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Abstract: A new generalized optimum strapdown algorithm with coning and sculling 
compensation is presented, in which the position, velocity and attitude updating operations 
are carried out based on the single-speed structure in which all computations are executed 
at a single updating rate that is sufficiently high to accurately account for high frequency 
angular rate and acceleration rectification effects. Different from existing algorithms, the 
updating rates of the coning and sculling compensations are unrelated with the number of 
the gyro incremental angle samples and the number of the accelerometer incremental 
velocity samples. When the output sampling rate of inertial sensors remains constant, this 
algorithm allows increasing the updating rate of the coning and sculling compensation, yet 
with more numbers of gyro incremental angle and accelerometer incremental velocity in 
order to improve the accuracy of system. Then, in order to implement the new strapdown 
algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its 
computational complexity is analyzed. The performance of the proposed parallel strapdown 
algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device 
XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this 
parallel strapdown algorithm on the FPGA platform can greatly decrease the execution 
time of algorithm to meet the real-time and high precision requirements of system on the 
high dynamic environment, relative to the existing implemented on the DSP platform.  
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1. Introduction 

In a strapdown inertial navigation system (SINS), inertial sensors are rigidly attached to the vehicle, 
which leads to the system suffering from the highly dynamic vehicle movement environment. In 
addition, inertial sensors may be subject to high frequency motion as a result of body bending and 
engine-induced vibration. The strapdown algorithms adopted by most modern SINSs are constructed 
based on a general two-speed structure by which the position, velocity and attitude (PVA) updating 
operations are divided into two parts [1,2]: an exact moderate-speed updating routine (e.g., 50 ~ 200 Hz) 
typically designed to update each PVA based on the maximum angular rate and acceleration of 
vehicle; and a high-speed updating routine (e.g., 1 ~ 4 KHz for an aircraft INS with the positioning 
accuracy of less than 1 nmile/h) designed to accurately account for vibration-induced coning and 
sculling effects based on the anticipated vibration condition of the system. The original intention of the 
two-speed structure is to overcome the throughput limitations of early computer techniques, but the 
limitation is rapidly becoming insignificant with the continuous improvement in the performance of 
modern high-speed computers [3]. On the other hand, along with the fast progress of modern vehicles 
in ultra-high speed and other maneuvering performances, there exist more and more urgent demands to 
promote the navigation and control precision of the vehicles in high dynamic motion. It provides the 
motivation to return to a simpler single-speed structure of the strapdown algorithm in which all 
computations are executed at a single updating rate that is sufficiently high to accurately account for 
high frequency angular rate and acceleration rectification effects. 

Two key compensation algorithms designed to operate in severe maneuvering and vibratory 
environments are critical in determining the performance of a SINS, i.e., the coning compensation that 
works when the vehicle’s angular rate vector is rotating, and the sculling compensation that takes 
effect when the vehicle’s angular rate or specific force acceleration vector is rotating, or when the ratio 
of the angular rate to specific force is not constant. Thus in order to improve the navigation accuracy of 
the system, particularly in the environments where the angular rate vector or the specific force vector 
of the vehicle is large, several algorithms have been developed for the coning and sculling compensation. 
A substantial number of integration algorithms have been designed for coning compensation to 
improve the attitude accuracy without sacrificing computer throughput [4-11]. Analogous to the coning 
compensation algorithm adopted in attitude updating, a number of sculling compensation algorithms 
have also been designed for velocity updating, and the equivalence between coning and sculling 
compensation algorithms is discussed in [12,13]. A detailed statement of the coning and sculling 
compensation algorithms is given in [1,3,14-17]. Most algorithms for the coning and sculling 
compensations are based on truncated Taylor series expansion approximations for the angular rate of 
vehicle over updating cycles [2,3,6,7,9-11,18]. The accuracy of the coning and sculling compensation 
algorithms is determined by the updating rate of the coning and sculling compensations and the order 
of the truncated Taylor series expansion for the angular rate and specific force. Generally, in order to 
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improve the accuracy of these algorithms, the updating rate must be increased to keep track of vehicle 
angular and linear motions more accurately. Among these existing algorithms, however, when the 
sampling rates of inertial sensors remain constant, and the number of the gyro incremental angle 
samples for coning compensation and the number of the accelerometer incremental velocity samples 
for sculling compensation are selected, the updating rates of these algorithms are also determined. The 
increase of the updating rates results in the decrease of the number of the gyro incremental angle 
samples and the number of the accelerometer incremental velocity samples for the coning and sculling 
compensation (namely, the decrease of order of the coning and sculling compensation algorithms), 
which in turn reduces the accuracy of the algorithms. 

Furthermore, in recent SINS applications the strapdown algorithm with coning and sculling 
compensations is commonly implemented in a Digital Signal Processor (DSP) platform supplemented 
with Field Programmable Gate Array (FPGA) for data acquisition and noise filtering. Due to the serial 
execution mode of the DSP, however, it cannot support an updating rate fast enough for a high-order 
algorithm. In order to tackle the conflict between the computation complexity of the high-order 
algorithm and the updating speed of the algorithm implemented on a DSP platform, Xie [19] proposed 
a strapdown algorithm architecture on dual DSPs and FPGA which in essence works in a parallel 
computation mode. Jew [20] presented a framework for designing inertial navigation systems on a 
single-chip FPGA, in which the strapdown algorithm is implemented by the PowerPC hardcore of  
the FPGA. Although to some extent these methods improved the performance of the strapdown 
algorithms, they all work in a serial mode, thus it did not make full use of the parallel computation 
characteristics of the FPGA. Some other researchers [21,22] suggested using a single-chip FPGA to 
implement multi-processing cores and parallel computing, but there is no any implementation scheme 
discussed in detail. 

In this paper, a new generalized optimum strapdown algorithm with coning and sculling 
compensations is presented in Section 2, in which the PVA updating operations are carried out based 
on the single-speed structure in which all computations are executed at a single updating rate that is 
sufficiently high to accurately account for high frequency angular rate and acceleration rectification 
effects. Different from existing algorithms, the updating rates of the coning and sculling 
compensations are unrelated with the number of the gyro incremental angle samples and the number of 
the accelerometer incremental velocity samples. Then, in order to implement the new strapdown 
algorithm in a single chip FPGA, the parallelization of the algorithm is designed in Section 3, and its 
computational complexity is analyzed in Section 4. In Section 5, the performance of the proposed 
parallel strapdown algorithm is tested on the software platform of Xilinx ISE 12.3 and the hardware 
platform of FPGA device XC6VLX550T on the basis of some fighter aircraft data. The contributions 
of this paper are finally summarized in Section 6. 

