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Abstract: The analysis of hyperspectral images is an important task in Remote Sensing. 

Foregoing radiometric calibration results in the assignment of incident electromagnetic 

radiation to digital numbers and reduces the striping caused by slightly different responses 

of the pixel detectors. However, due to uncertainties in the calibration some striping 

remains. This publication presents a new reduction framework that efficiently  

reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration 

and rescaling. The proposed framework—Reduction Of Miscalibration Effects  

(ROME)—considering spectral and spatial probability distributions, is constrained by 

specific minimisation and maximisation principles and incorporates image processing 

techniques such as Minkowski metrics and convolution. To objectively evaluate the 

performance of the new approach, the technique was applied to a variety of commonly 

used image examples and to one simulated and miscalibrated EnMAP (Environmental 

Mapping and Analysis Program) scene. Other examples consist of miscalibrated 

AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) 
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scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the  

Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for 

linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly 

demonstrating the benefits of the new approach and its potential for broad applicability to 

miscalibrated pushbroom sensor data.  

Keywords: radiometric; correction; miscalibration; stripes; nonlinearity; hyperspectral; 

AISA; Hyperion; EnMAP; MoLaWa; PROGRESS 

 

1. Introduction 

The potential of imaging spectroscopy to provide more and better information about the Earth than 

do multispectral instruments is currently accompanied by an intensified development and availability 

of new hyperspectral airborne and spaceborne sensors. The new generation of hyperspectral sensors 

utilise the pushbroom technology, enabling an integration time per detector element. Therefore, these 

sensors obtain a better Signal-to-Noise Ratio (SNR) compared to whiskbroom scanners. However, the 

use of detector arrays in the sensor design requires a more precise radiometric calibration. Even small 

variations will cause striping effects in the image data that aggravate subsequent analyses such as 

classification and segmentation [1], and these effects should be reduced by performing radiometric 

rescaling beforehand. Miscalibration can be divided into two basic types—additive (offset) and 

multiplicative (slope) degradation—and can be perceived visually as image stripes. Offsets are used to 

incorporate detector-dependent dark current, which is caused by thermally generated electrons [2]. In 

contrast, slopes are used to directly assign radiance to DN. Hence, striping reduction should suppress 

stripes and at the same time preserve the spectral characteristics of the imaged surface materials. In the 

literature, specific approaches for destriping of slope stripes, offset stripes or both exist, and these are 

based primarily on methods such as interpolation [3,4], local or global image moments [1,5–7], 

filtering [8–11] or complex image statistics of log transformed slopes [12–14]. However, a 

replacement of original, but miscalibrated radiances should be applied only if information is 

completely missing or erroneous. In this work, a framework is presented that reduces linear and 

nonlinear stripes and preserves spectral characteristics by radiometric rescaling. This framework, 

Reduction Of Miscalibration Effects (ROME), consists of a linear and a nonlinear slope reduction as 

well as an offset reduction, which are performed consecutively and evaluated by specific image quality 

metrics, such as the Signal-to-Noise-Ratio (SNR). The slope reduction is performed for each detector 

element and band without any information from other detector elements.  In case dark current related 

differences between adjacent detectors have not been balanced by a foregoing calibration, they need to 

be reduced. For this purpose an offset reduction was developed that performs in a moving window and 

incorporates image statistics of adjacent image columns. Both basic reduction steps incorporate spatial 

and spectral probability distributions and integrate striping related redundancies. Subsequent to the 

degradation reduction, a radiometric rescaling is proposed. 

The rescaling aims to adjust the radiometric scale by considering areas of lowest reduction. This is 

necessary since uncertainties remain in the estimation of parameters (e.g., detector resolution in the 
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linear slope reduction) and in the incorporation of miscalibrated reference areas (e.g., potential 

miscalibration of the first image column as reference for the offset reduction). 

Additionally, it will be shown how potential trends or frequency undershoots caused by corrections 

themselves or by low SNR can be suppressed. In addition, an adapted data dimensionality reduction is 

proposed, which desensitises striping reduction approaches in the presence of edges and increases 

computational speed. Here, Minkowski metrics, gradient operators and edge extraction algorithms are 

combined to exclude discontinuities such as edges and impulse noise from further analyses if they do 

not dominate the image content [15–17]. To study the impacts of different linear miscalibrations on the 

performance of the proposed method, a specific set of grey valued images was randomly striped by 

linearly varying the slope and/or offset. The nonlinear correction facilities were tested by destriping a 

simulated EnMAP (Environmental Mapping and Analysis Program) scene [18–20], which was not 

corrected for nonlinear effects. In addition, a set of hyperspectral, miscalibrated AISA Dual [21] and 

Hyperion scenes [22,23] were processed. 

2. Materials 

Four grey valued images from the image database of the Signal and Image Processing Institute 

(SIPI) of the University of California [24], 512 × 512 pixels in size, and six hyperspectral scenes were 

selected to evaluate the performance of the proposed miscalibration reduction. In the following, the  

x-dimension is considered as column or across track, the y-dimension is considered as row or along 

track, the spectral dimension is considered as band and single banded images or one band of a multi 

banded image are considered as image.  

2.1. Grey Valued Image Samples 

To simulate different types of linear miscalibration, each of the four grey valued images from the 

SIPI image database (Figure 1) were artificially degraded 400 times by linear multiplicative and/or 

additive Gaussian white noise [25].  

Figure 1. Grey-scaled representations [24] of (a) ‘Lenna’, (b) ‘Mandrill’, (c) ‘Aerial’ and 

(d) ‘Sailboat on lake’. 

(a) (b) (c) (d) 

 

For every specific noise degradation level and type (slope, offset) the Gaussian white noise was 

randomly generated [25] and standardised to provide a mean equal to zero and a standard deviation 

equal to one. The noise degradation was performed 1600 times to achieve a statistical variety. In order 
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to simulate a specific noise level out of 80 predefined noise levels, the white noise was rescaled by a 

linear transformation to a defined minimum and maximum. This resulted in generation of 1600 different 

sets of Gaussian white noise comprising of 20 different noise sets for the 80 different noise levels.  

