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Abstract: Plasma process tools, which usually cost several millions of US dollars, are 
often used in the semiconductor fabrication etching process. If the plasma process is halted 
due to some process fault, the productivity will be reduced and the cost will increase. In 
order to maximize the product/wafer yield and tool productivity, a timely and effective 
fault process detection is required in a plasma reactor. The classification of fault events can 
help the users to quickly identify fault processes, and thus can save downtime of the 
plasma tool. In this work, optical emission spectroscopy (OES) is employed as the 
metrology sensor for in-situ process monitoring. Splitting into twelve different match rates 
by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. 
Sensors 2010, 10, 5703-5723) is used to detect the fault process. Based on the match data, 
a real-time classification of plasma faults is achieved by a novel method, developed in this 
study. Experiments were conducted to validate the novel fault classification. From the 
experimental results, we may conclude that the proposed method is feasible inasmuch that 
the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 
96.4% in success. 

Keywords: process/equipment fault detection; fault classification; optic emission spectrum 
(OES) 
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1. Introduction  

Due to the rapid progress in the semiconductor fabrication process, the density of electronic devices 
in the same die area is increasing significantly. At the same time, the process flows for manufacturing 
a device become more complicated. To improve the device yields, the process windows must be 
greatly reduced, compared to the micro size device fabrication, and the fabrication equipment has to be 
designed to meet the narrow process window. As a result, the sophisticated semiconductor fabrication 
equipment, usually costing several millions of US dollars, has inherent variability in process condition 
control. If the plasma process is halted due to some process fault, the productivity will be reduced and 
the device cost will increase substantially. In order to maximize the process/wafer yields, the fault 
process, that is, any significant shift in the process conditions, must be detected when the variation 
becomes large, compared to the process background noise. When the operating conditions shift beyond 
an allowable range, which will decrease the product yield, timely and accurate fault detection is 
required in semiconductor manufacturing [1]. The classification of fault events can help the users to 
quickly identify the faulty process, and thus can minimize or avoid plasma tool downtime. 

To identify and thus to classify the causes of faults is equally critical as sensing the plasma etching 
faults because a rapid classification and corrective action will minimize the tool downtime and 
increase the tool productivity. In semiconductor manufacturing, after a fault is detected, the cause is 
identified in two ways. The first way is to use a trial-and-error approach, inspecting all events 
associated with the fault. Therefore, the tool downtime and corrective cost are often dependent on the 
working experience of equipment engineers or technicians. The trial-and-error approach is slow and 
tedious, and is not a cost effective solution. Unfortunately, this corrective approach has been widely 
used for troubleshooting tool faults by the most semiconductor manufacturers. The second method 
involves the addition of some measurement tools and sensors. By analyzing the process data obtained 
by the sensors, one may find the probable causes of a fault. The second method is still slow and costly 
since the engineers may have to analyze a large amount of data before finding the possible solution. 
Furthermore, the success of finding the clues still relies heavily on the workers’ experience and 
understanding of the process.  

Recently, fault classification with automatic pattern recognition has been proposed as a new method. 
Bunkofske et al. [2] used T2 contribution plots to represent a specific pattern or fingerprint, which can 
be used to classify and to diagnose the faults by identifying the measured parameters, the most likely 
cause of failure. Ison et al. [3] utilized probabilistic models, based on historical data, such as  
tree-based or generalized linear models, for automatically classifying faults. Love and Simaan [4] 
described the use of a knowledge-based approach for fault diagnosis. May and Spanos [5] proposed a 
methodology for automatically detecting the faults through knowledge-based and probabilistic modeling. 
Generally, the aforementioned methods identified the fault signature first, and then compared it to 
previous fault signatures that have already been classified to identify the possible cause [6-11]. The 
disadvantages of those methods are that they needed a much longer computing time and can hardly 
achieve a real-time classification. In this study, a real-time classification method for fault plasma 
process is developed to quickly and accurately identify the causes of process faults such that the 
process tool downtime can be reduced significantly to improve the wafer/product yield and cost.  
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2. Experimental Setup 