2. Generalized Optimum Strapdown Algorithm 

In order to reduce the computational complexity and decouple the relationship between the updating 
rates of the coning and sculling compensations and the number of the gyro incremental angle and the 
accelerometer incremental velocity samples, the strapdown algorithm proposed in this section is 
constructed on the basis of a single-speed structure, i.e., the PVA are updated in all the intervals 
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1[ , ]n nt t− , 1, 2,n = , with the equal length 1n n nT t t −= −  in the whole navigation time 0[ , ]t t , as is shown  
in Figure 1.  

Figure 1. Intervals associated with strapdown algorithm. 

1nt − nt0t t 

According to the chain rule of matrix product, the updating of the attitude matrix N
BC  is generally 

constructed as follows [1,2]: 
1 1

1 1

n n n n

n n n n

N N N B
B N B B

− −

− −
=C C C C  (1) 

where  and  are the attitude matrixes relating the B frame to the N frame at time tn-1 and  
at time tn, respectively;  is the direction cosine matrix that accounts for angular motion of the B 
frame from time tn-1 to time tn;  is the direction cosine matrix that accounts for the N frame 
rotation frame from time tn-1 to time tn. 

According to the velocity rate equation in the N frame [3], the velocity vN at the time tn can be 
obtained by integrating the specific forces sensed by the accelerometers, the Coriolis accelerations due 
to the rotations of the navigation and earth frames and the gravity, namely: 

1 /n n

N N N N
n n SF G COR−= + Δ + Δv v v v  (2) 

where  and  are the velocity of the system relative to the E frame at time tn and tn-1, 
respectively; Δ  and Δ /  are the integrated transformed specific force increment and the 
gravity-Coriolis velocity increment over the updating interval [tn-1, tn], respectively, calculated by: 

1

n

n
n

tN N B
SF Bt

dt
−

Δ = ∫v C f  (3a) 

( )
1

/ 2n

n
n

tN N N N N
G COR P EN IEt

dt
−

⎡ ⎤Δ = − + ×⎣ ⎦∫v g ω ω v  (3b) 

Considering the rotation of the navigation frame and the body frame over the updating interval  
[tn-1, tn], Δ  in Equation (3a) can be expanded according to the chain rule of matrix product  
as follows: 

1 1 1 1

1 1 1 1
1 1

n n
n n n n n n

n n n n n n
n n

t t N N B N N BN N B B
SF B N B B N B SFt t

dt dt− − − −

− − − −
− −

Δ = = = Δ∫ ∫v C f C C C f C C v  (4) 

where: 

1 1

1

n
n n

n
n

tB B B
SF Bt

dt− −

−

Δ = ∫v C f  (5) 

Because the variation of the position of the system is small over the updating interval [tn-1, tn] (for 
example, when the updating interval length Tn is 0.0005 s, the variation of the position of the 6 Mach 
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Hypersonic cruise missile is only approximately equal to 1.0 m),  in Equation (3b) can be 
approximately by its mean value over the updating interval [tn-1, tn]. Similarly, the Coriolis term 
( )2N N N

EN IE+ ×ω ω v  in Equation (3b) can also be approximately by its mean value over the updating 
interval [tn-1, tn] in view of the small variations of the angular rates N

IEω  and N
ENω  as well as the velocity 

vN over the updating interval. Thus, the gravity-Coriolis velocity increment term Δ /  can be 
approximated by: 

{ }
( ){ }

1/2 1/2 1/2

1/2 1/2 1 2 1 2

/ 1/2

1/2 1/2

2

2

n n n n

n n n n

N N N N N
G COR P IE EN n n

N N E N N N N N
P E IE C ZN n ZN ZN n n

T

Tρ

− − −

− − − −

−

− −

⎡ ⎤Δ ≈ − + ×⎣ ⎦

⎡ ⎤= − + × + ×⎣ ⎦

v g ω ω v

g C ω F u v u v  (6) 

where N
ZNu  is the unit vector along the Z-axis of the navigation frame, and [ ]0 0 1 TN

ZN =u . 

According to the altitude and position matrix rate equation [3], the altitude h and position matrix  
at the time tn can be obtained as follows: 

1n n nh h h−= + Δ
 (7a) 

11

En

n E nn

NN N
E N E −−

=C C C  (7b) 

where hn and hn-1 are the altitudes at the time tn and tn-1, respectively; Δhn is the altitude change from 
the time tn-1 to the time tn;  and  are the position matrix at the time tn and tn-1, respectively; 

 is the direction cosine matrix that accounts for the navigation frame rotation relative to the 

Earth frame from the time tn-1 to the time tn; and: 

1

n

n

t N N N N
n ZN ZN nt

h dt
−

Δ = = Δ∫ u v u R  (8) 

Similar to the attitude matrix updating,  in Equation (7b) can also be approximated in terms 

of a rotation vector as follows (accurate to second order): 

( ) ( )( )
1

1
2

En

En

N
N n n n−

≈ − × + × ×C I ξ ξ ξ
 (9) 

where nξ  is the rotation vector defining the navigation frame rotation relative to the earth frame from 
the time tn-1 to the time tn; and nζ  can be approximately expressed as follows: 

( )
1 2 1 2

1

n

n n
n

t N N N N N
n EN C ZN n ZN ZN nt

dt Tρ
− −

−

≈ = × Δ +∫ξ ω F u R u
 (10) 

Note that Δ  should be calculated first to obtain the altitude h and the position matrix . 
Considering that the change of the velocity is small over the updating interval [tn-1, tn], Δ  can be 
computed based on a trapezoidal integration algorithm as follows: 

( )1
1
2

N N N
n n n nT−Δ ≈ +R v v

 (11) 

  



Sensors 2011, 11                           
 

 

7998

2.1. Body Frame Rotation Update 

The direction cosine matrix  in Equation (1) is used to update the attitude matrix  which 
accounts for the angular rate  of the B frame relative to the inertial space. According to the 
relationship between rotation vector and direction cosine matrix,  can be expressed as follows: 

( ) ( )( )1
2

sin 1 cos
n

n

B n n
B n n n

n n

−
Φ − Φ

= + × + × ×
Φ Φ

C I Φ Φ Φ  (12) 

where Φn is the rotation vector that accounts for angular motion of the body frame from time tn-1 to 
time tn; Φn is the magnitude of Φn In practice, Φn can be obtained by the following rotation vector rate 
equation [4]: 

