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Abstract: This study reports an integrated microfluidic perfusion cell culture system 
consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO) glass-based 
microheater chip for micro-scale perfusion cell culture, and its real-time microscopic 
observation. The system features in maintaining both uniform, and stable chemical or 
thermal environments, and providing a backflow-free medium pumping, and a precise 
thermal control functions. In this work, the performance of the medium pumping scheme, 
and the ITO glass microheater were experimentally evaluated. Results show that the 
medium delivery mechanism was able to provide pumping rates ranging from 15.4 to 
120.0 μL·min−1. In addition, numerical simulation and experimental evaluation were 
conducted to verify that the ITO glass microheater was capable of providing a spatially 
uniform thermal environment, and precise temperature control with a mild variation of 
±0.3 °C. Furthermore, a perfusion cell culture was successfully demonstrated, showing the 
cultured cells were kept at high cell viability of 95 ± 2%. In the process, the cultured 
chondrocytes can be clearly visualized microscopically. As a whole, the proposed cell 

OPEN ACCESS



Sensors 2011, 11                            
 

 

8396

culture system has paved an alternative route to carry out real-time microscopic 
observation of biological cells in a simple, user-friendly, and low cost manner. 

Keywords: microfluidics; cell culture; micropumps; microheaters; ITO glass 
 

1. Introduction 

Cell culture has become a basic laboratory operation for various applications, for example, the study 
of physiology and biochemistry of cells [1,2], or the investigation of the cellular response to 
environmental stimulations such as drugs [3], or toxins [4]. Cell culture systems are commonly 
regarded as devices in which cells are cultivated under accurately controlled conditions (e.g., 
temperature, pH, nutrient, and waste levels). The control of these parameters is crucial for maintaining 
the consistency of culture conditions, as well as ensuring the survival and proliferation of cells in a 
manageable manner. In conventional cell culture practices, cells are often cultured in static cell culture 
containers (e.g., the use of multi-well microplate or Petri dishes as cell culture vessels), and are placed 
in a cell incubator for providing a stable thermal condition of 37 °C. During the process, the culture 
medium is normally replaced manually and periodically. In addition, microscopic observation is the 
commonly-used method to detect the cellular behavior. Under such cell culture format, the cell culture 
vessels have to be periodically removed from a culture incubator for microscopic examinations.  

Although static cell culture systems are simple to operate the culture environment in the conventional 
static cell cultures may fluctuate due to the intermittent medium replacement processes [5]. In such a 
poorly controlled environment, the cellular response to the cell culture conditions tested may become 
more complex because biological cells are very sensitive to the extracellular environment [2]. In some 
cellular investigations, moreover, a real-time microscopic observation is required. The point-to-point 
observation in conventional static cell cultures might not meet the demand unless a small scale 
microscope-compatible incubator is used.  

In order to establish a stable culture environment for cellular assays, a perfusion cell culture format 
is promising because it can continuously provide nutrient supply and waste removal to a cell culture 
system, and hence keep the culture environment more stable [5,6]. This contributes to a more stable, 
and thus a more quantifiable extracellular condition, which is found particularly valuable for a precise 
cellular assay. With the recent progress in microfabrication and microfluidic technology, microfluidic 
systems have been progressively used as versatile perfusion cell culture tools for various research 
purposes [3,7,8]. Microfluidic perfusion cell culture systems not only largely reduce the need for 
experimental resources but also could bring several inherent niche improvements (e.g., providing a 
more in vivo-like culture environment [9]), which have been well reviewed previously [10]. More 
recently, some microfluidic perfusion cell culture systems [11-14] have been proposed for real-time 
microscopic observation of cellular images.  

In designing a microfluidic perfusion cell culture system for real-time microscopic observation of 
cellular activities, the mechanisms of culture medium pumping, and thermal control are crucial. The 
ability to precisely transport and to manipulate a tiny amount of fluid in a microfluidic-based cell 
culture system is important for medium perfusion, delivery of tested chemicals, or creation of specific 
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microenvironments to the cultured cells. Liquid delivery in microfluidic cell culture systems is 
commonly achieved by the use of commercially available syringe or peristaltic pumps. However, these 
lab-scale pumps are bulky, which could thus hamper their integration with the miniaturized cell culture 
systems. With the rapid development of Micro-Electro-Mechanical Systems (MEMS) and microfluidic 
technology, micro-scale liquid pumping devices with various mechanical, or non-mechanical actuation 
mechanisms have been extensively investigated. Among them, the utilization of a pneumatically-actuated, 
membrane-based micropump, first proposed by Unger and co-workers [15], offers several 
advantageous features, particularly the simplicity in fabrication and operation, and the ease in 
integrating into a microfluidic system. Although reports in the literature have demonstrated the 
feasibility of using pneumatically-driven micropumps for medium pumping in microfluidic perfusion 
cell culture systems [3,12,16], fluid backflow phenomena may occur in these devices, which could 
thus cause microbial contamination in the cell cultures. 

