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Abstract: Atrial fibrillation (AF) is the most common type of arrhythmia, and is 
characterized by a disordered contractile activity of the atria (top chambers of the heart).  
A popular treatment for AF is radiofrequency (RF) ablation. In about 2.4% of cardiac RF 
ablation procedures, the catheter is accidently pushed through the heart wall due to the 
application of excessive force. Despite the various capabilities of currently available 
technology, there has yet to be any data establishing how cardiac perforation can be 
reliably predicted. Thus, two new FBG based sensor prototypes were developed to monitor 
contact levels and predict perforation. Two live sheep were utilized during the study. It was 
observed during operation that peaks appeared in rhythm with the heart rate whenever firm 
contact was made between the sensor and the endocardial wall. The magnitude of these 
peaks varied with pressure applied by the operator. Lastly, transmural perforation of the 
left atrial wall was characterized by a visible loading phase and a rapid signal drop-off 
correlating to perforation. A possible pre-perforation signal was observed for the  
epoxy-based sensor in the form of a slight signal reversal (12–26% of loading phase 
magnitude) prior to perforation (occurring over 8 s). 

Keywords: cardiac ablation; radiofrequency ablation; ablation catheter; transmural 
perforation; contact monitoring 
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1. Introduction  

1.1. Background 

The heart is incredibly durable, having to reliably sustain about 36 million pumping cycles during the 
lifespan of a normal healthy person [1]. However, various forms of heart disease compromise the 
functions of the heart and thus the longevity of the patient. One of the most common forms of heart 
disease is cardiac arrhythmia, in which the normal rhythm of the heart is disrupted by a period of 
disorganized contractions.  

Atrial fibrillation (AF) is the most common type of arrhythmia, and is characterized by the disordered 
contractile activity of the atria (top chambers of the heart). In the United States, one fourth of adults 
over 40 years old will suffer from AF. Persons affected by AF are at a heightened risk of death, heart 
failure, and cardiac-related stroke [2].  

A popular treatment for AF and cardiac arrhythmia in general is radiofrequency (RF) ablation. 
During RF ablation for AF, a catheter is passed venously into the heart, and is delivered into the left 
atrium through trans-septal puncture. Once contact has been made with defective tissue that caused 
AF, an electrode system integrated at the catheter tip transmits RF energy into the targeted tissue. 
Targeted cells warm up due to resistive heating and die as the temperature increases past 50 °C [3].  

However, despite the usual success of RF ablation, several complications may occur, and some are 
life-threatening if not treated quickly. In about 2.4% of cardiac RF ablation procedures [4], the catheter 
is accidently pushed through the heart wall due to the application of excessive force. The resulting 
perforation in the heart wall allows the leakage of blood from inside the heart to the pericardial sac that 
surrounds the heart. Cardiac tamponade occurs when a sufficient amount of fluid accumulates in the 
pericardial sac to impair the functions of the heart. Usually, only a few minutes elapse between the 
start of perforation and when the life-threatening symptoms of cardiac tamponade manifest. Methods 
that allow detection of perforation or even a warning of impending perforation will be a valuable asset 
for cardiac RF ablation.  

1.2. Literature 

One of the most common techniques used to monitor cardiac RF ablation is fluoroscopy. 
Fluoroscopy is readily accessible and provides a visualization of catheter positions from many  
angles around the patient. However, fluoroscopy provides little information about the level of  
catheter-endocardial contact and at the same time increases the malignancy risk of both patient and 
physician [5–8]. Non-fluoroscopic techniques have been developed in the recent years that help to 
characterize the level of catheter-endocardial contact during RF ablation surgery. 