( )1 1
2 12

B B B
IB IB IB≈ + × + × ×Φ ω Φ ω Φ Φ ω  (13) 

where  represents the angular rate of the B frame. The last two terms in Equation (13) are  
non-commutative, thus have to be calculated and compensated based on the gyro incremental angles in 
order to improve the computation accuracy. The triple-cross-product term in Equation (13) is usually 
quite small and can be neglected [4]. Then under the second order accuracy, the rotation vector Φn in 
Equation (12) can be approximated by the integral of Equation (13) from tn-1 to tn, i.e., 

( )
1

1 ( )
2

n

n

t B B
n IB IB n nt

t dt
−

⎡ ⎤= + × = +⎢ ⎥⎣ ⎦∫Φ ω α ω α β  (14) 

where nβ  is defined as the coning compensation from tn-1 to tn, and: 

1

( ), ( )
n

t B
n n IBt

t t dτ
−

= = ∫α α α ω  (15a) 

( )
1

1( ), ( ) ( )
2 n

t B
n n IBt

t t dτ τ
−

= = ×∫β β β α ω  (15b) 

For a SINS, the coning motion is the worst working condition which will induce serious attitude 
errors [5-7,18]. In other words, if in the case of coning movement the attitude errors are made minimal 
by a certain algorithm, the errors in the other cases will also be minimal by the same algorithm. So in 
order to develop the new strapdown algorithm, it is assumed that the vehicle is undergoing a pure 
coning movement, defined by the following angular rate: 

[ ]( ) cos( ) sin( ) 0 TB
IB t a t b t= Ω Ω Ω Ωω  (16) 

where Ω is the frequency associated with the coning motion; a and b are the amplitudes of the  
coning motion. 

According to Equations (15a), (15b) and (16), the coning compensation term βn has the  
following form: 

( )0 0 sin
2

T

n n n
ab T TΩ Ω⎡ ⎤= −⎢ ⎥⎣ ⎦

β  (17) 

Equation (17) shows an interesting property that the coning compensation is constant over all 
updating cycles, regardless of the absolute time at which the updating cycle begins. It only depends on 
the duration of the updating cycle. 
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According to the concept of distance between the cross products [6,11], the cross products with 
equal distance behave exactly the same in a pure coning environment defined by Equation (16). The 
coning compensation that uses the concept will have the simplest form, the optimal accuracy and the 
minimum computational throughput. Taking the advantage of this property, a generalized optimum 
algorithm for the integral in Equation (15b) consists of the sum of all possible cross products of the 
gyro incremental angle samples, making up the computation over the updating interval of rotation 
vector, such as [9]: 

1

1

ˆ
N

n i n i n
i

k
−

−
=

= ×∑β α α  (18) 

where N is the number of gyro incremental angle samples for the calculation of the coning 
compensation term; αn-i (1, 2,…, N − 1) is the gyro incremental angle sample in the (n − i)-th updating 
cycle; ki (1, 2,…, N − 1) is the constant coefficients for the cross product of αn-i and αn. 

Substituting Equations (15a) and (16) into Equation (18), and expanding each terms using Taylor 
series, the coning compensation term  over the updating interval [tn-1, tn] is obtained as: 

( )
1

1 2 1

1 1

ˆ 0 0 1
T

N
i i

n ij j
i j

ab A K λ
∞ −

+ +

= =

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∑ ∑β  (19) 

where λ = ΩTn; Aij is a constant defined by: 

( )
2 1 2 1 2 1( 1) 2 ( 1)

2 1 !

i i i

ij
j j jA

i

+ + ++ − + −=
+
i , 1,2, ,i = ∞ , 1, 2, , 1j N= −  (20) 

In order to derive ki (1, 2,…, N − 1) in Equation (18), expanding Equation (17) by using Taylor 
series yields: 

( ) 1 2 1

1
0 0 1

T
i i

n i
i

ab C λ
∞

+ +

=

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑β  (21) 

where Ci is a constant defined by: 

( )
1

2 1 ! 2iC
i

=
+ ×  (22) 

Combining Equation (19) with Equation (21), the following simultaneous equations for constant 
coefficients Ki, i = 1, 2,…, N − 1), can be obtained: 

1

1

N

ij j i
j

A K C
−

=

=∑ , 1, 2, , 1i N= −  (23) 

In a matrix form, Equation (23) is equivalent to: 

( ) ( ) ( ) [ ]( )1 11 1 1 1ij j i NN N N
A K C

− ×− × − − ×
⎡ ⎤ ⎡ ⎤⋅ =⎣ ⎦ ⎣ ⎦  (24) 

According to Equation (24), coefficients Ki can be solved as follows: 

( ) ( ) ( ) [ ]( )
1

1 11 1 1 1j ij i NN N N
K A C

−

− ×− × − × −
⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦  (25) 

where [ ] 1i m
x

×  and ij m n
x

×
⎡ ⎤⎣ ⎦  are m-dimensional column vector and the m-by-n matrix, respectively. 
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Note that different from other existing algorithms, the updating rate of the proposed optimal coning 
compensation algorithm is independent of the number of gyro incremental angle samples in the 
calculation of the coning compensation. Thus, this algorithm allows the updating speed to be 
increased, at the same time increasing the number of gyro incremental angle samples, in order to 
improve the attitude accuracy of the system. 

2.2. Navigation Frame Rotation Update 

The direction cosine matrix  in Equation (1) is used to update the attitude matrix  which 
accounts for the angular rate N

INω of the N frame relative to the inertial space. Similar to the 
computation of , according to the relationship between rotation vector and direction cosine 
matrix,  can also be expressed in a second order form as follows: 

( ) ( ) ( ) [ ]( )
1

1 11 1 1 1j ij i NN N N
K A C

−

− ×− × − × −
⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦  

(25) 

( ) ( )( ) ( ) ( )( )
1 2

sin 1 cos 1
2

n

n

N n n
N n n n n n n

n n

ζ ζ
ζ ζ−

−
= − × + × × ≈ − × + × ×C I ζ ζ ζ I ζ ζ ζ  (26) 

where nζ  is the rotation vector that accounts for the angular motion of the N frame from time tn-1 to 
time tn; nζ  is the magnitude of nζ . 

Because the updating interval length Tn is short (generally equal to 0.0005 s–0.01 s), the angular 
rate  is small and changes slowly over the updating interval [tn-1, tn] (due to the small changes in 
velocity and position over this updating cycle). Then according to the rotation vector rate equation, nζ  
can be approximated as follows: 

( ) ( )
1 2 1 2 1 2

1 1
1 2

n n

n n n
n n

t tN N E N N E N N N N
n IN E IE EN E IE n C ZN n ZN ZN nt t

dt dt T Tρ
− − −

− −
−≈ = + ≈ + × Δ +∫ ∫ζ ω C ω ω C ω F u R u  (27) 

where  and  are the angular rates of the earth frame relative to the inertial frame and the 
navigation frame relative to the earth frame, respectively;  is the position matrix relating the  
earth frame with the navigation frame; the subscript n − 1/2 indicates the midpoint of the updating 
interval [tn-1, tn]. 