2.1. Plasma Condition Monitor Sensor 

As shown in Figure 1, a Transformer Coupled Plasma (TCP) reactor, which is a high-density-plasma 
source and is utilized to perform the etching processes, was used as the test vehicle in this work. The 
TCP uses RF power to activate its coil for generating an electromagnetic field, which can ionize the 
gases to be used in etching process. The bias RF power is also employed to control the ion 
bombardment force in the wafer chuck to obtain the required etching properties. A TCP reactor is 
typically operated below 100 mtorr with top and bottom 13.56 MHz RF generators in the TCP coil and 
electrostatic chuck, respectively. To sustain the uniformity of the photoresist pattern, the wafer 
temperature is controlled by a backside helium cooling system during the process stage. The helium 
gas, an intermediate material, is employed to transfer heat into the electrostatic chuck (ESC). The heat 
is removed by dielectric liquid, which flows into the ESC, and can keep the temperature at a certain 
level using a temperature control unit. 

Figure 1. The configuration of the TCP. 
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OES is an in-situ sensor for plasma process monitoring, which is designed as a non-invasive 

technique to avoid disturbing the plasma etching. The plasma emission lights have rich information 
about the plasma species, which can be used to monitor the etching rate, uniformity, selectivity, critical 
dimensions, and even the profile of etching features on a wafer. The OES monitoring wavelength 
covers roughly from 190 to 870 nm. The OES uses a 2,048-pixel CCD array with an optical resolution 
of about 1.3 nm for the monitoring system. The intensity of CCD reading is affected by the snapping 
time, set to be 100 ms in this study. The optic fiber, a bundle with seven 100-μm diameter fibers and 
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terminated on each end by SMA 905 connectors, is utilized to assure that the light will be transmitted 
into the OES unit adequately, even if some of the fibers are broken due to excessive stress. Each 
optical adapter consists of a fiber-packed co-monitoring device with a UV collimating mirror and a 
connection port for the TCP reactor fiber assembly.  

2.2. Data Collection 

Figure 2 shows the overall configuration of the experimental system, which includes a TCP reactor, 
an OES module, and a computer. Through the optic fiber, the plasma emission beam is sent out from 
the OES window into the OES module. The plasma light incides onto the grating spectrum device, in 
which the split light is detected by the CCD unit of spectrometer, used to sense the wavelength 
intensity and transfers the corresponding data to the computer for further analysis. The spectrum data 
of the whole recipe are collected and then integrated time by time.  

Figure 2. Overall configuration of the experimental system. 
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Figure 3 shows an example of the spectrum data integrated by time, representing the full process 

response for both transient and steady states. In the transient state, the molecular/atom of the plasma is 
excited and ionized by RF power, which may induce plasma spiking, RF reflecting power, unstable 
pressure, and so on. In nano-scale fabrication processes, this transient state should be of concern due to 
the narrow critical process window. However, the amount of process data is huge and cannot be easily 
handled by a simple computation method. For effectively controlling the data, the sampling time is set 
to be 500 ms in the experiments. 
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Figure 3. Spectrum data integrated with time. 

 

2.3. Method of Fault Type Classification 

A real-time plasma process fault detection method has been developed in our previous study [12]. It 
employed a plasma condition matrix, which was compared with the healthy plasma model by using the 
time series of the OES full spectrum intensity data. An indicator, which is called sigma model 
matching rate, was employed to show the differences between the normal and abnormal plasma 
conditions. It only can detect the abnormal plasma process; however, a real-time fault classification 
function is needed to find the cause of faults to reduce the process tool troubleshooting time.  