Moreover, the temperature environment plays a critical role in a cell culture. It has been reported 
that the thermal environment in a cell culture system could have significant impacts on cell 
physiology [17,18]. In a general animal cell culture, the temperature (e.g., 37 °C) is normally 
maintained by the use of commercial cell culture incubators. In an incubator setup, the microscopic 
observations or other online monitoring activities of cell culture are quite demanding, and thus 
complicate the experimental operations. Also, traditional cell incubators are commonly bulky and are 
not readily compatible with the experimental setup for perfusion cell culture, in which interconnections 
between the medium feeding tubing with the external medium pumping equipment are normally 
required. These technical hurdles suggest a crucial need for a smart thermal control device, compatible 
with microfluidic perfusion cell culture operations. With the help of microfabrication technology, 
various microheaters have been proposed, mainly for micro-scale polymerase chain reaction 
(PCR) [19], cell lysis [20], or cell culture [21]. Nevertheless, most of the published micro-scale heating 
devices were fabricated by the technique of evaporation deposition of a metal thin film (e.g., platinum 
(Pt) or gold (Au)) on a substrate, which is normally complicated and costly to fabricate. Most 
importantly, the optical transparency of the resulting microheaters is greatly affected by the fabrication 
process, or the choice of material. This could hinder their application for integrating into a microfluidic 
perfusion cell culture system for real-time cellular imaging.  

To tackle the aforementioned technical hurdles, an integrated microfluidic perfusion cell culture 
system for real-time microscopic observation of biological cells was proposed. One of the key features of 
the system is the incorporation of a simple pneumatically-driven micropump coupled with a  
normally-closed valve for backflow-free medium perfusion in the cell culture chip. Another distinctive 
feature is the integration of a transparent indium tin oxide (ITO) glass-based microheater chip in the 
system [22], enabling the creation of stable and uniform thermal conditions in the cell culture chamber. 
By combining these characteristics, not only does the integrated system provide stable and uniform cell 
culture conditions, but it also holds great promise for real-time microscopic observation of biological 
cells. In this study, an integrated system comprising a microfluidic perfusion cell culture chip module, and 
an ITO-glass microheater chip module was designed, fabricated, and evaluated in terms of its 
performance. Briefly, the proposed medium pumping mechanism was demonstrated to be able to perform 
continuous medium perfusion with a flow rate range of 15.4 to 120.0 μL·min−1. Numerical simulation and 
experimental evaluation were also conducted to prove that the ITO-glass microheater chip module was 
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It comprises fresh and waste medium reservoirs (D: 5 mm, H: 5 mm), two medium microchannels  
(W: 2 mm, L: 5 mm, H: 200 μm) located at the both sides of a cell culture chamber (D: 5 mm,  
H: 200 μm), and two pneumatically-driven membrane-based micropumps located on both sides of the 
cell culture chamber. In each pneumatic micropump, two pneumatic chambers (pneumatic chamber 1: 
L: 2.5 mm, W: 2.5 mm, H: 0.5 mm; pneumatic chamber 2: L: 7.5 mm, W: 2.5 mm, H: 0.5 mm) connected 
by a pneumatic microchannel were designed. In terms of operation, the fresh medium reservoir was 
designed to be loaded with cell culture medium, and the loaded medium was then driven by the 
incorporated pneumatically-driven membrane-based micropumps coupled with normally-closed valves 
[Figure 1(a)]. The assembly of the cell culture chip is schematically illustrated in Figure 1(b). Briefly, 
three layers of microfabricated PDMS plates (A to C) were permanently bonded by plasma oxidation 
treatments. This was followed by attaching them to the microfabricated ITO glass, whereby the cell 
culture chamber is just located on the heating zone of ITO glass. ITO-glass substrate is a transparent 
conductive material which can generate heat due to its electric resistance when an electric current 
passes through. Two silver electrodes were patterned on the proposed ITO-glass microheater chip 
[Figure 1(b)], in which the area (5 × 5 mm2) between the silver electrodes serves as a heating zone. 