2.3. Integrated Specific Force Increment Update 

Similar to the attitude updating algorithm, the integral term Δ  in Equation (4) can be 
formulated based on the first order approximation of  as follows: 

( ) ( )1

1 1

( ) ( )n n
n

n
n n

t tB B B
SF nt t

t dt t dt−

− −

Δ ≈ + × = + ×⎡ ⎤⎣ ⎦∫ ∫v I α f υ α f
 (28) 

where: 

1
( ), ( )

n

t B
n n t

t t dτ
−

= = ∫υ υ υ f
 (29) 

The integrand term ( ) Bt ×α f  in Equation (28) has the following expression [3]: 

( ) ( )1 1( ) ( ) ( ) ( ) ( )
2 2

B B B
IB

dt t t t t
dt

× = × + × + ×α f α υ α f υ ω  (30) 
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Δ  can also be expressed as follows: 

( ) ( )1

1

1 1 ( ) ( )
2 2

n
n

n n n
n

tB B B
SF n n n IB n Rot Scult

t t dt−

−

Δ = + × + × + × = + Δ + Δ∫v υ α υ α f υ ω υ v v  (31) 

where Δ  denotes the velocity rotation compensation term; Δ  denotes the sculling 
compensation term; and: 

( )1
2nRot n nΔ = ×v α υ  (32a) 

( )
1

1 ( ) ( )
2

n

n
n

t B B
Scul IBt

t t dt
−

Δ = × + ×∫v α f υ ω  (32b) 

In principle, the approaches used for the coning compensation can also be applied to the sculling 
compensation. Similar to the optimal generalized coning compensation algorithm in Equation (18), a 
generalized sculling compensation algorithm that has the simplest form, the optimal accuracy and the 
minimum computational throughput takes the following form:  

1 1

1 1

ˆ
n

N N

Scul i n i n i n i n
i i

L L
− −

− −
= =

⎡ ⎤ ⎡ ⎤Δ = × + ×⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑v α υ υ α  (33) 

where N is the number of the gyro incremental angle samples and the number of the accelerometer 
incremental velocity samples for the calculation of the sculling compensation term; αn-i (1, 2,…, N − 1) 
and υn-i (1, 2,…, N − 1) are the gyro incremental angle and accelerometer incremental velocity in the  
(n − i)-th updating cycle; Li (1, 2,…, N − 1) is the constant coefficients for the cross product of αn-i 
with υn and υn-i with αn. 

Considering the equivalency between the coning compensation and sculling compensation [12,23], 
similar to Equation (25), the coefficients Li can also be calculated as follows: 

( ) ( ) ( ) [ ]( )
1

1 11 1 1 1j ij i NN N N
L A C

−

− ×− × − × −
⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦  (34) 

where Aij and Ci can be calculated according to Equations (20) and (22), respectively. 
Note that different from other existing algorithms, the updating rate of the proposed optimal 

sculling compensation algorithm is also independent of the number of gyro incremental angle samples 
and accelerometer incremental velocity samples. Thus, this algorithm allows the updating speed to be 
increased, at the same time increasing the number of gyro incremental angle samples and 
accelerometer incremental velocity samples, in order to improve the accuracy of the related velocity 
updating algorithm. 

2.4. Related Parameters Extrapolation Update 

Because the gravity anomaly and the vertical deviation over the earth surface resulting from mass 
irregular and shape asymmetric distributions are generally small (the maximum value of the gravity 
anomaly is only tens of mgal; and the maximum value of the vertical deviation is only tens of arcs), the 
following approximate model of the gravity is used for most SINS applications: 

( ) ( )
( )

( )
2
0

0 02
00

2, 1
R hg L h g L g L

Rh R

⎛ ⎞
= ≈ −⎜ ⎟

+ ⎝ ⎠  (35) 
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where 0 M NR R R= , and g0 is approximated by the following formula based on the WGS-84  

data [24-27]: 

( ) ( )2

0 2

1 0.001931853sin
9.7803253359

1 0.006694380sin

L
g L

L

+
≈

−  (36) 

Then the gravity  in the navigation frame can be expressed as follows:  

( )0 0 ,
TN

P g L h= −⎡ ⎤⎣ ⎦g  (37) 

For the conventional ellipsoidal earth surface model and the E-N-U navigation frame [1,3], , 
 and  can also be expressed in the following form: 

[ ]0 0 TE
IE IEω=ω  (38a) 

( )N N N N N
EN C ZN ZN ZNρ= × +ω F u v u  (38b) 

11 12 13

21 22 23

31 32 33

cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

cos cos cos sin sin

N
E

L L L
L L L

L L L

C C C
C C C
C C C

α λ α λ α λ α λ α
α λ α λ α λ α λ α

λ λ

− − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C

 (38c) 

with: 
2 2

2 2

1 1 sin cossin cos 0

cos sin 1 1 sin cos 0

0 0 0

N M N M

N
C

N M N M

R h R h R h R h

R h R h R h R h

α αα α

α α α α

⎡ ⎤⎛ ⎞ ⎛ ⎞
− − +⎢ ⎥⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥= + − +⎜ ⎟ ⎜ ⎟⎢ ⎥+ + + +⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

F
 (39a) 

( )

( )
( )

( )
( )

2
2

3
2 2 2

2
1

2 2

1
1 2 3 sin

1 2 sin

1 sin
1 2 sin

e
M e

e
N e

R e
R R e e L

e L

R
R R e L

e e L

−
= ≈ + −
⎡ ⎤− −⎣ ⎦

= ≈ +
⎡ ⎤− −⎣ ⎦

 (39b) 

( )
( )

( )
( )

( )
( )

2 2
2 13 232 2 213 23

33 2 2 2
33 33 33

sin ,sin cos ,sin ,cos
1 1 1

C CC C
L C

C C C
α α α α= = = =

− − −
 (39c) 

where  is the curvature matrix in the navigation frame that is a function of position over the earth; 
ρZN is the Z-axis component of ; vN is the velocity vector of the vehicle relative to the earth 
projected on the navigation frame; RM and RN are the radii of curvature at the earth surface in meridian 
and in prime vertical, respectively; h is the height; α is the wander angle; L is the latitude; Re is the 
equatorial radius of earth; e is the flattening of earth; Cij is the i-row and j-column component of . 
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By the definition of the navigation frame, the orientation of the X axis and the Y axis around the Z 
axis is somewhat arbitrary. So ρZN in Equation (38b) depends on the selection of the axes orientation of 
the navigation frame. The navigation frame is generally selected as a wander azimuth navigation frame 
for most SINSs [3]. In this case, ρZN is given by: 

