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Abstract: Images from high dynamic range (HDR) scenes must be obtained with 
minimum loss of information. For this purpose it is necessary to take full advantage of the 
quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors 
satisfy the above demand by offering an adjustable response curve that combines linear and 
logarithmic responses. This paper presents a novel method to quickly adjust the parameters 
that control the response curve of a LinLog CMOS image sensor. We propose to use an 
Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the 
sensor, together with control algorithms based on the saturation level and the entropy of the 
images. With this method the sensor’s maximum dynamic range (120 dB) can be used to 
acquire good quality images from HDR scenes with fast, automatic adaptation to scene 
conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less 
than eight frames when working in real time video mode. At least 67% of the scene entropy 
can be retained with this method.  

Keywords: adaptive control; HDR imaging; image sensors; LinLog CMOS sensor; 
outdoor vision 
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1. Introduction 

The dynamic range (DR) of an image sensor defines the relation between the minimum and 
maximum light that it can detect [1]. Broadly speaking, the dynamic range for a CCD/CMOS sensor 
represents its capacity to retain scene information from both highly lighted and shaded scenes. 
Common CCD/CMOS sensors present a linear response to scene irradiance. More advanced sensors 
try to increase the dynamic range by converting the linear response to a logarithmic-like response, as 
shown in Figure 1, providing image enhancement [2] as shown in Figure 2. 

Figure 1. Two typical sensor responses: linear response (red) and logarithmic response 
(blue). Adjusting the sensor response to a logarithmic curve is a good strategy for 
increasing the dynamic range. 

 

Figure 2. A logarithmic response improves the brighter areas of a scene, but reduces the 
contrast. Source: OMRON. 

 
(a) linear response     (b) logarithmic response 

 
A high dynamic range is of major importance for computer vision systems that work with images 

taken from outdoor scenes—traffic control [3], security surveillance systems [4], outdoor visual 
inspection, etc. [5]. Researchers and manufacturers have recently developed a new generation of image 
sensors and new techniques that make it possible to increase the typical 60 dB range for a CCD sensor 
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to 120 dB. Reference [6] reports several techniques to expand the dynamic range by pre-estimation of 
the sensor response curve. Reference [7] proposes to combine several RGB images of different 
exposures into one image with greater dynamic range. A US patent [8] claimed a CCD which reduces 
smear, thus providing greater dynamic range. Reference [9] reported a technique to convert a linear 
response of a CMOS sensor to a logarithmic response, and [10] proposed attaching a filter to the 
sensor to attenuate the light received by the pixels following a fixed pattern; after that, the image is 
processed to produce a new image with a greater dynamic range. 

Although great progress has been made in the last decade concerning CMOS imaging, logarithmic 
response shows a large fixed pattern noise (FPN) and slower response time for low light levels, 
yielding limited sensitivity [11]. The main disadvantage of using a fixed logarithmic curve is that it 
reduces the contrast of the image as compared to a linear response, so that a part of the scene 
information is lost, as seen in Figure 2(b). 

2. The Lin-Log CMOS Sensor 

The work described in this paper concerns the development of a novel method which combines 
different algorithms to adjust the parameters which control the response curve of a Lin-Log CMOS 
sensor in order to increase its yield in HDR scenes.  

LinLogTM CMOS image technology was developed at the Swiss Federal Institute of Electronics and 
Microtechnology (Zurich, Switerland). A LinLog CMOS sensor presents a linear response for low 
light levels and a logarithmic compression as light intensity increases. Linear response for low light 
levels assures high sensitivity, while compression for high light levels avoids saturation. 

The transition between the two responses can be adjusted. Special attention is required to guarantee 
a smooth transition between them. There are various cameras (e.g., like the MV1-D1312-40-GB-12 
from Photonfocus AG equipped with the Photonfocus A1312-40 active pixel LinLog CMOS image 
sensor which we have used for test purposes) that use LinLog technology, and sensor response can be 
controlled by adjusting four parameters, hereafter designated T1, T2, V1 and V2.V1 and V2 represent the 
compression voltage applied to the sensor. T1 and T2 are normalized parameters, expressed as a 
fraction of the exposure time, and can be adjusted from 0 to a maximum value of 1; their values 
determine the percentage of exposure time during which V1 and V2 are applied [Figure 3(a)]. The 
values of these four parameters determine the LinLog response of the sensor [Figure 3(b)]. Note that the 
final LinLog response is a combination of: (1) the linear response, (2) the logarithmic response with 
strong compression (V1) and (3) the logarithmic response with weak compression (V2) [Figure 3(b)]. 
These responses are combined by adjusting T1 and T2 values. 