Intracardiac echocardiography (ICE) was introduced to the RF ablation procedure to reduce  
the limitations of fluoroscopy. In ICE, an ultrasonic transducer is delivered through a 10F catheter  
(8F catheters are being made available) [5] to the various heart chambers. New developments  
(e.g., miniaturization) of this technology have led to transesophageal echocardiography (TEE), where 
the probe is placed into esophagus to allow enhanced imaging of certain parts of the heart [9,10].  
The positioning of the ablation catheter within the heart can be projected onto a two dimensional plane, 
although fluoroscopy may be used in parallel to ensure the safe maneuver of the ablation catheter.  
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Non-imaging methods have also been developed to determine catheter-endocardial contact.  
Cao et al. investigated the use of electrical impedance between the tip electrode and the dispersive 
electrode to verify the contact state of the catheter [11,12]. The electrical resistive difference between 
blood and endocardial tissue served as a basis that allowed the operator to gauge the insertion depth of 
the catheter and qualify how firmly the catheter was pressed against the heart wall [13]. Demos and 
Sharareh meanwhile assessed various parameters of the RF ablation operation via optical spectroscopy. 
Near-infrared (NIR) light was transmitted through a fiber at the tip of the catheter, and another fiber 
received the reflected light. The difference in the spectral characteristics of the transmitted and received 
light provided information such as contact level, lesion quality, char formation, etc. [14].  

Recently, a new type of ablation catheter (Tacticath) was developed to sense the contact force on 
the catheter tip. Three fiber Bragg gratings (FBGs) were integrated with a flexible unibody located 
near the catheter tip. As the unibody deformed, strains were transferred to the FBGs, which provided 
the signals needed to calculate the force vector [15,16]. Later studies determined the force needed to 
perforate each chamber of an explanted porcine heart [17].  

All of the above sensors and techniques enhanced the ability of the operator to ascertain the 
progress and quality of a cardiac RF ablation procedure. However, despite the ability to measure 
various parameters of the procedure (e.g., contact force, lesion formation) there has yet to be any data 
establishing how cardiac perforation can be reliably predicted. As seen from the current literature, the 
capability to predict cardiac perforation is still quite undeveloped. The following sections describe the 
design of new FBG based sensor prototypes that (1) allows monitoring of the catheter-endocardial 
contact level, and (2) investigate signal characteristics that can predict or indicate transmural perforation 
of the left atrium in a living specimen. 

2. Sensor Design 

2.1. FBG Sensing Principle 

FBGs are categorized as a type of in-fibre grating sensor. A small section of the optical fiber is 
inscribed with periodic perturbations (gratings) of refractive index. As broad band light is introduced 
into the fiber, a certain wavelength (i.e., Bragg wavelength) corresponding to the period of the gratings 
is reflected back towards the source. The period of the gratings is affected by strain, temperature, and 
pressure. Any changes in those parameters are represented by a directly proportional shift in the 
wavelength of the reflected light, as indicated by Equation (1) [18]:  

εζα
λ
λ Δ−+Δ+=Δ )1()( e
B

B PT  (1)

where λB is the Bragg wavelength, T is the temperature, ε is the strain, α is the expansion coefficient,  
ζ is the thermo-optic coefficient, and Pe is the photoelastic constant [18]. A pressure term that makes 
use of the fibers Poisson ratios may be added if pressure becomes an issue. For typical FBGs, the 
change in wavelength per strain is approximately 1.21 pm/με [19]. The temperature sensitivity of the 
FBGs used in this study was experimentally determined to be around 11 pm/°C. FBG sensors have 
been applied for use in a wide variety of novel uses in medicine, structural health monitoring, 
environmental monitoring, etc. [20–26].  
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2.2. Sensor Construction 

An FBG (15 mm) was encased inside a short (3.5 cm) stainless steel cylinder (1.587 mm OD × 
0.762 mm ID) (Figure 1). Two types of adhesives, epoxy (Devcon 5 min) and urethane (U1 urethane) 
were used separately to bond the FBG to the cylinder to test their respective strain transfer behavior. A 
superelastic tube (0.71 mm OD × 0.51 mm ID) protected the rest of the fiber, while a thicker 
superelastic rod (0.6 mm diameter, 10 mm length) was bonded to the distal tip of the cylinder to act as 
a strain transfer member. The superelastic tube was inserted into the steel cylinder approximately 3 
mm while the rod was inserted about 2 mm into the cylinder on the opposite side. The FBG was fully 
encased inside the cylinder, with the distal tip of the fiber less than 1 mm away from the superelastic 
rod. All components were then housed into an OFNR fiber optic jacket (2.6 mm OD × 1.8 mm ID). As 
an important step to prevent blood infiltration to the components, the jacket was melted over the 
superelastic rod to create a blunt tip. Overall, the size and flexibility of the sensor were similar to an 
8Fr ablation catheter.  