0ZNρ =  (40) 

Because the related parameters ( ) (namely, , , ρZN, vN, Δ  and ) in Equations (6), (10)  
and (27) are all the functions of position or velocity, and the values of these parameters at the current 
cycle are not available, thus the ( )n − 1/2 terms can be approximately calculated based on the linear 
extrapolation formula in the following form: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1 2

1 3 1
2 2 2n n n n n n− − − − − −
⎡ ⎤≈ + − = −⎣ ⎦  (41) 

3. Strapdown Algorithm Parallelization 

Although the sampling rate of inertial sensors can be up to 2 kHz or even higher, taking into 
account the complexity of the employed strapdown algorithm and the ability of the current processors, 
the updating rate of the strapdown algorithm in a serial mode is limited, usually only 200–500 Hz 
when implemented in a DSP. An effective way to break through the limitation of commonly used 
navigation computers is to implement the strapdown algorithm on a purely parallel computing platform 
such as FPGA, and execute the calculations in the algorithm “as concurrently as possible” to make full 
use of the capability of the parallel computing platform. 

The strapdown algorithm proposed in Section 2 can be divided into six modules doing the following 
calculations severally: the body frame rotation update (M1), the integrated specific force increment 
update (M2), the related parameters extrapolation update and the navigation frame rotation update 
(M3), the attitude update (M4), the velocity update (M5) and the position update (M6), as shown in 
Figure 2. Among them, M1, M2 and M3 can be executed first in a parallel mode; M4 and M5 have to 
be executed afterwards but also in a parallel mode; finally, M6 is executed.  

Figure 2. Functional-block diagram of parallel strapdown algorithm. 

1nt − nt  
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3.1. Module of Body Frame Rotation Update (M1) 

The calculations involved in the module M1 are described by Equations (12), (14) and (18), as 
shown in Figure 3. Once the number of the gyro incremental angle samples N is selected, the 
corresponding coefficients Ki of the coning compensation can firstly be determined offline by 
Equations (20), (22) and (25) and stored in the memory of the navigation computer for online use; 
secondly, the coning compensation βn and rotation vector Φn can be successively computed according 
to Equations (14) and (18), respectively; finally, the direction cosine matrix  that accounts for the 
angular motion of the B frame is obtained by Equation (12). Note that since the accuracy of the coning 
compensation directly determines the attitude accuracy of the system, particularly in high dynamic 
conditions, the coning compensation is generally designed to accurately account for the vibration 
induced coning effects by selecting the appropriate number of the gyro incremental angle samples. 

Figure 3. Diagram of module M1. 

 

Figure 3 shows that Equations (11), (14) and (18) can only be executed in a serial mode. From 
Equations (12), (14) and (18), it is shown that M1 contains the following operations of related 
minimum calculation particles: cross-product of vectors, product of a skew symmetric matrix with 
itself, addition of matrixes or vectors and calculation of sine or cosine function. The operations within 
these minimum calculation particles can be further concurrently processed, which will be discussed in 
Section 3.2. 

3.2. Module of Integrated Specific Force Increment Update (M2) 

The module M2 carries out the calculations defined by Equations (31), (32a) and (33), as shown in 
Figure 4. Similar to the coning compensation, once the number of the gyro incremental angle and 
accelerometer incremental velocity samples N is selected, the corresponding coefficients Li of the 
sculling compensation can firstly be determined offline by Equations (20), (22) and (34) and stored in 
the memory of the navigation computer for online use; secondly, the sculling compensation Δ  
and the velocity rotation compensation Δ  can be successively computed according to  
Equations (32a) and (33); finally, the integrated specific force increment Δ  that accounts for the 

linear motion of the B frame is calculated by Equation (31). Note that since the accuracy of the 
sculling compensation directly determines the velocity accuracy of the system, particularly in high 
dynamic conditions, the sculling compensation is generally designed to accurately account for the 
vibration induced sculling effects by selecting the appropriate number of the gyro incremental angle 
and accelerometer incremental velocity samples. 
  

Eq. (14) 
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Figure 4. Diagram of module M2. 

 

Figure 4 shows that the calculations of the velocity rotation compensation and the sculling 
compensation can be executed in a parallel mode according to Equations (32a) and (33). From 
Equations (31), (32a) and (33), it is shown that M2 contains the following operations of related 
minimum calculation particles: cross-product of vectors and addition of vectors. Similar to the 
operations within these minimum calculation particles in M1, the operations within these minimum 
calculation particles can be further processed concurrently, which will be discussed in Section 3.2. 

3.3. Module of Related Parameters Extrapolation and Navigation Frame Rotation Update (M3) 

The module M3 can be further divided into two serial-process modules: the module of related 
parameters extrapolation update (M31) and the module of navigation frame rotation update (M32), as 
shown in Figure 5. The computation tasks completed in M31 and M32 are described by  
Equations (26), (27) and (35–41) respectively. 

Figure 5. Diagram of module M3. 

 
  

 
 

 
 
 
 

Linear 
Extra- 

Polation 
Eq. (41) 

Gravity Model 
Eqs. (35-37) 

Curvature Matrix 
Eqs. (39a–39b) 

n

E
NC

nh

Trigonometric 
Function 
Eq. (39c) 

N
Pg

N
CF

N
nΔR

N
nv

1 2nZNρ
−

1/2n

N
P −

g

1 2n

N
C −

F

1 2n

N
E −

C

1/2n

N
E −

v

 
 
 
 
 

1n

n

N
N

−C
DCM 

Eq. (26) 

Rotation 
Vector 

Eq. (27) 

nζ

M31 

M32

Eq. (31) 

 
 
 
 

 
 

nSculΔv

Velocity Rotation 
Compensation 
Equation (32a) 

Sculling 
Compensation 
Equation (33) 

nRotΔv

1n

n

B
SF

−Δv

nα

nυ



Sensors 2011, 11                           
 

 

8006

Figure 5 shows that in M31, the calculation of the gravity and the curvature matrix can be firstly 
executed in a parallel mode according to Equations (35–39), and then the related parameters ( / , 

/ , / , / , Δ /  and / ) can also be calculated in a parallel mode according to  

Equation (41); in M32, Equations (26) and (27) can only be executed in a serial mode. From  
Equations (26), (27) and Equations (35–41), it is shown that M31 and M32 contain the following 
operations of related minimum calculation particles: cross-product of vectors, product of a skew 
symmetric matrix with its own and addition of matrixes or vectors. Similar to the operations within 
these minimum calculation particles in module M1, the operations within these minimum calculation 
particles can be further processed concurrently, which will be discussed in Section 3.2.  