One of the key features of the proposed cell culture system is the backflow-free medium perfusion 
function. In this study, two pneumatically-driven membrane-based micropumps coupled with 
normally-closed valves were integrated to continuously deliver the loaded culture medium flowing 
from the fresh medium reservoir through the cell culture chamber [Figure 1(a)]. The working principle 
of medium pumping is based on the pneumatically-driven pulsations of the elastic PDMS membranes 
located above the medium microchannel to deliver medium forwards. The detailed pumping 
mechanism is illustrated in Figure 2. Briefly, when the pneumatic chambers of micropumps are 
pressurized it first causes the deformation of PDMS membrane 1 [Figure 2(II)], and then PDMS 
membrane 2 [Figure 2(III)]. The sequential effect of the membrane movement is mainly created by the 
effect of fluidic resistance during the pressurization of the pneumatic chamber 1 and 2 (readers should 
also refer to Figure 1(a)). In this process, the deformation of the PDMS membrane 1 not only squeezes 
the fluid in the medium microchannel bidirectionally but, more importantly, functions as an active 
valve [Figure 2(II)]. The latter ensures that the liquid flow is driven downstream when the PDMS 
membrane 2 is deformed [Figure 2(III)]. Apart from pumping the liquid forwards, the deformation of 
the PDMS membrane 2 also mechanically opens the normally-closed valve (an auxiliary elastic PDMS 
membrane affixed to the PDMS membrane 2; T: 500 μm, W: 2 mm, H: 180 μm), which allows the 
fluid driven by the deformation of the PDMS membrane 2 to pass through [Figure 2(III)]. Conversely, 
when the pneumatic pressure in the pneumatic chamber 1 and 2 is released, the deformed PDMS 
membrane 1 first goes back to its rest state [Figure 2(IV)]. This is followed by the release of 
membrane 2 [Figure 2(V)], by which the valve again returns to its normally-closed state [Figure 2(V)]. 
With this approach, any backflow of the pumping fluid can be physically prevented and therefore, the 
net medium flow is driven downstream.  
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2.4. Evaluation of Thermal Uniformity 

In order to investigate the temperature field distribution inside the cell culture chamber, a numerical 
simulation was carried out. Since the medium flow rate in the cell culture chamber was low, it is 
reasonable to assume that the heat transfer was dominated by heat conduction. In this study, therefore, 
heat radiation was neglected and only heat conduction within the liquid sample, the solid PDMS 
chamber wall, microchannels, and the ITO glass substrate were considered [22]. A 3-dimensional  
(3-D) heat conduction model was used to describe the problem. To verify the measured steady-state 
temperature contours, a 3-D conduction simulation was performed using the CFD software  
(CFD-ACU+, CFD-RC, USA). Natural free convection condition was imposed on the top and 
surrounding surfaces of the microfluidic cell culture chip. A constant heat generation rate was assumed 
to apply on the ITO-glass microheater chip. In this study, the numerical geometry was mainly 
constructed by four parts: (1) the cover of cell culture chamber [in PDMS layer A, Figure 1(b)];  
(2) cell culture chamber and its wall [in PDMS layer B and C, Figure 1(b)]; (3) the bottom of cell 
culture chamber [in PDMS layer C, Figure 1(b)]; and (4) the two medium microchannels. The 
numerical dimension of the microfluidic cell culture chip is 10 × 10 × 1.2 mm3. In this work, a 3-D 
numerical domain was discretized into approximately 600,000 cells with structured hexahedral 
meshes. In addition, the non-uniform mesh grids were used for these numerical simulations. Dense 
grids were used in the wall regions of the cell culture chamber. A residuals criterion (less than 10−6) 
was used to guarantee the convergence of the solution. Some critical parameters required for the 
simulation are listed in Table 1. 

Table 1. Material properties of glass, PDMS and water under the conditions of 
temperature: 298 K and pressure: 1 atm. 