Each set was applied to each grey valued image and consists of 5 variations representing the 

different noise types slope and offset, slope only, offset only, slope and a priori knowledge and offset 

and a priori knowledge. In the result each grey valued image was 400 times differently degraded. 

The rescaled multiplicative noise ranged in maxima from 1 to 1789 (mult1), whereas the minimum 

was fixed to 0.0001 (mult2) to enable an impact of the multiplicative degradation. The rescaled 

additive noise ranged in maxima from 5.59 to 10,000 (off1) and in minima from −5.59 to −10,000 

(off2). The rescaling was based on exponential functions to simulate small and large degradations. To 

detect potential scaling effects, the scaling was varied four times within the 80 different noise levels:  

Case 1: multiplicative from mult2 to mult1 and additive from mult2 to reversed off1. 

Case 2: multiplicative from mult2 to mult1 and additive from mult2 to off1. 

Case 3: multiplicative from mult2 to mult1 and additive from reversed off2 to reversed off1. 

Case 4: multiplicative from mult2 to mult1 and additive from off2 to off1. 

2.2. Hyperspectral Image Samples 

A set of six specific miscalibrated hyperspectral images were additionally destriped to test the 

proposed approach on images that were acquired either from aircraft or from satellite and degraded by 

either linear or nonlinear miscalibrations. For this purpose, three hyperspectral AISA DUAL  

scenes [21], two Hyperion scenes [22,23] and one EnMAP scene [18–20] were selected. The specific 

properties of these scenes and the reasons for their selection are described below. 

The three AISA DUAL scenes were acquired on September 23rd 2010 between 1 p.m. and 3 p.m. 

for the ‘Fichtwald’ study region in Eastern Germany (Figure 2a). These data will be used in the 

Monitoring of Landscape Water Balance (MoLaWa) project.  

The AISA DUAL system consists of two separate pushbroom sensors, AISA Eagle (400–970 nm) 

and AISA Hawk (970–2450 nm), which are mounted on a stabilised aircraft platform [21]. According 

to a mean flight height of 1620 m above ground, a spatial resolution of 2 m was achieved. Acquired 

data had a varying spectral resolution of approximately 2.3 nm for the Eagle sensor and approximately 

6.3 nm for the Hawk sensor. All datasets exhibit visually perceivable striping patterns, appearing to 

indicate sensor miscalibrations. 

The two hyperspectral Hyperion image scenes [22,23] of almost identical spatial coverage of 

approximately 7.7 km × 90 km were acquired on the 14th and 22nd of June 2010 from a  

sun-synchronous 705-km-high orbit with a spatial resolution of 30 m. They partly cover a study region 

in the Southern Tian Shan Mountains along the Eastern rim of the Fergana Basin in Kyrgyzstan 

(Figure 2b). They will be analysed for lithological investigations [26–28] within the framework of the 

Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability 

(PROGRESS).  
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Figure 2. Study regions: (a) ‘Fichtwald’ (AISA DUAL) and (b) ‘Kara-Bulak’ (Hyperion). 

   
(a)                                                                                  (b) 

Due to SNR considerations, only 198 bands are routinely processed for generating level 1  

images [22]. Both data takes are affected by vertical striping in all spectral bands, which may indicate 

sensor miscalibrations similar to that of the AISA DUAL scenes. To perform further processing and 

subsequent automated information extraction, these stripes must be removed. Missing data, for 

example, those in Hyperion scenes, were bidirectional interpolated by Piecewise Cubic Hermite 

Polynomials (PCHIP) similar to Tsai et al. [4].  

The approach was tested further by using data generated to be like those from future EnMAP  

sensor [19]. EnMAP is a German-built hyperspectral pushbroom space sensor scheduled for launch in 

2015. It will measure in the 420–2450 nm spectral range using 244 bands at a varying spectral 

sampling of 6.5–10 nm. Images will cover 30 × 30 km at an approximate ground sampling distance of 

30 m. It also includes different inflight-calibration means such as a solar diffuser, a main sphere for 

radiometric stability measurements, a small sphere for spectral calibration and FPA LEDs for detector 

non-linearity calibration. An EnMAP scene simulator has been developed at the GFZ Potsdam that is 

able to generate realistic EnMAP-like data in an automatic way, applying a set of user-driven 

instrumental, atmosphere and scene parameters [18,20].  

This simulator is used for the optimisation of instrument specifications and the development and 

validation of data processing and calibration algorithms. An example of a simulated EnMAP image is 

depicted in Figure 3 showing the Makhtesh Ramon in Israel. This location in the southern Israeli 

Negev Desert is one of the most promising sites worldwide for hyperspectral sensor calibration. The 

image processing requires high spectral and spatial resolution data as input, simulated by merging 

Spot-5 panchromatic and multispectral data with representative endmember field spectra. For this 

investigation, it was assumed that the detector non-linearity calibration indicates that is not operative. 

This means that the simulated L1-process fails to correct for non-linearity. As a result, fine nonlinear 

striping patterns remain visible in the image data. 
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Figure 3. False coloured RGB image [band 12–479 nm (blue), 65–801 nm (green) and 

213–2201 nm (red)] of the ‘Makhtesh Ramon’ study region as a simulated EnMAP scene. 