Figure 4. Definition of spectral bands from OES sensor. 
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In Figure 4, the spectral band of OES can be divided into 12 bands, from “Vac UV band with 

wavelength below 190 nm” to “Near IR band with wavelength above 750 nm”. After deeply analyzing 
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the match rate in each band, it is found that the match rates have different spectral band distributions 
for different fault events. For example, the fault event of Cl2 2% shift has a different match rate 
distribution from that of TCP RF power 2% shift, as shown in Figure 5. In addition, these match rates 
vary depending on the amount of shift for each fault case. The match rates of the spectral bands are 
nearly decreased by increasing shifts for the same spectral band, while the decreased amounts are 
different for each spectral band, as shown in Figure 6. 

Figure 5. An example of the fault event of Cl2 2% shift versus that of TCP RF power 2% shift. 
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Figure 6. An example for the match rate of Cl2 shift experiment. The match rate of each 
spectral band decreased due to the increasing of the process shift amount. 
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Figure 7 shows a down trend of the match rates in Ranges II & III when the amount of shift of the 
process parameters increases. In Range I, the match rate is high and kept constant, meaning that the 
fault is not detected. As indicated in Range II, the match rate decreases as the process shift becomes 
larger. The match rate continuously decreases until it is eventually saturated when the shift is larger 
than a specific amount, as shown in Range III, depending on different process fault. Due to the limited 
resources, the whole range of fault event data from the conducted experiments cannot be obtained in 
Ranges I, II, and III. This fault classification model can be performed when the process parameters 
shift within a known range and the smaller process shift events will be ignored. The proposed method 
is useful since it can be exploited to identify or/and to classify the causes of fault process and thus to 
reduce the down time of process tool by decreasing the troubleshooting time. 

Figure 7. Down trend of matching rate with increasing the shift amount of process parameters. 

 

2.3.1. Fault Classification Modeling 

As shown in Ranges II and III of Figure 7, the matching rate of the fault event is decreased or 
saturated if the process parameter shift amount increases. However, the profile of trends in the spectral 
bands may be different for every single fault. Some fault events may have unique distributions. Therefore, 
if a statistical method can be used to identify each trend of the spectral bands, a fault model can be built 
to classify the fault process type. From the results of the sigma model, the match rate trends, which 
changed with the increase of the process parameters, can be split into three types: A, B and C. The 
matching rate in Type A cannot be detected, as shown in Range I. Any curve which covers at least two 
regions is called Type B. If the data are all located only in Range III, it is called Type C.  

Due to different type trends of match rates for each spectral band, it needs two different statistical 
tools to fit the match rate curves. For Types A and C, the match rate is stable and is within a single 
range. A general statistical method is thus applied to determine the values of mean ξ and standard 
deviation σ. For Type B, either the second-order polynomial regression method: 

y = ax2 + bx + c (1) 

or exponential regression method: 

y = hxk (2) 
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with least-square-error is exploited to fit the curves for the spectral bands. Terms x and y are known 
values and represent the parameter shift amount and match rate, respectively. Parameters a, b, c, h and 
k are obtained using the regression methods with least-square-error. After these two regression curves, 
Equations (1) and (2), are fit, the higher R-square value regression curve is selected inside the model 
table. Table 1 lists six different type of fault events, which include “Cl2 gas flow shift +0.5% to 5%”, 
“Cl2 and HBr gas flow shift +0.5% to 5%”, “Cl2 and CF4 gas flow shift +0.5% to 5%”, “TCP RF 
power shift +0.5% to 5%”, “ Bottom RF power shift +0.5% to 5%” and “ Chamber pressure shift +2% 
to 25%”. 

Table 1. Six different types of fault events with the values of its model parameters. 

(a) Fault Event of Cl2 Model with Gas Shift 0.5% to 5%. 