Material Conductivity: 
κ (W/mK) 

Density: 
ρ (kg/m3) 

Specific heat: 
C (J/kgK) 

Glass 1.4 2,230 840 
PDMS 0.15 970 1,460 
Water 0.613 997 4,160 

Apart from the numerical simulation, a thermal infrared (IR) imager (Infrared Thermography  
TVS-200N, Nippon Avionics Co Ltd., Japan) was used to explore the uniformity of thermal field on 
the proposed cell culture system. Before the observation, the accuracy of the temperature measurement 
was checked to be ±1 °C. In this work, the focal plane was perpendicular to the detective light, and the 
measurement distance to the focal target was set to be 30 cm. In this evaluation, the focal target was 
the top surface of microfluidic cell culture chip (the emissivity for the IR imaging was set as 0.96 for 
the PDMS material). 

2.5. Demonstration for Perfusion Articular Chondrocyte Culture and Microscopic Observation 

Articular chondrocyte cell culture under a microscope was performed to demonstrate the feasibility 
of using the proposed system for perfusion cell culture, and the real-time microscopic observation of 
the cultured cells. Before loading with cell suspension, the bottom surface of the cell culture chamber 
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was treated with 0.01% fibronectin solution (unless otherwise stated all chemicals were obtained from 
Sigma, Taiwan) for 1 hour to enhance chondrocyte attachment. After that, 50 μL of cell suspension  
(105 cells mL−1) was loaded into the fresh medium reservoir, and was then delivered to the cell culture 
chamber using the incorporated pneumatic micropumps. This was followed by incubating under a 
static state for 1 day to allow cell attachment. After the cell seeding process, perfusion chondrocyte 
culture was carried out for up to 3 days. In the process, the microfluidic cell culture chip with the  
ITO-glass microheater chip attached was placed on a dark field microscope (Olympus, BX51) for  
real-time microscopic observation. In this research, the Dulbecco’s Modified Eagle’s Medium 
(DMEM) (with 1,000 mg·L−1 glucose, 25 mM HEPES, without sodium bicarbonate), supplemented 
with 10% fetal bovine serum (Invitrogen, Taiwan), 2% antibiotic/antimycotic solution, and 50 μg·mL−1 
ascorbic acid, was continuously perfused to the cell culture chamber at the set flow condition (flow 
rate: 1.5 mL·h−1, running time: 2 s, frequency: 4 runs·h−1). After cell culture, the viability of the 
articular chondrocytes was evaluated, based on the published works [3,16]. Briefly, a fluorescent dye 
kit (LIVE/DEAD® Viability/Cytotoxicity Kit L-3224, Molecular Probes), and a fluorescence 
microscope were used to stain, and to detect the cultured cells, respectively. A digital camera was used 
capture the images. Cell viability was then quantified by counting the live (green) and dead (red) cells 
using a software program (SimplePCI version 5.2.1, Compix Inc.). 

3. Results and Discussion 

3.1. Performances of Pneumatically-Driven Micropumps Coupled with Normally-Closed Valves for 
Backflow-Free Medium Perfusion 

In this study, a perfusion-based, microfluidic cell culture format was utilized to create a stable and 
well-defined culture condition for precise cellular assays [24]. In order to carry out medium pumping 
in a microfluidic system, the utilization of a pneumatically-driven membrane-based micropump holds 
great promise. The working principle of such liquid pumping scheme is based on the pulsation 
movements of elastic membranes pneumatically driven by their corresponding pneumatic chambers, 
which generate a continuous peristaltic effect for pumping a fluid forward [15]. Borrowing from the 
concept, pneumatic micropumps with various designs have been successfully demonstrated for 
delivering liquid in microfluidic systems [3,16,21,23,25]. Among them, pneumatic micropump designs 
with spiderweb-like [3,23], and serpentine-shaped [16,21,25] layouts are the typical configurations. 
These pneumatic micropumps commonly involve the use of multiple elastic membranes actuated by 
their corresponding pneumatic chambers to drive fluids. In these designs, the precise control of membrane 
movements in the micropumps is critical to achieve an optimum pumping performance [25]. However, 
this is, to some extent, technically demanding. Most importantly, unwanted fluid backflow could occur 
in these micropumps, which might hamper the precise manipulation of fluid flow in a microfluidic 
system. For microfluidic cell culture systems, the backflow of pumping liquid might lead to the cross 
contamination between solutions, or microbial contamination in the cell culture chambers.  