 

3. Methods 

3.1. Problem Definition 

Different physical detector characteristics of a pushbroom sensor produce image stripes in acquired 

raw data. These stripes are then corrected by radiometric in-flight, vicarious [29,30], flat field [31] or 

laboratory calibrations that transform raw data to radiance. Any remaining stripes are, therefore, 

caused by miscalibrations. Considering one detector element of a pushbroom sensor, the signal S can 

be approximated by a nonlinear relation [32,33] to: 

S(e-)  
F L A tan (

FOV

 
)   T     SS 

h c ne-
 

 (1) 

where L is the at-sensor-radiance, A is the aperture of the sensing instrument, FOV is the field of view, 

T is the integration time, SSI is the Spectral Sampling Interval in respect to the Full Width at Half 

Maxima, h is the Planck constant, c is the speed of light, ne
−
is the number of collected electrons,   is 

the optical transmission,   is the centre wavelength,   is the quantum efficiency and F is the filter 

efficiency. However, the detector signal must be related to a recordable and transmittable digital 

number (DN), which may be given by the following equation: 

 N  
(S+N)  Nmax

FW 
 +  N      S   FW  (2) 

where N is a noise term incorporating Shot-Noise, read-out noise and dark noise, DNmax is the 

radiometric resolution, FWC is the Full Well Capacity that defines detector saturation, and DN0 is the 

dark current. Subsequent laboratory measurements are then used to estimate transformation 

parameters, either for the transformation of at-sensor radiance L to digital number DN considered to be 

radiometric calibration or, vice versa, considered to be radiometric scaling [34]. 

Calibration measurements are performed by sensing known physical targets and by a subsequent 

evaluation of the sensing results. The association is often realised by a polynomial least squares fit, 

which minimises the differences between modelled and measured at-sensor radiance [35,36]. This 
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minimisation of the merit function can then be used to obtain the coefficients for  

radiometric transformations: 

χ²    L-(c + ci  N
i)M

i   
 Ntargets

j  
     M    Ntargets     (3) 

where Ntargets denotes the number of calibration targets, c0 is the offset contrary to the dark current, and 

M is the polynomial degree. In many cases, the assignment is performed linearly, that is, M becomes 1. 

It is not possible or practical to calibrate a sensor for each image acquisition, which results in relying 

on calibration parameters that may no longer be up-to-date. This can lead to vertical stripes requiring a 

new calibration based solely on image data. Additionally, it is necessary to assess the stripe type to 

perform the right reduction—multiplicative or additive—linear or nonlinear. This can be achieved by 

an inspection of the outputs of different reduction approaches, either manually or automatically, which 

may be more reliable if the differences are small.  

3.2. Assessment of Stripe Type and Masking of Discontinuities 

Striping reduction can be divided into two types—an additive c0 and a multiplicative c1..M reduction. 

Because how an image is degraded is unknown, all c0, c1 and c2..M reductions should be performed and 

evaluated. The evaluation can be based on the assessment of the a priori and the a posteri  

Signal-To-Noise Ratio (SNR) [37,38]. The SNR is determined for each band as the ratio between the 

global mean and the local standard deviation representing the highest probability of all local standard 

deviations  resulting from a moving window approach [38]. The ratio of the a posteri SNR and the a 

priori SNR, considered to be the change in the SNR (cSNR), may then be used as reduction-quality 

indicator. Because only SNR relations are incorporated, the impacts of different land cover types on 

the SNR assessment are also suppressed [39]. Hence, a cSNR less than one indicates that the preceding 

reduction caused degradation, which must be revoked and vice versa.  

Discontinuities such as edges and impulse noise have a specific impact on the assessment of stripes, 

which often leads to an exclusion of edges. This generalisation is useful if the spatial contribution of 

edges is low compared to homogenous regions. Then, the incorporation of edges, which are not strictly 

across track or along track, can lead to uncertainties in the estimation of striping magnitudes. However, 

if the spatial contribution of edges is relatively high, it may be not advisable to exclude them.  

Exclusion would increase the uncertainties of any stripe assessment if the amount of remaining data 

is too low. To enable a robust decision, whether edges are incorporated or not, it is necessary to mask 

them beforehand.  

A binary edge mask can be obtained for Remote Sensing Images (RSI) with  

wavelength-independent striping by applying the Hyperspectral Edge Detection Algorithm (HEDA) as 

proposed in [40], whereas the implemented Laplacian of Gaussian (LoG) filtering [41] should be only 

performed in striping direction to exclude striping edges. If wavelength-dependent striping or grey 

valued images must be destriped, another approach that adapts the Canny algorithm has been 

suggested [15]. This adaption comprises a substitution of the input image by the gradient of the input 

image in the direction of the stripes, which is the vertical along track direction. The Canny algorithm 

applied on a stripe-suppressed gradient image is then given an edge mask without stripe contributions. 

The basic Canny algorithm for a single banded image consists of multiple steps [15]: 
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1. Gradient estimation by convolving image with the derivative of a two-dimensional Gaussian. 

2. Non-Maximum-Suppression of all edge pixels (edgels) which absolute gradient magnitude is 

lower than the magnitude of adjacent non edge pixels in perpendicular edge direction. 

3. Hysteresis for all remaining edgels by tracing and thresholding edgels for given criteria. 

To avoid uncertainties in choosing steering parameters of the Canny or HEDA algorithm and to 

minimise overestimations of across-track edges of heterogeneous regions, morphological dilations 

with small rectangular discs as structuring elements are performed [16,17]. The binary edge map (EM) 

that excludes striping is finally given, in short notation to: 

 M   
w
  

w
   

 anny 
 Lstriped

 r
  ,       striping   striping( )

   A Lstriped ,                   otherwise

  (4) 

where    is a vector of width w valued 1,   is the dyadic product,   is morphological dilation, 
 Lstriped

 r
 

is the gradient of the striped radiance image          in striping (vertical) direction r and             

is the HEDA adaption as given previously. The multiplicative application of the inverse edge map on 

         then gives a HSI where high contrast edges are zeroed. This can be performed 

straightforwardly for each band as shown by the following equation: 

Lstriped, flat   (( - M
T
   Lstriped)

T

   (5) 

To avoid uncertainties in the application of succeeding destriping approaches, masked or missing 

data as well as neighbour pixels are excluded. The workflow for masking of discontinuities of a 

hyperspectral image is then given by: 

1. Computation of binary edge maps by the Hyperspectral Edge Detection Algorithm (HEDA) in 

striping direction (equation 4). 