Figure 1. (A) Schematic of the sensor head; (B) Photos of the sensor exterior and interior. 

 

Pressing of the catheter tip against a surface will produce a force vector that acts upon the 
superelastic rod. The force vector comprises of axial and lateral components, which correspondingly 
translate into compressive and tensile strains experienced by the FBG. Compressive and tensile strains 
correspond to negative and positive shifts in the Bragg wavelength, respectively. However, at this 
stage, a separation of the two forces has not yet been implemented; in other words, the acquired data 
(see Results section) is the superposition of these strains. Thus, the more perpendicular the catheter is 
to the surface, the more the Bragg wavelength will tend to shift downwards due to the dominance of 
compressive forces. Buckling and high contact angles (θ in Figure 1(A)) will induce lateral force 
components as well as encourage bending at the tube-cylinder junction and also at the cylinder itself, 
thus producing positive wavelength shifts during contact.  

3. Experimental Setup 

Two live male sheep were used during the study. A thoracotomy was performed to gain direct 
access to the heart (Figure 2). The pericardial sac was partially excised to reveal the epicardium of the 
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left atrium. Small incisions were made on the left atrium to allow entry for sensors, and purse strings 
were tightened around the wound to reduce blood loss. For the initial part of the experiment, the 
catheter alternated between resting in the space of the chamber or perpendicularly pressing against the 
endocardial surface. Towards the end of the surgery, the catheters were pushed through the wall of the 
left atrium to induce mechanical perforation of the left atrial myocardium. Actively used sensors were 
grasped directly about six to nine cm from the tip, depending of the insertion depth of the sensor. 
Occasionally, forceps were used to grasp the left atrial epicardium and pulled back onto the sensor to 
facilitate perforation.  

Figure 2. (A) Pushing of the sensor through the left atrial wall. The sensor tip is visible 
through thin tissue; (B) Completion of perforation. Forceps were used to assist this 
particular perforation.  

 

Data acquisition was accomplished through a PC laptop connected to an optical interrogator (sm420 
and sm130). A sampling frequency of 100 Hz (±2 Hz for sm420) was used during the operation. 
Dictation from the surgeon allowed correlation of observed FBG signals with events occurring on the 
operating table.  

4. Results  

4.1. Contact 

Each time the sensors were pressed firmly with the endocardial surface, clear patterns corresponding 
to myocardial contractions were observed. Once the sensor was retracted back into the chamber space, 
the patterns were diminished completely for the epoxy-based sensor and significantly diminished for 
the urethane-based sensor (Figure 3).  

Generally, it was observed for the epoxy-based sensor that regular sinusoid signal patterns 
(contraction frequency slightly higher than 1 Hz) with and amplitude greater than or equal to 0.01 nm 
was sufficient to indicate firm contact with the heart wall. For the urethane sensor, the threshold was 
greater due to higher sensitivity, requiring amplitudes greater than 0.05 nm to ensure reasonable 
confidence that firm contact has been made. The higher sensitivity of the urethane-based sensor 
allowed whole-body vibrations and operator handling of the sensor to be mixed with the signal; and 
often whole-body vibrations were in synchronization with contraction rhythms, thus increasing the 
contact detection threshold. Thicker tissue allowed higher contact forces as seen in (Figure 3(E)) since 
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5.2. Perforation 