For achieving backflow-free liquid pumping some earlier works [26,27] have incorporated valving 
mechanisms in the pneumatic micropump designs. In the design a liquid flow microchannel, three 
underlying pneumatic chambers, a flexible PDMS membrane sandwiched in between, and a PDMS 
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floating block structure are configured. The floating block serves as a normally-closed valve to 
physically prevent the backflow of the pumping fluid. In these cases, a higher flow rate is normally 
required to produce a relatively higher hydrodynamic pressure in order to open the valve located 
downstream, by which the pumping fluid can pass through. Although backflow-free liquid pumping 
can be realized by the design the pumping rate range of these micropumps is relatively high. This 
could limit its application for micro-scale perfusion cell culture because it might generate a high fluid 
shear environment, which could damage the living cells. Moreover, the structure, and thus the 
fabrication process of these pneumatic micropumps are complex. For achieving backflow-free liquid 
pumping without too much technical complexity, the design of a simple pneumatic micropump 
coupled with a normally-closed valve has been adopted in this study. The working principle was 
described in detail in Figure 2. Different from the previous designs [26,27], only one elastic PDMS 
membrane and its corresponding pneumatic chamber are required to achieve liquid pumping, largely 
simplifying the fabrication and operation process. In the presented work, moreover, an elastic PDMS 
partition connected to the pulsating PDMS membrane (Figure 2) functions as an active valve to 
prevent liquid backflow. In contrast with the earlier works [26,27], such design was capable of well 
coordinating the movements of both liquid pumping and valving, making the control of liquid delivery 
in a microfluidic system easier.  

In the proposed medium pumping scheme, the volumetric flow rate is dominated by the applied 
pneumatic pressure, and its frequency. To find out the quantitative links between them, the volumetric 
pumping rate measurements at various applied pneumatic pressures (5, 10 and 15 psi) and frequencies 
(5–30 Hz) were carried out. Results (Figure 4) revealed that, within the experimental conditions 
investigated, the pumping rate profiles showed the similar pattern, in which the pumping rate increased 
first with the increase of applied frequency, and followed by a decline with the saturation flow rate 
occurred at the frequency of 26 Hz.  

Figure 4. Liquid pumping rate profiles of the integrated pneumatic micropump at various 
applied pneumatic pressures (5, 10, and 15 psi) and frequencies (5–30 Hz). 
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in previous publications [3,16]. In addition, it can be observed from the Figure 4 that the liquid 
pumping rates increased with the increase of the pneumatic pressure applied. This phenomenon can be 
reasonably explained by the fact that the higher applied pneumatic pressure can accordingly cause a 
higher degree of membrane deformation, whereby more liquid in the microchannel was squeezed 
forwards. As a whole, the proposed medium pumping mechanism was demonstrated to be able to 
perform medium perfusion with a flow rate range of 15.4 to 120.0 μL·min−1. 

3.2. Stability and Uniformity of Thermal Condition for Cell Culture 

Reports in the literature have demonstrated that the thermal environment in a cell culture system 
could have significant impacts on cell physiology [17,18]. For a precise cell culture-based assay, the 
control of temperature conditions is vital. Different from the conventional way of using commercial 
cell incubators, this study intended to simply use a fabricated ITO-glass, and its associated thermal 
control system, to carry out the same task, based on our previous experience [22]. This is mainly due to 
its low cost, mobility, simplicity, and transparency. The features facilitate the real-time microscopic 
observation of the cultured cells. In this study, the temperature generated by the proposed ITO-glass 
microheater chip was closely regulated by a feedback control loop through a control device as 
aforementioned. To ensure the temperature conditions maintained by the presented system were stable, 
experimental validation was carried out. Figure 5(a) shows that the proposed thermal system was 
capable of providing a steady temperature field with a reasonable deviation of within ±0.3 °C, which is 
suitable for a general cell culture practice.  

Figure 5. (a) Observation on the temperature profile over time (the set temperature was  
37 °C and the temperature variation was evaluated to be within ±0.3 °C); (b) Numerical 
simulation-based evaluation of the temperature distributions in the (I) cell culture chamber 
and (II) on the microfluidic cell culture chip; and (c) 2-dimensional thermal IR images on 
the microfluidic cell chip at the set temperature of 37 °C (top-side view; the circular area 
represents the cell culture chamber area). 
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Figure 5. Cont. 