2. Morphological dilation to suppress edge related adjacency effects (e.g., PSF related blooming of 

edge spectra into homogeneous regions) as given by equation 4. 

3. Binary filtering of the striped band by applying reciprocal binary edge map (equation 5). 

 

3.3. Assessment of Slope c1 and Linear Reduction 

 

If a scene constant, band and detector-element-dependent slope c1 is  assumed, then c1 contributes to 

each element (pixel) within a column of one band the same multiplicative fraction (to avoid confusion 

in this work, the term ‘gain’ corresponds to the maximisation of the radiometric resolution [34]). The 

assessment of the c1 slope for each column and band can then be performed in multiple steps whereby 

a least squares polynomial fit is not required. In relation to equations (2) and (3) it follows that the 

difference of radiance data per detector and band is related only to c1 slope and to the difference of 

detected radiation equivalent DNs, because the offset c0 is constant per column and band and is 

eliminated in such a relation ( c1*DN1+ c0 – c1*DN2−c0 = c1*(DN1−DN2) ).  

This basically reduces the mathematical complexity in the linear slope reduction case down to the 

retrieval and evaluation of the distribution of differences. Therefore, an elaborated polynomial fit is not 

necessary in the linear case. Because most miscalibrations can be corrected efficiently by linear 
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reductions, the slope reductions are divided into a linear and a nonlinear case, whereby a potential 

multi-step approach for linear reduction is described in the following.  

In the first step, the grey values or radiances for each band and column are sorted in ascending 

order. In the second step, spectrally unique values col u  of a sorted and edge-map-filtered column 

vector col
s
 are extracted for each band by: 

col u    col  rows(u)   u   diag indnr   
col

s  ..nr 

cols 
    col

s
 

T

    (6) 

where   denotes a unique index vector, nr denotes the number of rows,       denotes a column index 

vector ranging from 1 to nr of length nr, s denotes the sort index and  
col

s  ..nr 

cols 
  denotes col

s
shifted 

backwards in place by one in row direction.  

In a third step, the differences for each column of unique column values are used to detect the 

potential c1 slope of this column, which can be defined as: 

diff
  
 u

( ..nu)
,    col  u

( ..nu)
,  - col  u

( ..nu- )
    (7) 

where nu is the number of elements of vector  . These column differences are then evaluated in a 

histogram in the fourth step. The minimum of the first bin (frequency category) of its normalised 

histogram          always gives the smallest difference. This smallest difference is equivalent to c1 

times the smallest difference of the unique values (SDUV) for each band and column of a not-striped 

representation of the striped image (perfectly calibrated). SDUV can be also interpreted as detector 

resolution. The resulting equation for the column-based estimation of the c1 slope is then given to: 

c  
min  P (diffc 

) 

S UV
 (8) 

If SDUV is one (e.g., often for grey valued images) then both sides of relation (8) are equivalent or 

else further processing necessary in which SDUV must be estimated.  

Such an assessment can base on the median of column differences. This then gives the final relation 

for the estimation of c  in short notation to: 

c   
min  P (diffc 

) 

med  diff
c 
 

 (9) 

In the fifth step, the application of the c1 slope reduction is verified. At first, the column c1 is 

compared to one to avoid unnecessary reductions. In this step, c1 is compared to c1 of the right adjacent 

column. This is performed by evaluating the difference in the related histograms for both columns. If 

the number of histogram bins and the positions of the maxima are equal for both columns, then c1 

reduction should be not applied for that column, because it can be assumed that different c1 cause 

‘stretches’ of the histogram and a shift between their maxima.  

If these exclusion conditions are not fulfilled, then c1 is applied for that column by division. If there 

are also offset stripes, then these offsets are reduced concurrently to c0/c1, which can be minimised by 

a succeeding offset reduction. Subsequently, a rescaling of the data is required if offset stripes are 
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present. Exclusion conditions and c1 reductions should be recorded concurrently to enable restoration 

of the original data, if cSNR indicates a necessary revoking of c1 reduction. Due to uncertainties in the 

assessment of S UV, a linear radiometric rescaling should be performed after linear c1 reduction 

which is proposed in section 3.6. The respective workflow for the linear slope reduction per band is 

then given by: 

1. Sorting of column radiances. 

2. Extraction of unique column radiances (equation 6). 

3. Calculation of differences of unique column differences (equation 7). 

4. Estimation of slope per column as ratio of the smallest difference of unique values of a striped 

band (equation 8) and SDUV (equation 9). 

5. Verification of the slope reduction necessity by evaluation of the shapes of the histograms of 

adjacent columns. 

 

3.4. Assessment of Offset c0 and Linear Reduction 
 

In the following, a multi-step approach for the reduction of offset miscalibrations is proposed that is 

conditioned by the assumptions that a radiometric offset is detector-element dependent and varies from 

scene to scene but not within a scene. This reduction approach consists of three steps that are applied 

consecutively. In the first step, two adjacent columns are considered. If these two columns cover a 

small, homogeneous area with assumed equal surface cover type, viewing geometry and second order 

effects [42], then the difference matrix diff
  
 contains the offset difference which is given in the 

following to:  

diff
  
 col  nc,row,     Lstriped,flat col  nc,row,   - Lstriped,flat col  nc- ,row,   (10) 

where Lstriped,flat  denotes the striped hyperspectral image without edges (compare equation 5). The 

redundancy of the offset information is directly dependent on the number of small homogeneous 

regions with the same surface cover type and conditions as described beforehand as well as on the 

number of rows.  

From this, it follows that remote sensing scenes may be especially convenient due to their  

along-track size. It also follows from this that a cluster agglomerating the majority of differences 

within the difference vector may most likely contain the offset reduction coefficient which is the basic 

assumption of this offset reduction approach. Thus, the distribution of the difference vector is 

examined in a normalised histogram in the second step. At first, the histogram is sorted in descending 

order according to its frequency as given in the following: 

Ps(L)   P  diff   s
 (11) 

Then, the number of the bin or the frequency category of the sorted histogram contributes to the 

rank of the probability of containing the offset reduction coefficient. In the third step, the first N bins 

of the differences histogram are considered, whereas N is user given and should be greater than or 

equal to 1. A representative offset reduction coefficient for each bin can then be obtained by 

computing the median value for each bin as given as follows: 
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c  col  nc,     med  med Psi
(L)  

  

   
 
   

   i   N (12) 

where ni denotes the sorted frequency category i. 