We have taken control characteristics of the LinLog CMOS sensor to develop a real-time image 
improvement method for high dynamic range scenes. This is made up of three different algorithms:  
(1) an algorithm to control the exposure time, (2) an algorithm to avoid image saturation, and (3) an 
algorithm to maximize the image entropy.  
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Figure 3. Response control for a LinLog CMOS sensor. Source: Photonfocus AG. 

 
(a) Voltage and exposure time control   (b) LinLog response 

3. Exposure Time Control Module 

We have developed a module that controls the exposure time in order to assure that the average 
intensity level of the image tends to a set value (usually near the mean of available intensity levels), 
thus offering automatic correction of the deviations caused by variable lighting conditions in the scene. 
For this purpose we have implemented an Adaptive Proportional-Integral-Derivative controller (APID) 
which compensates non-linear effects at the time of image acquisition, by adjusting the exposure time 
as scene lighting conditions vary. An adaptive control system [12] measures the process response, 
compares it with the response given by a reference process and is capable of adjusting process 
parameters to assure the desired response as shown in Figure 4. 

Figure 4. Model for an adaptive controller. 

 

In our case, the process that is controlled is acquisition of an image by a LinLog CMOS sensor. The 
output is the intensity level of that image. To quantify this level we use Equations (1) and (2): 

 (1) 

 (2)

where Ng [0,1] represents the intensity level, d is the number of bits per pixel and D is the number of 
gray levels. H(i) represents the i-th histogram entry and N the number of pixels in the image. Ng is used 
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as an input parameter for a Proportional-Integral-Derivative (PID) controller [13-15] which controls 
some camera parameters (see Figure 5), as shown in Equations (3) and (4). 

Figure 5. PID controller scheme. 

 

 (3)

 (4)

where o(t) is controller output (exposure time) and e(t) the error value (difference between real -Ng(t)-
and set - - intensity levels). Kp, Ki and Kd, are gain values for the PID action. These gain values can 
be adjusted by means of either empirical or specific methods [16]. For implementation of the controller, 
there are a number of requirements to be considered: 

- The integral action must be set to a reference value. 
- The time taken to calculate integration error must be limited. 
- The integral term must not continue to increase once the maximum or the minimum output 

values have been reached. 

The next step is to model the process. Usually, if we obviate the LinLog effect, the total number of 
electrons for every pixel in the image can be defined as Equation (5): 

 (5) 

where ne is the number of electrons per pixel, Ap is the pixel area, Te is the exposure time, Ps is the 
power radiated onto the pixel area, h is the Plank constant, c is the light speed and η(λ) is the quantum 
efficiency. The conversion of electrons to an output voltage and then to a quantification level in the 
A/D converter depends on sensor amplification, but it can be modelled by a constant, k, resulting in  
Nc = ne/k. As we can see, then, the only time-dependant variables are Ps and Te, Te being the output to 
be controlled Equation (6): 

 (6)

The gain of the process can thus be defined as CPs(t) (where C represents the constants of  
Equation (5). PID parameters Kp, Ki, and Kd are functions of this gain [10], so temporal variation of 
them is related to gain variation. We can use Equation (7) to estimate the gain variation every time the 
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system feeds back, τ being the feedback period. From now on, to simplify following Equations (7), (8) 
and (9) we will use G(t) for CPs(t): 

 (7)

In time t we use G(t-τ) to calculate PID parameters, since G(t) cannot be calculated until Te(t) is 
known. To calculate G(t) we use Nc(t-τ), Nc(t-2τ), Te(t-τ) and Te(t-2τ), justified by Equation (8): 

 (8)