 Trend Type ξ σ a b c h k 
VAC UV B NA NA 435.45 −30.583 0.9364 NA NA 
FAR UV B NA NA NA NA NA 0.0159 −0.6618 
UVC B NA NA 340.22 −23.35 0.3556 NA NA 
UVB B NA NA NA NA NA 0.1262 −0.3417 
UVA B NA NA −82.903 3.0422 0.9786 NA NA 
Purple B NA NA −78.194 2.0874 0.9847 NA NA 
Blue B NA NA NA NA NA 0.0507 −0.5021 
Green B NA NA 549.54 −39.993 1.1536 NA NA 
Yellow B NA NA −192.66 7.3656 0.9516 NA NA 
Orange B NA NA 500.33 −37.255 1.2064 NA NA 
Red B NA NA 654.84 −46.728 0.938 NA NA 
Near IR B NA NA NA NA NA 0.0007 −1.1123 

(b) Fault Event of Cl2 + HBr Model with Gas Shift 0.5% to 5%. 

 Trend Type ξ σ a b c h k 
VAC UV A 0.999 0.003 NA NA NA NA NA 
FAR UV A 0.987 0.018 NA NA NA NA NA 
UVC B NA NA −208.6 7.781 0.357 NA NA 
UVB C 0.162 0.004 NA NA NA NA NA 
UVA C 0.162 0.010 NA NA NA NA NA 
Purple C 0.186 0.009 NA NA NA NA NA 
Blue C 0.146 0.004 NA NA NA NA NA 
Green C 0.140 0.000 NA NA NA NA NA 
Yellow C 0.140 0.000 NA NA NA NA NA 
Orange C 0.140 0.000 NA NA NA NA NA 
Red C 0.140 0.000 NA NA NA NA NA 
Near IR B NA NA −30.464 −0.0936 0.213 NA NA 
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Table 1. Cont. 

(c) Fault Event of Cl2+CF4 Model with Gas Shift 0.5% to 5%. 

 Trend Type ξ σ a b c h k 
VAC UV A 1.000  0.000  NA NA NA NA NA 
FAR UV A 1.000  0.000  NA NA NA NA NA 
UVC B NA NA −6.552 −3.778 0.504  NA NA 
UVB C 0.161  0.004  NA NA NA NA NA 
UVA C 0.166  0.011  NA NA NA NA NA 
Purple C 0.191  0.009  NA NA NA NA NA 
Blue C 0.147  0.003  NA NA NA NA NA 
Green C 0.140  0.000  NA NA NA NA NA 
Yellow C 0.140  0.000  NA NA NA NA NA 
Orange C 0.140  0.000  NA NA NA NA NA 
Red C 0.140  0.000  NA NA NA NA NA 
Near IR C 0.211  0.003  NA NA NA NA NA 

(d) Fault Event of TCP RF Power Model with Power Shift 0.5% to 5%. 

 Trend Type ξ σ a b c h k 
VAC UV A 1.000  0.000  NA NA NA NA NA 
FAR UV A 0.9995 0.001  NA NA NA NA NA 
UVC B NA NA 11.943 −1.044  0.389  NA NA 
UVB C 0.116  0.001  NA NA NA NA NA 
UVA C 0.114  0.001  NA NA NA NA NA 
Purple C 0.143  0.001  NA NA NA NA NA 
Blue C 0.105  0.000  NA NA NA NA NA 
Green C 0.100  0.000  NA NA NA NA NA 
Yellow C 0.100  0.000  NA NA NA NA NA 
Orange C 0.100  0.000  NA NA NA NA NA 
Red C 0.101  0.000  NA NA NA NA NA 
Near IR B NA NA 19.745 −2.5749 0.2452 NA NA 

(e) Fault Event of Bottom RF Power Model with Power Shift 0.5% to 5%. 

 Trend Type ξ σ a b c h k 
VAC UV A 1.000  0.0000 NA NA NA NA NA 
FAR UV A 1.000  0.0000 NA NA NA NA NA 
UVC C 0.403  0.0147 NA NA NA NA NA 
UVB C 0.116  0.0019 NA NA NA NA NA 
UVA C 0.115  0.0043 NA NA NA NA NA 
Purple C 0.143  0.0026 NA NA NA NA NA 
Blue C 0.105  0.0023 NA NA NA NA NA 
Green C 0.100  0.0000 NA NA NA NA NA 
Yellow C 0.100  0.0000 NA NA NA NA NA 
Orange C 0.100  0.0000 NA NA NA NA NA 
Red C 0.100  0.0000 NA NA NA NA NA 
Near IR C 0.189  0.0114 NA NA NA NA NA 
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Table 1. Cont. 