This concurrently reduces uncertainties caused by pre-processing such as the discontinuity masking. 

Subsequently, these bin reduction coefficients are weighted according to their frequencies. The median 

of the weighted bin correction factors is then supposed to be the offset correction coefficient of this 

column and is immediately subtracted. Coevally, the offset reduction coefficient is stored to rebuild the 

original data if succeeding cSNR estimation indicates a different stripe type. To reduce uncertainties in 

the determination of the offset deviation of the first column, a subsequent linear radiometric rescaling 

for each band is necessary, as is proposed in section 3.6. The workflow of the offset reduction per band 

can be summarised by: 

1. Calculation of the differences of adjacent columns (equation 10). 

2. Descending sorting of the estimated probability distributions of the column differences  

(equation 11). 

3. Calculation of the average column difference per frequency category (equation 12). 

4. Weighting of averaged column differences by their normalised frequencies. 

5. Estimation of the column offset as average of all weighted average column differences in low 

SNR scenarios or as first weighted average column difference of a descending frequency sorted 

histogram of column differences in high SNR scenarious. 

 

3.5. Assessment of Slopes c2..M and Nonlinear Reduction 
 

Nonlinear miscalibrations must incorporate correcting coefficients of higher degrees. It follows 

from this that additional repetitive information is crucial for the estimation of coefficients. 

Additionally, the distribution and scaling of the respective radiance domain is not known, which 

aggravates a polynomial radiance assignment. In the following, a multi-step band-wise approach is 

proposed, reducing both the influence of these limitations and nonlinear striping. It consists of a linear 

c1 and a nonlinear c2..M reduction as well as a c0 reduction.  

At first, the minimum and the maximum radiance per band as well as all unique column radiances 

per band are determined as described in Section 3.3. Secondly, the distribution of all column 

frequencies is considered. For this, a histogram can be used that is limited to the minimum and 

maximum radiance in this band and is binned with a frequency interval equal to the difference between 

maximum and minimum divided by the number of unique radiances of this band. This frequency 

interval then gives a domain for all unique column radiances for which it is assumed that dark current 

and saturation are similar for all detectors. Finally, unique column radiances are considered based on 

their frequencies in the previously defined histogram. The bin numbers or frequency interval numbers 

themselves then gives the domain per column, which could be considered to be quasi DN, and the 

unique column radiances can be fitted against their domain. For this purpose broadly used nonlinear 

least squares fits may be used. To avoid uncertainties in the determination of column offsets, the 

subsequent column-related reduction of nonlinearities by subtraction should be only applied on all 

column radiances with polynomial column coefficients greater than one. After this, a linear slope and 



Sensors 2011, 11 

 

6381 

offset correction should be applied, as previously described. Additionally, it is necessary to recover the 

radiance level and the radiance scaling of the entire band as described in Section 3.6. The respective 

workflow for the nonlinear reduction per band is given by: 

1. Detection of minimum and maximum per band and extraction of unique column radiances 

(equation 6). 

2. Definition of a histogram domain (x-axis) in respect to band maximum and minimum. 

3. Extraction of frequency categories (x-vectors) per unique column radiances in respect to the 

previously defined histogram domain. 

4. Least squares polynomial fit of column frequency categories (x-axis) and unique column 

radiances per column (y-axis). 

5. Reduction of column nonlinearities by subtracting estimated column polynom c2..M. 

6. Linear slope and offset reduction as given in Sections 3.3 and 3.4. 

 

3.6. Scale Assessment 
 

In order to reduce various effects of foregoing reductions a spectral rescaling is necessary. These 

effects can be caused by: 

1. c  offset reduction comprising offset relations. 

2. linear c  reduction potentially biased by differences between real and assessed SDUV. 

3. nonlinear c2..M reduction assuming similarities of band minima and dark currents as well as band 

maxima and saturations. 

They can be minimised by rescaling the destriped radiance spectra to minimally striped areas. For 

this purpose a multistep approach was developed that detects and evaluates areas of lowest offset 

striping quantity. Based on these areas the whole band is rescaled by considering the spectral range 

before and after destriping.  

At first, a striping quality indicator (SQI) is defined that combines both the level of stripes and their 

variation within a window. SQI can be defined as a vector of products of standard deviations of 

absolute reductions times the median of absolute reductions within a window of a pre-defined size  

(3 columns in size in minimum). Secondly, minima of SQI vectors are identified to detect minimal 

striped areas.  

The position of the minimum is then indicating lowest reduction. The middle of the window is used 

as positional index for the column used as reference. To avoid rescaling of destriped images in 

reference to columns within this window, which are significantly miscalibrated, the reduction 

quantities should be considered. This can be performed by an evaluation of the ratio between the mean 

of first and last reduction coefficient within the minimum window and the reduction coefficient at the 

positional index. If all criteria are fulfilled, that is, a striping reduction was applied, SQI gives a 

positional index of minimal striped area, where striping is significant lower in the window, centred at 

the positional index, compared to other areas. Then, the last step—the scaling—is applied for each 

band at the positional index or column by: 
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Lrescaled    Ldestriped - minold    
maxref - minref

maxold - minold
  + minref (13) 

with minold as local minima and maxold as local maxima in the destriped image window and minref as 

local minima and maxref as local maxima in the striped image window similar to [34,43]. Hence, the 

work flow for the rescaling is then given by: 

1. Computation of SQI within a moving window of a pre-defined size. 

2. Definition of positional index by detecting the minimum within the SQI vector. 

3. Rescaling of the whole band by applying equation 13 at the positional index. 

 

3.7. Trend Reduction and Process Chain 

 