Only parameters Kp and Ki are updated, as shown in Equation (9), where α, β, M and l are 
parameters to be fixed by the designer: 

 

 
(9)

Figure 6(a) shows the response of the proposed APID controller—“*”, blue- versus other 
controllers mentioned in the references: Proportional-Integral (PI) [17,18]—“o” red- and a controller 
designated Incremental, based on increments that are proportional to the error (“-” green) [19]. In order 
to compare the responses, the PI and APID controllers were configured with the same constants  
(Kp = 0.01, ki = 0.4 and Kd = 0) and the parameters of the Incremental controller were adjusted to 
achieve the best combination of speed and stability. Even so, unwanted oscillations may appear and 
this has proven to be the slowest of the three controllers. During the first frames the PI and APID 
controllers showed the same response because they had the same initial configuration. 

Figure 6. Performance of PI, APID and Incremental controllers. 
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Figure 6. Cont. 

 
(b)      (c) 

Figure 6(b) shows the performance details of the controllers versus a decrease of the process gain  
∆G = −1. The APID controller increases its internal gain, producing faster performance (l = 0.1,  
M = 0.6, α = 0.01, β = 0.1). 

Figure 6(c) shows the performance details of the controllers versus an increase of the process gain  
∆G = 3. The APID controller reduces its internal gain to prevent overshoot and oscillations and keeps 
speed. To the contrary, the PI controller is unable to prevent overshoot. Table 1 shows measurements 
for time response, overshoot and oscillation of controller responses shown in Figure 6. 

Table 1. Metrics for quantifying the controllers response shown in Figure 6. Settling time 
is a metric, expressed in frames, which measures the run-time until the error is lower than 
2%. Overshoot measures the difference between the maximum response value and the 
reference level. Stationary oscillation measures the amplitude of non-attenuated oscillation. 
The last two metrics evaluate the robustness of the controllers and are expressed as a 
percentage of the reference level ( ). 

 Incremental PI APID 
∆ G (t) 0Ö2 2Ö1 1Ö4 0Ö2 2Ö1 1Ö4 0Ö2 2Ö1 1Ö4

Settling time -- 13 -- 5 8 12 5 6 4 
Overshoot 4 0 4 0 0 24 0 0 0 

Stationary oscillation 4 0 16 0 0 0 0 0 0 

4. Saturation Control 

We can detect image saturation when saturation  width (see Equation (10)) reaches a given 

value. To reduce saturation we increase the voltage values that control the LinLog compression effect: 

 (10)

where H(D−1) is the (D−1)-th entry for the image histogram, H. 
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Figure 7 shows the algorithm for saturation control. This measures the saturation width given by 
Equation (10). V1 and V2 are increased or reduced depending on whether the measured value is greater 
or smaller than the set value. 

Figure 7. Algorithm for saturation control in a LinLog CMOS sensor. 

 

Figure 8 shows the effect of varying V1 and V2 values. 

Figure 8. Different images taken from a scene with increasing values of V1 and V2 from 
left to right. The last image on the right shows the local entropy map of the image on its 
left (maximum values in red, minimum values in blue). 

 

5. Entropy Maximization 

The concept of information entropy describes how much randomness (or uncertainty) there is in a 
signal or an image; in other words, how much information is provided by the signal or image. In terms 
of physics, the greater the information entropy of the image, the higher its quality will be [20]. 
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Shannon’s entropy (information entropy) [21] is used to evaluate the quality of acquired images. 
Assuming that images have a negligible noise content, the more detail (or uncertainty) there is, the 
better the image will be (the entropy value for a completely homogenous image is 0). That is, without 
analyzing the image content, we assume (for two images obtained from an invariant scene) that the 
richer the information, the greater will be the entropy of the image. 

The response curves, as shown in Figure 9, cause a loss of resolution in the bright areas of the 
image. Moreover, although the algorithm presented in Section 4 prevents saturation it can reduce the 
contrast in dark areas of the image. To deal with this problem, we have developed an algorithm (see 
Figure 10) that maximizes the entropy (Equation (11)) of the image. 