3.4. Module of Attitude Update (M4) 

The module M4 is used to calculate Equation (1), as shown in Figure 6.  

Figure 6. Diagram of module M4. 

 

From Equation (1), it is shown that M4 only contains the following operation of related minimum 
calculation particles: product of matrixes. Similar to the operations within these minimum calculation 
particles in module M1, the product operation of matrixes can be further processed concurrently, 
which will be discussed in Section 3.2. 

3.5. Module of Velocity Update (M5) 

The calculations implemented in the module M5 are defined by Equations (2), (4) and (6), as shown 
in Figure 7.  

Figure 7. Diagram of module M5. 
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Figure 7 shows that the calculation of the integrated transformed specific force increment and the 
gravity-Coriolis velocity increment can be executed in a parallel mode according to Equations (4)  
and (6). From Equations (2), (4) and (6), it is shown that M5 contains the following operations of 
related minimum calculation particles: cross-product of vectors, product of a skew symmetric matrix 
with its own, product of matrixes or a matrix with a vector and addition of vectors. Similar to the 
operations within these minimum calculation particles in module M1, the operations within these 
minimum calculation particles can be further parallelized, which will be discussed in Section 3.2. 

3.6. Module of Position Update (M6) 

In the module M6, the computations defined by Equations (7–11) are carried out, as shown in 
Figure 8.  

Figure 8. Diagram of module M6. 

 
 
Figure 8 shows that after the calculation of Δ , the calculation of the altitude h and the position 

matrix  can be executed in a parallel mode according to Equations (7–10), in which Equations (7b), 
(9) and (10) can only be executed in a serial mode, and Equations (7a) and (8) can also only be 
executed in a serial mode. From Equations (7–11), it is shown that M6 contains the following 
operations of related minimum calculation particles: cross-product of vectors, product of a matrix with 
a vector and addition of vectors. Similar to the operations within these minimum calculation particles 
in module M1, the operations within these minimum calculation particles can be further parallelized, 
which will be discussed in Section 3.2. 

4. Computation Complexity Analysis 

From Figure 2, it can be shown that the execution time of the parallel strapdown algorithm on 
FPGA can be as follows:  
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where, TM1, TM2, TM3, TM4, TM5 and TM6 are the execution time required by the modules M1, M2, M3, 
M4, M5 and M6, respectively; TM31 and TM32 are the execution time required by the modules M31 and 
M32, respectively. 

In order to make the updating cycle of the strapdown algorithm shortest, the maximum parallelism 
degree is usually used as a performance index to optimize the calculation particles involved in the 
modules M1–M6.  

Assume that the execution time of addition (subtraction), multiplication, division, trigonometric and 
square root operation are defined as TA, TM, TD, TT and TS, respectively. The summation of 3-dimensional 
vectors, for instance by: 

1 2VA = +V V V  (44) 

contains three addition operations which can be executed in a parallel mode. Thus the execution time 
of the addition operation for two 3-dimensional vectors is 

VA AT T=  (45) 

The addition of two 3-by-3 matrixes, for instance by: 

1 2MA = +C C C  (46) 

contains nine addition operations which can also be executed in a parallel mode. Thus the execution 
time of the addition operation for two 3-by-3 matrixes is 

MA AT T=  (47) 

The cross-product of two 3-dimensional vectors, expressed for instance by: 

1 1 2 1 2 1 2

1 2 1 1 2 1 2 1 2

1 1 2 1 2 1 2

0
0

0

Z Y X Y Y Z X

VCP Z X Y Z X X Z

Y X Z X Y Y X

V V V V V V V
V V V V V V V
V V V V V V V

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊗ = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

V V V  (48) 

contains six multiplication operations and three subtraction operations. All the multiplication 
operations or the subtraction operations can be executed in a parallel mode, but the subtraction 
operations must be executed after the multiplication operations. Thus the execution time of the  
cross-product operation for two 3-dimensional vectors is: 

VCP M AT T T= +  (49) 

The product of two 3-by-3 matrixes, for instance by: 
A A B
C B C=C C C  (50) 

contains 27 multiplication operations and 18 addition operations. The multiplication operations can be 
executed in a parallel mode, but the addition operations must be executed twice in a parallel mode after 
the multiplication operations. Thus the execution time of the product operation for two 3-by-3  
matrixes is: 

2MP M AT T T= +  (51) 

The product of a 3-by-3 matrix with a 3-dimensional vector, which can be defined for instance by: 
A A B

B=V C V (52) 
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contains nine multiplication operations and 6 addition operations. The multiplication operations can be 
executed in a parallel mode, but the addition operations must be executed twice in a parallel mode after 
the multiplication operations. Thus the execution time of the product operation for a 3-by-3 matrix 
with a 3-dimensional vector is: 

2MVP M AT T T= +  (53) 

The product of a skew symmetric matrix with itself defined, for instance by:  

( )( )1 1

2 2
1 1 1 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1

0 0
0 0

0 0

Z Y Z Y Z Y X Y X Z

Z X Z X X Y Z X Y Z

Y X Y X X Z Y Z Y X

V V V V V V V V V V
V V V V V V V V V V
V V V V V V V V V V

= ⊗ ⊗

⎡ ⎤− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − − = − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C V V

 (54) 

contains six multiplication operations and three addition operations. The multiplication operations or 
the addition operations can be executed in a parallel mode, but the addition operations must be 
executed after the multiplication operations. Thus the execution time of the product operation for a 
skew symmetric matrix with itself is: 

TVCP2 = TM + TA (55) 

Based on the aforementioned execution time analysis of the basic computational operations 
involved in the modules M1–M6, we can evaluate the computational complexity of each module. 