In specific cases, brightness gradients of the destriped image can additionally disturb succeeding 

analyses. These trends may be caused by offset reduction undershoots or by material dependent effects 

due to varying illumination and acquisition geometry. In the following, a multi-step, band-related 

approach is proposed, which aims at the reduction of these effects. First, the median of each column is 

calculated, which is robust in the presence of outliers. This median vector v
med

 can be then boxcar 

convolved to get a smoothed vector representation vs of the columns means. This smoothed median 

vector vs indicates low frequency fractions of the column averages and, hence, potential undershoots 

or trends. Afterwards, the smoothed median vector can be mean normalised to disable reductions if 

there are no undershoots. To detrend the destriped image, the normalised, smoothed median vector can 

then be applied by division as given in: 

Ldetrend   
Lrescaled

ind
nr
   vs

norm

    vs   v
med

* 
 
w

w
 (14) 

where vs
norm

 denotes the mean normalised smoothed median vector, v
med

 denotes the median vector, 

* denotes convolution and w the boxcar or window size. The workflow for detrending is then given by: 

1. Calculation of the median vector consisting of the median values for each column.  

2. Smoothing of the median vector to remove outliers. 

3. Mean normalisation of the smoothed median vector to distinguish trends. 

4. Detrending the rescaled, destriped band by applying Equation 14. 

Some of the sub steps of the previously proposed approach are limited to one spectral dimension. In 

consequence, it is recommended to destripe multi-dimensional data for each band as shown  

in Figure 4. 
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Figure 4. The destriping processing chain of the ‘ROM ’ framework. 
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3.8. Evaluation Metrics 

The global Peak-Signal-to-Noise-Ratio (PSNR) [40,44], the global Shannon Entropy [40,45] and 

the local Modified Structural Similarity Index (MSSIM) [4,44,46] were selected to objectively 

evaluate destriping outputs in comparison to striped inputs or ground truth. The PSNR considers the 

spectral ratio between band maximum and standard deviation, the Shannon Entropy incorporates 

spectral and spatial frequencies distributions and the MSSIM combines local structure, luminance and 

contrast metrics. All three image quality indicators were equally weighted. 

4. Results and Discussion 

Procedures to reduce radiometric miscalibration were automated to be repeatable.  
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4.1. Results for Destriping of Grey Valued Images 

The four grey valued images were selected to cover a broad range of spatial and spectral 

contributions. The ‘Lenna’ image provides a homogenous grey value distribution but contains also a 

long ‘natural’ vertical stripe in the left part of the image. The ‘Mandrill’ image is imbalanced due to 

spatial distribution of gradients and spectrally homogeneous regions. The ‘Aerial’ image has a 

homogenous grey value distribution, but lacks grey value variance.  The ‘Sailboat on lake’ image can 

be characterised as having a balance of gradients and homogeneous regions as well as a homogeneous 

grey value distribution. Each grey valued image was differently striped 400 times and then  

destriped (see examples of Figure 5 for comparison) to assess the impact of different stripe types, of a 

priori knowledge and of specific image properties on the performance of the developed  

destriping approach.  

Figure 5. Exemplary striped grey scaled images (left) and destriping results (right) for 

slope c1 and offset c0 (a,d,g,j), slope c1 (b,e,h,k) and offset c0 reductions (c,f,i,l); m=0.0001. 

 

a) (a) m c1 5.66;  

−1767.77 c0  767.77 

 

(b) m c1  789.85 

 

(c) −641.5 c0 64 .5 

 

(d) m c1    −      c0       

 

d) (e) m c1 88.18 

 

e) (f)   c0 3  .5 

 

(g) m c1  5.59; −7. 7 c0 7.27 

 

f) (h) m c1  4.92 

 

g) (i) −1767.77 c0  767.77 

 

(j) m c1 88.18;   c0   .48 

 

(k) m c1 5.66 

 

(l)   c0   3.4 

 

All three image quality indicators—PSNR, Entropy and MSSIM [4,40,44–46]—were related to 

ground truth observations to avoid potential drawbacks that are associated with relying on a single type 

of evaluation approach [40], such as the universal image quality index [47].  
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Approximately 93% (100–7.3%) of the original information content was recovered (Table 1). The 

best results were achieved for the ‘Aerial’ image (~98%) and for the ‘Sailboat on lake’  

image (~96%). Lowest recovery rates were obtained for destriping ‘Lenna’ (~9 %) and  

‘Mandrill’ (~86%). C1 slope reduction outperformed offset reduction, whereby a priori knowledge had 

the highest impact on slope-related destriping. A visual inspection of all destriping results indicated 

that approximately 7% of them exhibited barely any detectable stripes that were potentially related to 

the information content quantity that could not be recovered. This supports the assumption that the 

combination of image quality indicators allows for the more efficient evaluation of image processing 

outputs [40]. Unbiased results were obtained for ‘Lenna,’ which diminished reductions in the area 

close to the long vertical structure (Figure 1a and 1c), as indicated by PSNR. The same applies to 

gradient-dominated images such as ‘Mandrill,’ in which the roughness-related entropy indicates the 

limitations of an adjacency-related c0-reduction approach (Figure 1d and f). The impact of the 

magnitude of miscalibration on the performance of proposed algorithm was also tested (Table 2).  

 

Table 1. Average deviation of the 1600 destriped images from ground truth [%]. 

