcher, B.H. FPGA Embedded Processors—Revealing True System Performance. In 
Proceedings of the Embedded Systems Conference, San Francisco, CA, USA, 6–10 March 2005. 

31. Xilinx Inc. EDK Concepts, Tools, and Techniques A Hands-on Guide to Effective Embedded 
System Design. Available online: http://www.xilinx.com/ise/embedded/edk_docs.htm (accessed 
on 27 September 2011). 

32. Ding, W.; Wang, J.; Li, Y.; Mumford, P.; Rizos, C. Time synchronization error and calibration in 
integrated GPS/INS systems. ETRI J. 2008, 30, 59-67. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


	1.1. Navigation
	1.2. Embedded Systems
	2.1. RISS Mechanization
	2.2. RISS/GPS Data Fusion Using KF
	/
	3.1. System Requirements and Specifications Definition Phase
	3.2. Design Phase
	3.3. Development Phase
	3.4. Hardware Customization
	3.5. Software Development
	In designing the software, the bottom-up approach is used, where low abstraction modules are coded first, before moving to higher abstraction modules. We started by interfacing the sensors, and synchronizing the measurements according to the PPS signa...
	3.6. Measurement Synchronization
	3.8. Hardware Resources and Software Profiling
	4.1. Mobile Robot Testing Platform
	A total of fifty trajectories were acquired using the mobile robot around the Royal Military College of Canada over 45 days, which were used in debugging the firmware on the navigation system. This number of trajectories would have been hard to acquir...
	4.3. Mobile Robot—Trajectory (2)
	4.4. Mobile Robot—Trajectory (3)
	Figure 19. East Position Solution and Error in East Position between the Real-time and Reference Solutions during Trajectory (3).
	/
	4.5. Land Vehicle Testing Platform
	4.6. Land Vehicle—Trajectory (1)
	4.7. Land Vehicle—Trajectory (2)