(f) Fault Event of Chamber Pressure Model with Pressure Shift 2% to 25%. 

 
Trend 
Type 

ξ σ a b c h k 

VAC UV A 1.000 0.0000 NA NA NA NA NA 
FAR UV A 1.000 0.0000 NA NA NA NA NA 
UVC C 0.380 0.0267 NA NA NA NA NA 
UVB C 0.120 0.0046 NA NA NA NA NA 
UVA C 0.121 0.0115 NA NA NA NA NA 
Purple C 0.147 0.0084 NA NA NA NA NA 
Blue C 0.105 0.0037 NA NA NA NA NA 
Green C 0.100 0.0000 NA NA NA NA NA 
Yellow C 0.100 0.0000 NA NA NA NA NA 
Orange C 0.100 0.0000 NA NA NA NA NA 
Red C 0.100 0.0000 NA NA NA NA NA 
Near IR C 0.214 0.0119 NA NA NA NA NA 

2.3.2. Probabilistic Index (PI) Calculation 

After building the statistical models, the fault event spectral bands data are sent into the model 
database for the calculation of the probabilistic index. For Type A and C curves, the probabilistic 
indexes are defined by ξ and σ. For the testing data, which is equal to ξ, the probabilistic index of band 
(PIB) value is equal to 1. For the testing data between ξ ± 0.25σ, the PIB value is assigned as 0.9. 
Similarly, for the testing data between ξ ± 0.5σ, ξ ± σ, ξ ± 2σ, and ξ ± 3σ, the PIB values is given to 
0.7, 0.5, 0.3, and 0.1, respectively. Otherwise, the testing data is outside ξ ± 3σ, the PIB is defined to 
be zero. These PIB numbers are determined, based on the long-term working experience of author. The 
algorithm of Rule Base 1 for the PIB calculation of Type A or C is expressed as follows: 

IF the testing data = ξ THEN PIB = 1 
 ELSEIF ξ − 0.25σ ≦ the testing data ≦ ξ + 0.25σ  

THEN PIB = 0.9 
 ELSEIF ξ − 0.5σ ≦ the testing data ≦ ξ + 0.5σ 
 THEN PIB = 0.7 
 ELSEIF ξ − σ ≦ the testing data ≦ ξ + σ 
 THEN PIB = 0.5 
 ELSEIF ξ − 2σ ≦ the testing data ≦ ξ + 2σ 
 THEN PIB = 0.3 
 ELSEIF ξ − 3σ ≦ the testing data ≦ ξ + 3σ 
 THEN PIB = 0.1 
 ELSEIF PIB = 0;      (Rule Base 1) 

For the PIB calculation of Type B, the x values need to be calculated using the regression methods 
of Equation (1) or (2) with the known parameters from the fault type model. If the number of spectral 
bands, which belong to Type B in the fault model, is less than 4 and x values are within the fault model 
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forecast range (FR), the PIB value is assigned to be 0.6, otherwise it is zero. For example, in a Cl2 gas 
shift experiment, the FR is from 0 to 0.05. For the number of spectral bands higher than or equal to 4, the 
mean and standard deviation values of x need to be computed due to the greater statistical population. 
If the mean value is within the forecast range of the fault model, the mean factor (M) is equal to 1, 
otherwise it is zero. On the other hand, if the standard deviation value of x is less than half of the 
forecast range, SD factor is assigned to 1, otherwise it is zero. The explanation is followed. As the 
standard deviation value of x is larger than half of the forecast range, the regression results indicate 
that they have different shift amounts of process parameters or are the different fault events in these 
spectral bands of Type B. After the M and SD values are obtained, the PIB of a spectral band can be 
obtained utilizing the following algorithm, Rule Base 2, 