Stripe 
Flag

* 
PSNR Entropy MSSIM 

Average 
type Im 1

1 
Im 2

2 
Im 3

3 
Im 4

4 
Im 1

1 
Im 2

2 
Im 3

3 
Im 4

4 
Im 1

1 
Im 2

2 
Im 3

3 
Im 4

4 

ALL  16.4 13.0 1.6 4.2 7.5 29.6 2.8 2.7 9.6 9.0 0.7 2.8 8.3 

Offset 
o 15.2 13.0 4.7 10.6 7.0 29.6 8.4 5.1 9.0 9.0 2.2 8.6 10.2 

x 16.8 13.0 5.1 14.5 7.7 29.5 9.2 7.1 9.7 9.0 1.9 8.1 11.0 

Slope 
o 16.8 13.0 0.0 0.0 7.7 29.6 0.0 0.0 9.7 9.0 0.0 0.0 7.1 

x 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Average 

 

Average 

13.1 10.4 2.3 5.9 6.0 23.6 4.1 3.0 7.6 7.2 1.0 3.9 7.3 

 Flag denotes by ‘o’ no and by ‘x’ a-priori knowledge of the stripe type; 1  m   is the ‘Lenna’ image  2 Im 2 is 

the ‘Mandrill’ image  3  m 3 is the ‘Aerial’ image  4  m 4 is the ‘Sailboat on lake’ image. 

 

Table 2. Average stripe magnitude impact on this approach for all destriped images [%]. 

Stripe 
Flag

*
 

PSNR Entropy MSSIM 
Average 

Type Im 11 Im 22 Im 33 Im 44 Im 11 Im 22 Im 33 Im 44 Im 11 Im 22 Im 33 Im 44 

ALL  0.8 0.0 2.1 6.2 0.8 0.0 2.1 6.2 0.4 0.0 3.8 4.7 2.3 

Offset 
o 1.7 0.0 3.1 7.7 1.7 0.0 3.1 7.7 0.9 0.0 5.9 5.7 3.1 

x 0.4 0.0 3.4 9.8 0.4 0.0 3.4 9.8 0.2 0.0 6.5 7.2 3.4 

Slope 
o 0.4 0.0 1.6 4.0 0.4 0.0 1.6 4.0 0.2 0.0 2.9 2.8 1.5 

x 14.1 11.5 1.6 4.0 14.1 11.5 1.6 4.0 8.2 42.0 2.9 2.8 9.8 

Average 3.6 2.4 2.4 6.4 3.6 2.4 2.4 6.4 5.0 25.1 3.6 4.5 5.6 

Flag denotes by ‘o’ no and by ‘x’ a priori knowledge of the stripe type     m   is the ‘Lenna’ image     m   is 

the ‘Mandrill’ image  3  m 3 is the ‘Aerial’ image  4  m 4 is the ‘Sailboat on lake’ image. 

 

According to the results presented in Table 2, the striping magnitude does not have a significant 

impact on the proposed reduction approach, indicating the robustness of the proposed approach. 

  



Sensors 2011, 11 

 

6386 

On average, very high and robust image recoveries were achieved. This is exemplarily 

demonstrated for weak striping (e.g., Figure 5l) or for strong striping (e.g., Figure 5d). Images such as 

‘Lenna’ with column-long, spectrally uniform structures or images such as ‘Mandrill,’ which are 

significantly dominated by edges, are not to be expected to be commonly observed by Remote 

Sensing. In summary, an overall recovery rate of 97% (the average for ‘Aerial’ and ‘Sailboat on lake’) 

was achieved—independent of linear stripe type and magnitude. 

 

4.2. Results for Destriping of Hyperspectral AISA, Hyperion and EnMAP Scenes 
 

The destriping results of the hyperspectral scenes were evaluated like the grey valued images. 

Nevertheless, two cases must be differentiated. Ground truth was available only for the EnMAP scene, 

and this scene was nonlinearly, artificially striped. The AISA and the Hyperion scenes were linearly 

destriped in association to the cSNR-related decision system.  

The averages of image quality indicators are shown in Table 3, whereas only the rate of change 

could be computed for the AISA and the Hyperion scenes, because there was no ground truth 

information available. The AISA scenes were radiometrically recalibrated by approximately 5%. The 

cSNR decision system indicated that the AISA scenes were radiometrically miscalibrated due to dark 

current. Assuming that dark current does not change over time, the AISA striping must have been 

caused by offset miscalibration.  

 

Table 3. Image quality indices for destriped hyperspectral scenes as rate of change [%]. 

Sensor Scene PSNR Entropy MSSIM Average 

AISA 

Scene 1 −0.8 5.0 9.2 4.4 

Scene 2 −2.1 10.1 8.3 5.5 

Scene 3 −1.6 8.6 7.7 4.9 

 Average −1.5 7.9 8.4 4.9 

Hyperion 
Scene 1 1.2 3.1 6.0 3.4 

Scene 2 1.5 5.1 6.8 4.5 

 Average 1.4 4.1 6.4 4.0 

EnMAP Scene 1 2.4 8.0 6.5 5.6 

 

All bands of inspected AISA DUAL scenes showed miscalibrations (e.g., Figure 6). However, after 

destriping, miscalibration-related stripes appeared to be completely removed, resulting in an 

improvement of the MSSIM and the Entropy. The removed stripes were mostly non-negative, leading 

to a PSNR reduction because the band maxima must be lowered. A SNR of 20 was used as a general 

threshold for trend correction for each of the images. Consequently, a laboratory calibration of this 

AISA DUAL sensor is suggested.  
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Figure 6. Exemplary grey scaled, striped images of sections in the middle of an AISA 

DUAL scene (VNIR-band 65–541 nm (a), SWIR-band 283–1190 nm (c) and their 

respective radiometrically recalibrated results (VNIR (b), SWIR (d) as well as a transect 

plot (e) through the middle of the same section for same VNIR and SWIR bands. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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Table 4. Inter-scene striping relations. 

Sensor Scene Slope Offset Average stripe correlation R² 

AISA 

Scene 1 to Scene 2 − .   3 0.84 

0.85 Scene 1 to Scene 3 − .     0.93 

Scene 2 to Scene 3 − .     0.85 

Hyperion Scene 1 to Scene 2 − .     0.92 0.92 

As previously assumed, miscalibrations may vary only slowly over time. This indicates that 

corrections are highly correlated and that they show similar stripe patterns concurrently, which could 

be addressed by considering the gradients of removed stripes.  