4.1. Analysis of Module M1 

In the calculation of the coning compensation term βn defined by Equation (18), the N − 1 vectors 
cross-product operation can be executed in a parallel mode, and the summation of N − 1 vectors can 
also be successively executed in a parallel mode [log 1 ] times. Thus the execution time of the 
coning compensation is: 

( ) ( )2 2log 1 2 log 1 1Con VCP M VA M AT T T N T T N T⎡ ⎤= + + − = + − +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦  (56) 

And in the calculation of the direction cosine matrix  according to Equation (12), the calculation 
of 2

nΦ , nΦ  and ( )( )n n× ×Φ Φ  can be executed in a parallel mode. Thus the execution time of the matrix 
 calculation is: 

2 2 2 2 4Rot DCM M A S T A D M A M A D S TT T T T T T T T T T T T T T= + + + + + + + = + + + +  (57) 

Based on Equations (56) and (57) and refer to Figure 3, the execution time of module M1 can be 
obtained as follows: 

( )1 2 24 log 1 6M Con VA Rot DCM M A D S TT T T T T N T T T T⎡ ⎤= + + = + − + + + +⎡ ⎤⎢ ⎥⎣ ⎦  (58) 

4.2. Analysis of Module M2 

Figure 5 shows that the calculation of the velocity rotation compensation and the sculling 
compensation can be executed in a parallel mode. According to Equation (48), the execution time of 
the velocity rotation compensation is: 
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2Rot VCP M M AT T T T T= + = +  (59) 

Similar to the calculation of the coning compensation term βn, in the calculation of the sculling 
compensation term Δ  defined by Equation (33), the cross-product operations of the 2(N – 1) 
vectors can be executed in a parallel mode, and the summation of N − 1 vectors can also be 
successively executed in a parallel mode [log 1 ] times. Thus the execution time of the coning 
compensation is: 

( ) ( )2 2log 1 2 log 1 1scul VCP M VA M AT T T N T T N T⎡ ⎤= + + − = + − +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦  (60) 

Based on Equations (59) and (60) and referring to Figure 4, the execution time of module M2 can 
be obtained as follows: 

{ } ( )2 2max , 2 2 log 1 3M Rot scul VA M AT T T T T N T⎡ ⎤= + = + − +⎡ ⎤⎢ ⎥⎣ ⎦  (61) 

4.3. Analysis of Module M3 

Figure 6 shows that the calculation of the gravity and the curvature matrix can be executed in a 
parallel mode. According to Equations (35–37), the execution time of the gravity calculation is: 

{ }1 2 3max , , 2G G G G M DT T T T T T= + +  (62) 

where TG1, TG2 and TG3 are the execution time of the calculations for the terms ( )21 0.001931853sin L+ , 

21 0.006694380sin L−  and 
0

21 h
R

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, respectively; and: 

1G M AT T T= +  (63a) 

2G M A ST T T T= + +  (63b) 

3G M A DT T T T= + +  (63c) 

According to Equation (39), the execution time of the curvature matrix calculation is: 

{ }1 2max , 2F F F A D M AT T T T T T T= + + + +  (64) 

where TF1 and TF1 are the execution time of the calculations for RM and RN, respectively; and: 

1 3 2F M AT T T= +  (65a) 

2 2F M AT T T= +  (65b) 

Thus the execution time of module M31 can be obtained as follows: 

{ }31 max ,M M A M D G F M AT T T T T T T T T= + + + + + +  (66) 

According to Equations (26) and (27), the execution time of module M32 can be estimated by: 

( ) ( )32 2 4 5M M MVP A VCP M A M AT T T T T T T T T= + + + + + = +  (67) 

Based on Equations (66) and (67), and refer to Figure 6, the total execution time of module M3 is: 

3 31 32M M MT T T= + (68) 
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4.4. Analysis of Module M4 

According to Equation (1), the execution time of module M4 is as follows: 

4 2 2 4M MP M AT T T T= = + (69) 

4.5. Analysis of Module M5 

Figure 8 shows that the calculation of the integrated transformed specific force increment and the 
gravity-Coriolis velocity increment can be executed in a parallel mode. According to Equation (4), the 
execution time of the integrated transformed specific force increment calculation is: 

2 4SF MP MVP M AT T T T T= + = +  (70) 

According to Equation (6), the execution time of the gravity-Coriolis velocity increment  
calculation is: 

4 5G C MVP M A VCP A M M AT T T T T T T T T− = + + + + + = +  (71) 

Based on Equations (70) and (71), and refer to Figure 8, the execution time of module M5 can be 
obtained as follows: 

{ }5 max , 2 4 7M SF G C A M AT T T T T T−= + = + (72) 

4.6. Analysis of Module M6 

Figure 9 shows that the calculation of the altitude matrix and the position matrix can be executed in 
a parallel mode. According to Equations (7a), (8) and (11), the execution time of the altitude 
calculation is: 

2 2 2Alt VA M A M AT T T T T T= + + = + (73) 

Figure 9. Implementation of parallel strapdown algorithm base on FPGA. 
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According to Equations (7b) and Equations (9–11), the execution time of the position matrix 
calculation is: 

22 6 6PosDCM VA M M A VCP M A MP M AT T T T T T T T T T T= + + + + + + + = +  (74) 

Based on Equations (73) and (74) and refer to Figure 9, the execution time of module M6 can be 
obtained as follows: 

{ }6 max , 6 6M Alt PosDCM M AT T T T T= = +  (75) 

The execution times of the floating-point operations TA, TM, TD, TT and TS are slightly different 
when implemented on different FPGA platforms. But compared with Tm, TA and TD, TT and TS are 
generally larger and has the following approximate relationship with TM: 

4 , 4 , 4 , 2D M T M S M A MT T T T T T T T≈ ≈ ≈ ≈  (76) 

And the number of the gyro incremental angle samples and the accelerometer incremental velocity 
samples used in the calculation of the coning compensation and the sculling compensation is generally 
less than four [2], namely, N ≤ 4.Then according to Equations (42), (58), (61), (68), (69), (72)  
and (75), the length of the execution time of the parallelized strapdown algorithm can be estimated  
as follows:  

{ } { }1 2 3 4 5 6

3 5 6

max , , max ,
22 24 2 78

Nav M M M M M M

M M M M A D M

T T T T T T T
T T T T T T T

= + +
= + + = + + ≈  (77) 

In contrast with the parallel implementation of the strapdown algorithm proposed in Section 3, the 
execution time of the original strapdown algorithm in a serial mode given in Section 2 is: 

1 2 3 4 5 6Nav M M M M M MT T T T T T T′ ′ ′ ′ ′ ′ ′= + + + + +  (78) 

with: 

( ) ( )1 7 11 4 16 2 2M M A D S TT N T N T T T T′ = + + + + + +  (79a) 

( ) ( )2 14 5 8 1M M AT N T N T′ = − + −  (79b) 

3 88 57 7M M A D ST T T T T′ = + + +  (79c) 

4 54 36M M AT T T′ = +  (79d) 

5 43 35M M AT T T′ = +  (79e) 

6 49 34M M AT T T′ = +  (79f) 

Thus according to Equations (76–79), the ratio of the execution time of the parallelized strapdown 
algorithm to the execution time of the original strapdown algorithm can be estimated as follows: 