IF | x – M | ≦ (0.05 FR) THEN PIB = M．SD 
 ELSEIF | x – M | ≦ (0.1FR) THEN PIB = 0.8 M．SD 

ELSEIF | x – M | ≦ (0.2FR) THEN PIB = 0.6 M．SD 
ELSEIF | x – M | ≦ (0.4FR) THEN PIB = 0.3 M．SD 
ELSEIF | x – M | ≦ (1.0FR) THEN PIB = 0.1 M．SD 

 ELSEIF PIB = 0;       (Rule Base 2) 

Finally, we can calculate the overall PI value of fault type model from the following equation: 

Pixel

PixelRangeBandPIB
PI

NearIR

VacUVBand
BandBand

2048

∑
=

×
=  (3) 

where Band Range Pixel represents the assigned spectral band, sharing how many pixels of the CCD 
sensors, and the sub-index of Band Range Pixel “Band” indicates which of the spectral bands, shown 
in Figure 4, is calculated. Figure 8 shows the flowchart of building a fault type model. First, we collect 
at least five sets of experimental data, which are at the same event but with the different process shift 
amounts. Then, we use these data to determine the band trend type; that is, Type A, B, or C. Next, we 
utilize the statistical regression methods to find the fault type model. Finally, Rule Bases 1 and 2 are 
applied to calculate the probabilistic index of the fault type event. 

2.3.3. Event Type Classification by Using Probabilistic Index 

After building up several different models of fault type off-line using the proposed method, the fault 
events can be classified as described in the flowchart in Figure 9. The fault plasma process is 
automatically detected by the sigma match rate method in real-time [12]. The data of match rate are 
split into 12 bands with different spectral bands. Then, each fault type model receives the 12 split 
match rate data to calculate its PI value. Finally, among the six calculated PI values from the six built 
models, the highest PI value is regarded as the most probable root cause of the fault. Once the possible 
clue is found, the downtime is reduced and the productivity is promoted. 
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Figure 8. Flowchart of building a fault type model. 
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Figure 9. Flowchart of event classification using the probabilistic index for each fault type model. 
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3. Results and Discussion  

In this work, six different types of fault model were built by the sigma match rate method in  
real-time [12]. The experiments were conducted to obtain the match rate data, used to verify the ability 
of fault type classification by the proposed method, except for the non-detected cases HBr and CF4 gas 
flow shifts. Based on the match data, the PI values are calculated, from which the highest PI is marked 
to be the most possible fault type. Figure 10 shows the testing results of Cl2 gas flow shift, from 1% to 
4%, in which the highest PI value of each one-percent shift is presented. In the figure, the PI values of 
other fault models are all zero because the Cl2 fault model belongs to Type B and has the totally 
different trend type curves from other models as indicated in Table 1. Thus the Cl2 fault model is 
correctly classified. This unique combination of trend type curves also leads the Cl2 fault model have 
very low PI values in performing the experiments of other type fault events. 
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Figure 10. Test results of fault classification for Cl2 gas flow shift. The Cl2 fault events are 
clearly identified from highest PI values. 
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The test results for the chamber pressure fault events are shown in Figure 11. The highest PI values 
are presented to correctly identify that the most possible fault is caused by chamber pressure, though 
all the PI values of bottom RF power shift are close to those of chamber pressure in the event tests. It 
is observed that the types of trend curves for each spectral band of these two fault events are the same 
as shown in Table 1, but the means and standard deviation are slightly different from some spectral 
bands. On the other hand, the gas flow shift events, including Cl2 and HBr and Cl2 and CF4, have 
relatively lower PI values due to their trend curve types of match rate are much different from the 
chamber pressure shift. Again the Cl2 fault type model shows zero PI values in the tests. 