Figure 9. By increasing V1 and V2 values we can increase the compression for high 
intensity levels (values for MV1-D1312 camera). Source: Photonfocus AG. 

 

Figure 10. Algorithm to adjust T1 value for a LinLog sensor (where “c” is current iteration, 
“c − 1” is the result of previous iteration (Ec − 1 = 0 when algorithm starts), “δ” is the 
condition for entropy to stop the algorithm) and “γ” is the step size.  
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For this purpose we adjust T1 (Figure 11) to produce light linearization for the high irradiance 
response curve. To reduce the complexity of the algorithm, T2 is set to a maximum and  
remains constant: 

 (11) 

where E(X) is the entropy of the image and  is the probability mass function of the grey level
. The entropy is a measure of the information contained in the image. In this paper, we assume that 

an image of a scene has been taken with optimum sensor configuration when its maximum entropy has 
been reached.  

Figure 11. Reduction of T1 value permits a more linear response for high level  
illumination, although the slope of the response is smaller (MV1-D1312 camera). Source:  
Photonfocus AG. 

 

The main difficulty in developing an algorithm for entropy maximization [22] lies in the fact that it 
is not possible to fix a target entropy a priori, since this value depends on the scene. As shown in  
Figure 10, the algorithm is local maximizer-like [23] and has desirable properties for our purpose. The 
most desirable property in this case is robustness; the control method based on the conjugated gradient 
ensures an asymptotic tendency toward the nearest local maximum with δ accuracy, and furthermore is 
an easy method to implement. For this reason it has already been used to control parameters of a 
camera sensor [24]. In other cases, non-adaptive PI controllers have been used [17,18], but they are not 
robust in non-linear systems. The second-order Taylor polynomial expansions of the gradient method 
(Newton, Levenberg-Marquard, etc.) [25] present a higher convergence speed but are more prone to  
instabilities [26]. When the scene changes, the gradient direction may also change and, in a first step, 
the algorithm will get the maximization direction wrong, but this will be corrected in the next step. 
Therefore, the algorithm’s performance is robust if we assume that scene variation is slower than the 
period between algorithm steps. 
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The execution of the algorithm will be stopped when a minimum variation in entropy, δ, is reached. 
To avoid undesired oscillations of image contrast γ needs to be small. Even so, the algorithm 
developed here shows a quick response when working in continuous grabbing mode. We can see how 
V1, V2 and T1 are adjusted (Figure 12) and the improvement provided by the algorithm developed 
(Figure 13). 

Figure 12. Algorithm adjusts V1, V2 and T1. 

 

Figure 13. Image captured with the same values for V1 and V2, but with APID adjustment 
of T1 (centre). The local entropy map of the central image is shown on the right. Note that 
in the middle image the details in the scene are well defined with no loss of contrast, as 
compared with the image on the left. 

 

6. Results and Discussion 

The proposed method comprises three algorithms to control the sensor response: the algorithm that 
controls exposure time is executed simultaneously with the other two—the algorithm that controls 
image saturation (adjusts V1 and V2) and the algorithm that maximizes the image entropy (adjusts T1); 
these last two algorithms are executed consecutively. Hence, the total time for the adjustment process 
will be the maximum of: (1) exposure adjustment time and (2) the sum of the times of the two 
algorithms for controlling the LinLog parameters. The time exposure controller takes less than 10 
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frames to respond to the step inputs (Figure 6) with the sensor running at 27 fps, which makes it 
suitable for use in real-time outdoor vision (Figure 15). 

To gauge the performance of the image saturation control and the entropy maximization algorithms, 
an experiment has been designed to determine both the response speed and the resulting image quality. 
For this purpose: 

(a) The sensor response has been modelled versus the irradiance, by approximating it to the curves 
provided by the manufacturer (Figures 9 and 11), as seen in Equations (12) and (13): 

 (12) 

where Nc is the grey (unitless) output level for each pixel and I is the effective irradiance on the pixel 
(we assume I = I0 − Ir; Ir is the real irradiance and I0 the minimum irradiance detectable by the sensor. 
I0 will depend on the configuration of the sensor exposure time parameter; in our experiment we 
assume a fixed exposure time and I0 = 0). The other values of the above mentioned expression depend 
on the configuration of the Lin-Log parameters of the sensor and were obtained by approximating  
the curves and data provided by Photonfocus in the User Manual of the camera used in the tests  
(MV1-D1312):  