Each perforation conducted during the study was characterized by a loading phase and a sudden, 
rapid return to prior wavelengths at the time of perforation. Negative loading phases correspond to 
axial loading of the catheter while positive loading phases correspond to the presence of lateral forces, 
or shearing at the catheter tip. Thus for the current sensor design, a positive wavelength change after 
reaching thermal equilibrium suggests that the catheter tip may not be fully perpendicular to the 
endocardial surface (e.g., Figure 4(B,D,E), during loading)). Of note in Figure 4(A,B) is the brief 
reversal of signal wavelength immediately prior to perforation despite continual pressure exerted by the 
operator. This reversal was also observed for the epoxy-based sensor during perforation bench tests using 
a slab of tissue simulant and a commercially available pig heart. An explanation may be that as the 
contact level started to reach perforation levels, the targeted tissue began to weaken and thin, temporarily 
relieving the pressure between the catheter tip and the atrial wall. The length of the reversal was more 
prolonged and apparent when the perforation was carried out more slowly; in fact, as seen in Figure 4(C) 
the reversal may be absent when perforation was carried out quickly (2.5 s in Figure 4(C) compared to 
greater than 8 s for Figure 4(A,B)). Short perforation times prevented correlation of perforation speed 
with the observability of a reversal signal. However, sensitivity-induced competition with secondary 
signals such as operator handling readily reduced the prominence and clarity of the perforation signal. 
Therefore, it may be concluded that stiffer adhesives such as epoxy will allow exactly the right strain 
transfer to isolate signals unique to perforation. On the other hand, one should realize that perforations 
performed in this study were carried out intentionally, and during actual ablation procedures, a loading 
phase may not be as apparent to the operator. For load-sensing enabled RF ablation catheters,  
Figure 4(B) may be more representative of more realistic situations in which the magnitude of the 
baseline and the heart beat induced peaks slowly magnified until a sudden wavelength drop-off 
occurred. Thus, during RF ablation, the operator should check for alternate signs of perforation 
whenever a wavelength drop-off is observed after steady increases in signal waveform magnitudes.  

Perforation results from this study agree with the results presented by Shah et al. [17], with both 
studies showing a characteristic loading phase followed by a sharp drop in contact force coinciding 
with perforation (seen in the current study as a quick shift in Bragg wavelength to pre-loading levels). 
A contact force threshold (100 g) was recommended by Shah et al. to minimize the chances of 
perforation [17]. On the other hand, the brief reversal as seen in Figure 4(A,B) may act as an additional 
warning signal for operators of impending perforation.  

The data acquired from this study lays the foundation for further improvements in sensor designs in 
subsequent studies. During the perforations shown in Figure 4(B,D,E), buckling of the sensor between 
the cylinder and the protective superelastic tube produced large peaks in the signal. Later designs will 
reinforce this junction to reduce the chance of buckling during loading. Furthermore, the thicknesses of 
the cylinders housing the FBGs were thin and thus susceptible to substantial bending stresses. 
Increasing the thickness will reduce the effect of bending stresses, but will impose obstacles in other 
aspects of the sensor, such as the size; thus a stiffer type of material may be used to lower this effect 
while maintaining a small size.  
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5.3. Effects of Temperature 

As indicated by Equation (1), changes in temperature correlate to shifts in the Bragg wavelength but 
do not affect sensitivity to mechanical strain. Throughout the study, temperature changes occurred 
mainly from the movement of the sensor into and out of the cardiac chambers. Insertion of the sensor 
into the heart produced an upward shift of approximately 0.4 nm in the Bragg wavelength. Roughly 30 
s were required for the sensor to reach thermal equilibrium once inside the heart (hence no more 
temperature-induced wavelength shifts). Extractions of the sensor lead to the recovery of the 
wavelength shift to original, pre-insertion levels.  

Although temperature did not have an effect on the current results after the sensor reached thermal 
equilibrium within cardiac chambers, a compensating mechanism will be necessary if the sensor is to 
be calibrated for force. A stress-relieved FBG sensor placed close to the sensing area will be able to 
measure temperature-induced wavelength shifts while at the same time be isolated from contact strains 
(an example of this mechanism is shown in [27]).  