Figure 11. Test results of fault classification for chamber pressure shift experiments. The 
chamber pressure fault events are clearly identified from highest PI values. 
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In Figure 12, the TCP RF power shift events are all clearly classified from other fault events. The PI 

values of TCP RF power shifts are all larger than 0.8, indicating that the proposed method can 
confidently classify the TCP RF power shift among other fault events. Again, the gas flow shift groups 
show lower PI values than other groups. 
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Figure 12. Test results of fault classification for TCP RF power shift experiments. The 
TCP RF power fault events are clearly identified from highest PI values.  
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In Figure 13, the classification results for the bottom RF power shift are shown. Except for the 2% 

shift, the bottom RF power cause can be distinguished from other groups. However, in the 2% shift, 
the most possible fault is wrongly assigned to a chamber pressure shift due to the same combination of 
trend curve types in these two groups. This may result in a wrong classification if the fault events have 
a similar combination of fault models. It therefore suggested that if the difference between the highest 
and second highest PI values is lower than 0.05, the second fault event should be also considered as 
the major cause for the troubleshooting. Further investigation has to be carried out to solve this 
problem. But, at least, it cuts the number of potential causes down to two, even though these two 
groups have the same combination of trend curve types. As a result, the proposed method still can 
reduce the time needed to find the root causes and saves downtime recovery costs. The test results of 
gas flow shift events for Cl2 and HBr and Cl2 and CF4 are shown in Figures 14 and 15, respectively. 
The proposed method can classify these fault events from the highest PI values.  

Figure 13. Test results of fault classification for the bottom RF power shift experiments. 
The bottom RF power fault events are clearly identified from highest PI values. 
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Figure 14. Test results of fault classification for the Cl2 & HBr gas flow shift experiments. 
The Cl2 and HBr gas flow fault events are clearly identified from highest PI values. 
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Figure 15. Test results of fault classification for the Cl2 & CF4 gas flow shift experiments. 
The Cl2 and CF4 gas flow fault events are clearly identified from highest PI values. 
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To validate the proposed method, some fault events, which were not constructed in the database of 

fault models, were employed to test the classification function. The test results for Gas Mode  
Center [12], Gas Mode Edge [12], adding N2 into chamber, and increased ESC temperature are shown 
in Figure 16, where all the highest PI values for the excluded fault events are much lower than 0.5, 
meaning that these test fault events are successfully classified as unknown fault events. To test the 
fault classification of adding N2 gas, it shows zero PI values for the shift events of Cl2 gas, chamber 
pressure, TCP RF power, and bottom RF power. Similar results are seen in the test event of increasing 
the ESC temperature. It points out that these testing events have totally different match rate 
distributions from the fault type models mentioned. From the experimental results shown in  
Figures 10–16, we can conclude that the overall accuracy rate of the classification for fault event shifts 
is 27 out of 28 or about 96.4% success. Moreover, the proposed method can classify the fault causes of 
plasma etching in real-time and easily build up the fault models. 
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Figure 16. Test results of fault classification for the excluded event shift experiments. The 
proposed method can be classified them into “other” fault cases due to all highest PI values 
are lower than 0.5. 
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4. Conclusions 

The plasma process tool is often used in the semiconductor fabrication etching process. In order to 
maximize the product/wafer yield and tool productivity, a timely and effective fault process detection 
and classification method is required in a plasma reactor. The classification of fault events can help 
end users to quickly identify the fault process, and thus to reduce the plasma tool downtime. In this 
work, a real-time classification method of fault cause is developed. Based on the match rates obtained 
from our previous study [12], six fault models are constructed in a database by using simple statistical 
method. Probabilistic index (PI) is defined to identify the most probable root cause for a fault event. 
Experiments were conducted to test the fault classification results. From the experimental results, it 
can be concluded that the proposed fault classification method is feasible and the overall accuracy rate 
of the classification for fault event shifts is 27 out of 28 or about 96.4% success. Moreover, the fault 
models can be easily built to classify the plasma etching fault causes in real-time. 
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