( ) ( )
22 24 2 9.44%

240 21 177 12 9 2 2
Nav M A D

Nav M A D S T

T T T T
T N T N T T T T

η + += = ≈
′ + + + + + +  (80) 

where N is assumed to be 4. Equation (80) indicate that the parallelization design of the new optimum 
strapdown algorithm can significantly increase the updating rate of the algorithm, thus providing an 
important foundation to improve the accuracy of SINS working in high dynamic environments.  
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5. Implementation and Simulation of Parallel Strapdown Algorithm on FPGA  

The parallel strapdown algorithm proposed in Section 3 has been implemented on a FPGA platform 
in the structure shown in Figure 9. The data acquisition module receives the input signal (the gyro 
incremental angle αn, the accelerometer incremental velocity υn and the initial alignment data 
Data_Init) and writes the data to the data register module in the operation controller, then notifies  
the operation controller to start the strapdown calculations through the signal GD_Rdy. The operation 
controller sends the data stored in the data register module in a parallel mode to the input registers  
of the floating point unit (FPU), and starts the FPU by the operation starter. The operation results  
( , , hn and ) are then exported through the output module. The handshake signals ACK and 
Data_Rdy are used for the communication between the data acquisition module and the external 
module such as the initial alignment or noise filtering of inertial sensor output samples that is beyond 
the scope of this paper; and the operation controller can be reset by the signal RST. The state machine 
in the operation controller is used to control the execution of operations in an appropriate time sequence. 

All floating-point operations are carried out in the FPU which is composed of five arithmetic  
sub-units executing the operations for addition, multiplication, division, square root calculation and 
trigonometric calculation, respectively. Among them, the adder unit contains k floating-point adders; 
the multiplier unit contains l floating-point adders; the divider unit contains m floating-point adders; 
the square root arithmetic unit contains n floating-point adders; where different values of k, l, m and n 
can be selected according to the hardware resources of the selected FPGA platform. 

The parallel strapdown algorithm has been simulated on the Xilinx ISE 12.3 software platform and 
the hardware platform of the FPGA device XC6VLX550T. The floating-point adder/subtractor, 
multiplier and other floating-point operations in FPU are constructed by the Xilinx IP core. 

In the simulation, both the number of the gyro incremental angle samples and the number of the 
accelerometer incremental velocity samples for the calculation of the coning compensation and the 
sculling compensation are set to two (namely, N = 2), then, according to Equations (20), (22), (25)  
and (34), the coning compensation term and the sculling compensation term defined in Equations (18) 
and (33) can be expressed as follows: 

1
1ˆ

12n n n−= ×β α α  (81a) 

1 1
1 1ˆ

12 12nScul n n n n− −Δ = × + ×v α υ υ α  (81b) 

To demonstrate the performance of the proposed parallel strapdown algorithm, the simulation 
results in a typical updating interval are shown in Figure 10 as the behavioral simulation waveform 
graph yielded by Xilinx ISE 12.3, and listed in Table 1 where all the data are accurate to four decimal 
places. The updating interval length Tn in the simulation is 1.0e−3 s, and the clock frequency of the 
FPGA is set to 10 ns. 
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Figure 10. Behavioral simulation waveform graph of parallel strapdown algorithm. 

 

The same simulation scenarios are calculated on a MATLAB R2007a platform with the strapdown 
algorithm in Section 2, the results are consistent with those shown in Table 1.  

Table 1. (a) Simulation results—gyro and accelerometer inputs; (b) Simulation results—
attitude, velocity and position outputs. 

Sample 
time 

Gyro incremental angle sample Accelerometer incremental velocity sample 
x axis (°) y axis (°) z axis (°) x axis (m/s) y axis (m/s) z axis (m/s) 

tn-1 7.3154e−5 −4.0469e−6 7.0390e−6 −1.4102e−4 3.3985e−4 9.9255e−3 
tn 7.1058e−5 3.9166e−6 7.8809e−6 −2.2112e−4 1.4560e−4 9.5916e−3 

(a) 

Update 
time 

Attitude Velocity Position 
roll angle 

(°) 
pitch angle 

(°) 
yaw angle 

(°) 
x axis 
(m/s) 

y axis 
(m/s) 

z axis 
(ms) 

latitude 
(°) 

longitude 
(°) 

altitude 
(m) 

tn-1 −0.1943 1.2738 121.8839 151.1450 −80.7500 9.3250 39.8598 116.4813 37.3570 
tn −58.1158 1.2720 −0.1906 151.1533 −80.7497 9.3103 39.8598 116.4813 37.3663 

(b) 

Figure 10 shows that the signal GD_Rdy has a pulse output at time 20.47 us, and the signal 
OUT_Rdy has a pulse output at time 30.66 us. This means that the start time and end time of the 
parallel strapdown algorithm on the FPGA platform are 20.47 us and 30.66 us, respectively. Then the 
execution time of this parallel strapdown algorithm is only 10.19 μs, when the clock frequency is 
selected as 10 ns. But the execution time of a strapdown algorithm on a DSP platform is generally in 
milliseconds. Thus the execution speed of parallel strapdown algorithm on the FPGA platform is much 
faster than the conventional algorithm on a DSP platform. 

The resource utilization of the parallel strapdown algorithm on the hardware platform of the FPGA 
device XC6VLX550T is shown in Table 2 where Slice Registers, Slice LUTs and DSP48Es are the 
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registers, the look-up tables and the multipliers based on the intellectual property (IP) hard-core of the 
Xilinx FPGA, respectively. 

Table 2. Resource utilization of parallel strapdown algorithm. 

Resource Type Slice Registers Slice LUTs DSP8Es 
Usage Amount 24,837 (3%) 26,074 (7%) 105 (12%) 

Available Amount 687,360 343,680 864 

6. Conclusions 

In this paper, a new generalized optimum strapdown algorithm with the coning and sculling 
compensation is presented, in which the PVA updating operations are carried out based on the  
single-speed structure in which all computations are executed at a single updating rate that is 
sufficiently high to accurately account for high frequency angular rate and acceleration rectification 
effects. Different from existing algorithms, the updating rates of the coning and sculling 
compensations are unrelated with the number of the gyro incremental angle samples and the number of 
the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors 
remains constant, this algorithm allows increasing the updating rate of the coning and sculling 
compensation, yet with more numbers of gyro incremental angle and accelerometer incremental 
velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown 
algorithm in a single chip FPGA, the parallelization of the algorithm is designed and its computational 
complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the 
software platform of Xilinx ISE 12.3 and the FPGA device XC6VLX550T hardware platform on the 
basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can 
greatly decrease the execution time of algorithm to meet the real-time and high precision requirements 
of system on the high dynamic environment, relative to the existing implemented on the DSP platform.  
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