6. Conclusions  

Sensors fabricated in similar form as an ablation catheter were able to allow monitoring of  
catheter-endocardial contact levels and investigate any signal behavior that helps in predicting or 
indicating the occurrence of transmural perforation of the left atrium. Multiple, periodic peaks  
were seen in the signal when contact was made and quickly diminished in the absence of contact,  
thus establishing a condition indicating the presence of contact. Furthermore, perforation was 
identifiable by a baseline-shifting loading phase followed by a rapid return to prior wavelength  
levels. For epoxy-based sensors, a short signal reversal was observed prior to the moment of 
perforation, and it is recommended that stiff adhesives be used when investigating the characteristics 
of perforation. Knowledge of these signal characteristics will help future ablation procedures regarding 
the application of adequate pressure and also for reducing perforation incidences.  

Acknowledgments 

This study was supported by a grant from the Roderick D. MacDonald Research Fund at the  
St. Luke’s Episcopal Hospital, Houston Texas, USA. The authors would like to thank the staff at the 
Electrophysiology Lab of the Texas Heart Institute for their technical support and suggestions. 

References  

1. Keating, M.T.; Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 
2001, 104, 569–580. 

2. Lloyd-Jones, D.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; 
Massaro, J.M.; Beiser, A.; Wolf, P.A.; Benjamin, E.J. Lifetime risk for development of atrial 
fibrillation. Circulation 2004, 110, 1042–1046. 

3. Haines, D.E. The biophysics of radiofrequency catheter ablation in the heart: The importance of 
temperature monitoring. Pacing Clin. Electrophysiol. 1993, 16, 586–591. 

  



Sensors 2012, 12                    
 

 

1012

4. Bunch, T.J.; Asirvatham, S.J.; Friedman, P.A.; Monohan, K.H.; Munger, T.M.; Rea, R.F.;  
Sinak, L.J.; Packer, D.L. Outcomes after cardiac perforation during radiofrequency ablation of the 
atrium. J. Cardiovasc. Electrophysiol. 2005, 16, 1172–1179. 

5. Stellbrink, C.; Siebels, J.; Hebe, J.; Hoschyk, D.; Haltern, G.; Zieger, K.; Hanrath, P.; Kuck, K.H. 
Potential of intracardiac ultrasonography as an adjunct for mapping and ablation. Am. Heart J. 
1994, 127, 1095–1101. 

6. Chu, E.; Fitzpatrick, A.P.; Chin, M.C.; Sudhir, K.; Yock, P.G.; Lesh, M.D. Radiofrequency 
catheter ablation guided by intracardiac echocardiography. Circulation 1994, 89, 1301–1305. 

7. Kalman, J.M.; Fitzpatrick, A.P.; Olgin, J.E.; Chin, M.C.; Lee, R.J.; Scheinman, M.M.; Lesh, M.D. 
Biophysical characteristics of radiofrequency lesion formation in vivo: Dynamics of catheter  
tip-tissue contact evaluated by intracardiac echocardiography. Am. Heart J. 1997, 133, 8–18. 

8. Calkins, H.; Niklason, L.; Sousa, J.; El-Atassi, R.; Langberg, J.; Morady, F. Radiation exposure 
during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation 1991, 
84, 2376–2382. 

9. Stec, S.; Zaborska, B.; Sikor-Frac, M.; Krynski, T.; Kulakowski, P. First experience with 
microprobe transoesophageal echocardiography in non-sedated adults undergoing atrial fibrillation 
ablation: Feasibility study and comparison with intracardiac echocardiography. Europace 2011, 
13, 51–56. 

10. Saxon, L.A.; Stevenson, W.G.; Fonarow, G.C.; Middlekauff, H.R.; Yeatman, L.A. Sherman, C.T.; 
Child, J.S. Transesophageal echocardiography during radiofrequency catheter ablation of 
ventricular tachycardia. Am. J. Cardiol. 1993, 72, 658–661. 

11. Cao, H.; Tungjitkusolmun, S.; Choy, Y.B.; Tsai, J.Z.; Vorperian, V.R.; Webster, J.G. Using 
electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE 
Trans. Biomed. Eng. 2002, 49, 247–252. 