  
(b-I)                                                                          (b-II) 

 
(c) 

 
To examine the homogeneity of the thermal field in the cell culture chamber, moreover, numerical 

simulation was carried out. To mimic the real cell culture conditions, the cell culture chamber and the 
two medium microchannels were assumed to be filled with water. The heat transfer phenomenon 
occurred in the proposed system, PDMS-based microfluidic cell culture chip with an ITO-glass 
microheater chip attached, is mainly governed by the mechanisms of thermal conduction inside, and 
free convection outside the system. Free convection effects are difficult to determine due to their 
complexity. Convection heat transfer coefficient (h) is the function of surface geometry, the nature of 
fluid motion, the properties of the fluids, and the bulk fluid velocity. In this simulation, the value of h 
was set as 7.5 Wm−2·K−1 [28] to evaluate the convective heat transfer in the case of ITO power 
generation (q = 1.5 × 105 W·m−3) for approximation [22].  

The simulation results [Figure 5(b)] revealed that the thermal distribution was spatially uniform  
(37 ± 1 °C) in the central area of cell culture chamber [Figure 5(b)-I], and was homogeneous on the 
central surface of cell culture chamber [Figure 5(b)-II], indicating the proposed thermal control scheme 
was capable of generating a uniform thermal environment for cell culture. To justify the previous 
thermal simulation, experimental evaluation was carried out using a thermal IR imager. In this 
evaluation, the microfluidic cell culture chip was attached onto the ITO-glass microheater chip, and 
followed by filling cell culture chamber with cell culture medium to mimic the real cell culture setting. 
Figure 5(c) shows the thermal IR image on the surface of the microfluidic cell culture chip at the set 
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fluorescent dye kit and microscopic observation. It can be clearly seen from Figure 6(b) that the cell 
viability of the cultured cells was as high as 95 ± 2%, indicating that the proposed system was capable 
of performing a long-term perfusion cell culture at a micro scale. As a whole, this study has developed 
a simple, and user-friendly micro-scale cell culture platform that is particularly suitable for real-time 
microscopic observation of cell culture. 

4. Conclusions 

In this study, a microfluidic perfusion cell culture system was developed for micro-scale cell culture 
practices, and for their online monitoring (e.g., microscopic observation). Due to the miniaturized cell 
culture scale and perfusion cell culture format, the proposed cell culture system was able to create a 
more stable, well-defined, and thus more quantifiable culture condition, enabling researchers to 
precisely investigate the quantitative links between the cellular responses, and the tested culture 
conditions. In order to achieve this, the mechanisms of culture medium pumping, and thermal control 
were incorporated in the cell culture system, largely eliminating the need for a commercial liquid 
pumping equipment, or cell incubator. This makes the setup for perfusion cell culture more compact, 
and thus facilitates the real-time monitoring activities of cell culture. In this work, the integrated 
microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium 
tin oxide (ITO) glass-based microheater chip was designed, fabricated, and experimentally evaluated in 
terms of its performance. Results showed that the pneumatically-driven, membrane-based micropumps 
coupled with normally-closed valves were able to provide liquid pumping rates ranging from 15.4 to 
120.0 μL·min−1. In the operation, no fluid backflow was observed, thus largely minimizing the cross 
contamination between solutions and microbial contamination in the cell culture chamber. Also, the 
proposed micropump design greatly simplified the structure, fabrication and operation process, in 
contrast with the published works. Moreover, the presented ITO-glass microheater chip was proved to 
be capable of providing a spatially uniform thermal environment, and precise temperature control with 
a mild variation of ±0.3 °C, which is suitable for a general cell culture practice. The use of transparent 
ITO-glass as a microheater not only benefits the microscopic detection works, but also makes the 
experimental setup simple, portable, and thus facilitates the real-time monitoring of cell cultures. 
Different from the conventional approaches to fabricate an ITO-glass-based microheater, this study 
simply used a print screen process to construct silver electrodes on an ITO glass, making the 
fabrication work cost-effective, and simple. Furthermore, an articular chondrocyte perfusion cell 
culture was successfully demonstrated using this proposed cell culture system, showing the cultured 
cells were kept at high cell viability of 95 ± 2%. In the process, the cultured chondrocytes can be 
clearly visualized microscopically. As a whole, the proposed cell culture system has paved  
an alternative route to carry out real-time microscopic observation of biological cells in a simple,  
user-friendly, and low cost manner. 
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