, 
,  

, 
,  

(13)

where Cl = 2.55 m2/W and Cl = 10,911 m2/W. V is the parameter V1; it is assumed that V2 = V1 − 5, 
and T corresponds to the parameter T1 (it is assumed that T2 = 1). According to this model, the sensor 
has a dynamic range of 120 dB when configured in maximum compression mode (V = 19 and T = 1) 
and its response is linear when there is no compression (V = 14 and T = 0). 

(b) Three synthetic scenes have been generated with patterns  with  as illustrated 

in Figure 14. Each value of the pattern represents the irradiance at the point (x, y) (Table 2). 

The dynamic range of each scene is shown in Table 2.  

Table 2. Patterns for synthetic scenes generation. 

Scene Pattern, Ip(x,y) DR(dB) 
1 105 POS(cos(x2)+cos(y2)) 104 
2 5·105 POS(cos(x3+y3)) 116 
3 5·105 POS(sin(x2+y2)) 116 
 

 
 

The characteristic entropy value has been calculated for each one of the scenes (Table 3). The 
entropy value (defined as pattern entropy) has been calculated using Equation (11). Pattern data are 
expressed in double precision floating point format. 
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Figure 16. Image (a) was acquired with the image sensor working in linear mode; 
exposure time was adjusted to capture details of the lighting source; Image (b) was also 
acquired with the image sensor working in linear mode, but here the exposure time was 
adjusted to capture details out of the lighting source; in this case, the details from the 
lighting source disappear; Image (c) was acquired in LinLog mode automatically adjusted 
using the proposed method; as we can see, both details of the source and of the scene are 
retained in the image; Local entropy maps (d), (e) and (f), which correspond to images (a), 
(b) and (c) respectively, help give an idea of the extent of the improvement in image (c). 

 
(a) (b) 

 
(c) 

 
(d) (e) 

 
(f) 

Figure 17 shows how exposure time was controlled by the APID controller for a period of almost 
two hours between 4:30 and 6:10 pm on a windy day with clouds crossing the camera field of view 
(producing illumination changes), to acquire images from the scene shown in Figure 13. Sunset lasts 
from 5:40 until 6:10 pm. 
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Figure 17. Variations of the APID controller output error (red) and the exposure time 
(blue)—normalized—for the system in outdoor use. There are various causes of variations 
in short time periods (scene changes, clouds, etc.). The reason why the exposure time 
shows a rising trend is that the control is displayed in a run-up to sundown. 

 

7. Conclusions 

This paper presents a reliable method for optimizing LinLog CMOS sensor response and hence 
improving images acquired from high dynamic range scenes. Adaptation to environment conditions is 
automatic and very fast.  

The implementation has been divided into three algorithms. The first makes it possible to control 
the exposure time by using an Adaptive PID (APID) controller; the second controls image saturation 
through appropriate compression of the response curve for brilliant scenes and the third provides 
entropy maximization by slightly linearizing the response curve for high scene irradiance. 

The simplicity of the control algorithms used in this method makes the computational cost of the 
processing needed to calculate the image parameters (histogram-based descriptors) negligible; 
therefore the computational cost of implementing the presented method practically coincides with the 
cost of calculating the histogram. As Table 3 shows, the control takes up less than eight frames with 
high quality images. 

The method proposed in this paper has been implemented using NI LabVIEW [27], resulting in:  
(1) high-level hardware-independent development; (2) rapid prototyping due to the use of libraries 
(Real-Time, PID and FPGA libraries); and (3) rapid testing of the control application. 

The hardware used to implement the system consisted of a Real-Time PowerPC Embedded 
Controller (cRIO-9022) and a reconfigurable chassis based on a Virtex-5 FPGA (cRIO-9114) from 
National Instruments. The chosen system permits deterministic control and real time execution of 
applications. The control system and the camera to be easily connected thanks to an Embedded 
PowerPC with GBit Ethernet and RS232 ports. 
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