12. Cao, H.; Speidel, M.A.; Tsai, J.Z.; van Lysel, M.S.; Vorperian, V.R.; Webster, J.G. FEM analysis 
of predicting electrode contact from RF cardiac catheter ablation system impedance. IEEE Trans. 
Biomed. Eng. 2002, 49, 520–526. 

13. Paul, S.; Belhe, K.R.; Cao, H.; Thao, C. Assessment of Electrode Coupling of Tissue Ablation. 
U.S. Patent 2010/0228247 A1, 9 September 2010. 

14. Demos, S.G.; Sharareh, S. Real time assessment of RF cardiac tissue ablation with optical 
spectroscopy. Opt. Express 2008, 16, 15286–15296. 

15. Yokoyama, K.; Nakagawa, H.; Shah, D.C.; Lambert, H.; Leo, G.; Aeby, N.; Ikeda, A.; Pitha, J.V.; 
Sharma, T.; Lazzara, R. Novel contact force sensor incorporated in irrigated radiofrequency 
ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ. Arrhythm. 
Electrophsiol. 2008, 1, 354–362. 

16. Leo, G.; Aeby, N.; Inaudi, D. Medical Apparatus System Having Optical Fiber Load Sensing 
Capability, Endosense. WO Patent 2006/092707 A1, 8 September 2006. 

17. Shah, D.; Lambert, H.; Langenkamp, A.; Vanenkov, Y.; Leo, G.; Gentil-Baron, P.; Walpth, B. 
Catheter tip force required for mechanical perforation of porcine cardiac chambers. Europace 
2011, 13, 277–283. 

  



Sensors 2012, 12                    
 

 

1013

18. Kashyap, R.; Lopez-Higuera, J.M.; Fiber Grating technology: Theory, photosensitivity,  
fabrication and characterization. In Handbook of Optical Fibre Sensing Technology, 1st ed.;  
Lopez-Higuera, J.M., Ed.; John Wiley & Sons: London, UK, 2002; pp. 349–374. 

19. Black, R.J.; Zare, D.; Oblea, L.; Park, Y.-L.; Msolehi, B. On the gage factor for optical fiber 
grating strain gages. In Proceedings of Society for the Advancement of Materials and Process 
Engineering (SAMPE ’08), the 53rd International SAMPE Symposium and Exhibition, Long Beach, 
CA, USA, May 2008. 

20. Carmo, J.P.; Ferreira da Silva, A.M.; Rocha, R.P.; Correia, J.H. Application of fiber Bragg 
gratings to wearable garments. IEEE Sens. J. 2012, 12, 261–266. 

21. Quintero, S.M.M.; Martelli, C.; Braga, A.M.B.; Valente, L.C.G.; Kato, C.C. Magentic field 
measurements based on terfenol coated photonic crystal fibers. Sensors 2011, 11, 11103–11111. 

22. Her, S.C.; Huang, C.Y. Effect of coating on the strain transfer of optical fiber sensors. Sensors 
2011, 11, 6926–2641. 

23. Vallejo, M.F.; Rota-Rodrigo, S.; Lopez-Amo, M. Remote (250 km) fiber bragg grating multiplexing 
system. Sensors 2011, 11, 8711–8720. 

24. Grillet, A.; Kinet, D.; Witt, J.; Schukar, M.; Krebber, K.; Pirotte, F.; Depre, A. Optical fiber sensors 
embedded into medical textiles for healthcare monitoring. IEEE Sens. J. 2008, 8, 1215–1222. 

25. Yeo, T.L.; Sun, T.; Grattan, K.T.V.; Lade, P.R.; Powell, B.D. Characterisation of a polymer-coated 
fibre Bragg grating sensor for relative humidity sensing. Sens. Actuat. B 2005, 110, 148–155. 

26. Moghadas, A.A.; Shadaram, M. Fiber bragg grating sensor for fault detection in radial and network 
transmission lines. Sensors 2010, 10, 9407–9423. 

27. Haran, F.M.; Rew, J.K.; Foote, P.D. A strain-isolated fibre Bragg grating sensor for temperature 
compensation of fibre Bragg grating sensors. Meas. Sci. Technol. 1998, 9, 1163–1166. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