To enable a scene- and sensor-independent estimation of the stripe metrics of striped AISA and 

Hyperion data, the across-track gradients of the detected offset stripes were evaluated. At first, the 

gradients of the difference of the striped and the destriped images were computed for each band. Then, 

a random row of each gradient scene was selected. After this, the correlation coefficients between each 

scene and band were computed. Additionally, least squares regression coefficients for the correlation 

vector of each scene pair were estimated to detect potential trends. The average stripe correlations as 

well as the regression coefficients clearly indicate for the AISA DUAL and Hyperion scenes that the 

reductions are stable over time (Table 4). The Hyperion scenes were radiometrically recalibrated by 

approximately 4%. The cSNR decision system indicated that miscalibration is related to dark current. 

Similar to AISA, all miscalibration-related stripes appeared to be removed, as shown in Figure 7. 

Missing values in the Hyperion scenes were interpolated by Piecewise Cubic Hermite Interpolation 

Polynomials in across- and along-track directions [4]. The average stripe correlation was higher when 

compared to AISA, which is considered unbiased for a satellite mounted sensor. However, for both 

types of scenes—AISA DUAL and Hyperion—in the SWIR spectral range, fewer offset 

miscalibrations were observed than were in the VNIR (as  seen by comparison of Figures 6 a,b, 7 a,b 

and 6 c,d, 7 c,d, respectively). Due to the temporal stability of the obtained Hyperion offset 

recalibration dataset, it can be assumed that these offsets can be applied to other Hyperion scenes. 

Nevertheless, it is suggestible to rescale each AISA and Hyperion scene radiometrically to avoid any 

assumptions concerning the stability of a correction. 

In contrast to the AISA and Hyperion scenes, the EnMAP scene contains nonlinear, artificial effects 

and hence stripes appear (e.g., in Figure 8). Alike to the grey valued images (Figure 1) ground truth 

was available, which is required to evaluate the performance of the developed algorithm for the 

nonlinear case. 

According to the results shown in Table 3 approximately 94% of the original scene quality could be 

recovered, similar to the results obtained for the grey valued sample images. Despite the lack of 

redundancy for the estimation of column-dependent calibration coefficients, this result demonstrates 

the broad applicability of the developed approach, whereas the results were completely automatically 

obtained without any scene-related ‘fine tuning’.  
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Figure 7. Exemplary grey scaled, striped images of sections in the middle of a Hyperion 

scene (VNIR-band 11–457 nm (a), SWIR-band 205–2203 nm (c) and their respective 

radiometrically recalibrated results (VNIR (b), SWIR (d) as well as a transect plot (e) 

through the middle of the same section for same VNIR and SWIR bands. 
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Figure 8. Exemplary grey scaled, striped images of sections in the middle of a EnMAP 

scene (VNIR-band 53–713 nm (a), SWIR-band 214–2210 nm (c) and their respective 

radiometrically recalibrated  results (VNIR – (b), SWIR – (d)) as well as a transect plot (e) 

through the middle of the same section for same VNIR and SWIR bands. 
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The striped representation of the EnMAP ground truth scene had an image quality deviation to 

ground truth of approximately 22%, that is, the overall image quality improvement between the striped 

and the striping reduced scene was approximately 21%. However, a subjective visual examination of 

the recalibrated EnMAP scenes has revealed that not all stripes were removed, corresponding to a 

detailed comparison between ground truth and destriped transects (Figure 8e). This is similar to the 

results for the grey scaled images, although different miscalibrations require different approaches to 

reduce them. This indicates that exclusive visual inspection of the AISA and Hyperion related 

destriping results leads to the incorrect assumption that all miscalibrations can completely be removed. 

According to the ground truth-related results for linearly striped grey valued sample images of similar 

grey value distributions, approximately 97% of a perfect calibration for the AISA and the Hyperion 

scenes have been achieved. Hence, a significant miscalibration reduction has been gained.  

The proposed ROME framework is potentially affected by low SNR scenarios (SNR less than 20) 

where the offset reduction can cause frequency undershoots that are minimised by the proposed trend 

correction. However, sensitivity investigations have revealed that reduction quality is only weakly 

correlated to SNR.  

Another aspect is the influence of natural, column-parallel, homogeneous regions covering the 

whole image extent on the offset reduction. Although the occurrence of such structures is not very 

likely for the majority of image data, they could be automatically detected and separately processed by 

repeated rescaling of these regions in order to avoid related artefacts.  

5. Conclusions 

The developed ROME framework for the reduction of linear and nonlinear miscalibration effects 

consists of two main parts—the spatial reduction of striping and the spectral rescaling of the image 

data. In order to reduce stripes and to preserve the spectral characteristics of observed surfaces both 

parts have to be executed consecutively. 

The impact of these steps is proportional to the impact of the miscalibration on post-processing. 

Further processing steps, such as atmospheric correction and classification showed that uncorrected 

striped or miscalibrated data strongly affect subsequent analyses and result among others in striped 

columnar water vapour and aerosol optical thickness estimations and wrong segmentations. Hence, 

destriping is strongly recommended if data contain visually perceptible stripes after calibration.  

The developed approach was widely tested and evaluated by different methodologies. In this 

process high calibration recovery rates of approximately 97% for linear miscalibration and 

approximately 94% for nonlinear miscalibration have been achieved. It was shown that linear and 

nonlinear miscalibration-related striping can be efficiently suppressed without a significant loss of 

radiometric scaling and variance information or gradient magnitudes information. Furthermore, 

destriping did not lead to artefacts in the resulting image spectra which is exemplary demonstrated by 

the profiles shown in Figures 6–8e. 

Concurrently, the successful destriping of images of different origin, stripe type and magnitude 

demonstrates the broad applicability, robustness and the high performance of the developed approach.  

Additionally, the full automation, the reduced mathematical complexity of the proposed method, as 

well as the insensitivity to a priori knowledge, indicate operational capabilities. Nevertheless, there is 
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still place for improvements, for example, through an information-related redundancy amplification for 

the assessment of nonlinear calibration coefficients.  
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