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Abstract: Position sensing with inertial sensors such as accelerometers and gyroscopes 
usually requires other aided sensors or prior knowledge of motion characteristics to remove 
position drift resulting from integration of acceleration or velocity so as to obtain accurate 
position estimation. A method based on analytical integration has previously been 
developed to obtain accurate position estimate of periodic or quasi-periodic motion from 
inertial sensors using prior knowledge of the motion but without using aided sensors. In 
this paper, a new method is proposed which employs linear filtering stage coupled with 
adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion 
the proposed method requires is only approximate band of frequencies of the motion. 
Existing adaptive filtering methods based on Fourier series such as weighted-frequency 
Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner 
(BMFLC) are modified to combine with the proposed method. To validate and compare the 
performance of the proposed method with the method based on analytical integration, 
simulation study is performed using periodic signals as well as real physiological tremor 
data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results 
demonstrate that the performance of the proposed method outperforms the existing 
analytical integration method. 
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1. Introduction 

It is a well-known fact that the use of numerical integration of acceleration/angular rate information 
from inertial sensors (accelerometers/gyroscopes) to obtain position/orientation information inherently 
causes position/orientation errors to grow with time, which is commonly known as “integration drift”. 
For that reason, estimation of position/orientation using inertial sensors is performed with the help of 
externally-referenced aided sensors or sensing systems [1,2], or prior knowledge about the motion to 
correct for the drift. 

With the aided sensors or sensing systems, Kalman filters (KF) or extended-Kalman filters (EKF) 
are commonly used to fuse two sources of information: one coming from the inertial sensors, and the 
other from aided sensors or sensing systems in an attempt to correct for the drift. For example, 
correction of orientation drift using EKF and a magnetometer as an aided sensor is described in [3,4]. 
Correction of position and orientation drift using EKF and ultrasonic sensors as aided sensors is 
presented in [5]. One of the drawbacks of having to rely on aided sensors to correct for the drift is that 
the accuracy depends on the update rate, availability, and reliability of the aided sensors. 

An example application of the use of inertial sensors with prior knowledge of motion is in  
human-walking studies. The use of prior knowledge of motion of human walking makes it possible to 
avoid the use of aided sensors or sensing systems for correction of the drift [6-8], allowing studies of 
natural walking outside the laboratory. Another application of the use of inertial sensors with prior 
knowledge of motion is physiological tremor sensing. In physiological tremor sensing for real-time 
compensation [9,10], zero-phase adaptive filtering algorithms based on truncated Fourier series such as 
weighted-frequency Fourier linear combiner (WFLC) [11-13] or band-limited multiple Fourier linear 
combiner (BMFLC) [14-16], which can detect periodic or quasi-periodic signals, are employed.  

These algorithms can estimate desired periodic signals from a mixture of desired periodic signals 
and undesired signals without altering the phase and magnitude of the desired periodic signal. 
However, the WFLC and the BMFLC have limitations in that the magnitude of the undesired signals 
comparing to that of the desired periodic signal cannot be too large in order to achieve satisfactory 
accuracy of the estimate [17,18]. Since the magnitude of the integration drift is too large compared to 
that of the periodic signal, the algorithms are not well suited for the problem of drift. A method was 
developed in [19] to obtain the position information from acceleration with analytical integration to 
avoid drift caused by numerical integration. However, the method in [19] does not consider drift in the 
obtained acceleration for position estimation and does not compensate for a signal that has already had 
its phase and magnitude changed by inevitable filters such as a hardware filter which exists at the 
output of ADXL-203 accelerometers [20]. 

To obtain drift-free position estimates of periodic or quasi-periodic motion using inertial sensors 
without employing other aided sensors or sensing systems, one possible solution is to employ linear 
high-pass filtering of drifted position by choosing a cutoff frequency somewhere between the 
frequencies of low-frequency drift signal and that of the periodic motion which has relatively high 
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frequency. However, linear filtering inherently introduces phase-shift and attenuation [21], resulting in 
inaccurate position/orientation estimate. 

In this paper, a method is proposed in which a combination of linear filtering and modified-WFLC 
or modified-BMFLC is employed. The integrated signal will be filtered using a high-pass linear filter. 
The filtered signal, which is the phase-shifted and attenuated version of the actual desired periodic 
signal, will then be estimated using WFLC or BMFLC algorithms. Accordingly, the estimate will be 
the phase-shifted and attenuated version of the actual periodic signal. The estimate of the actual 
periodic signal is recovered from the phase-shifted and attenuated estimate by compensating for the 
phase-shift and attenuation introduced by the filter. The compensation is achieved with modification of 
existing algorithms WFLC and BMFLC. 

The main idea behind the proposed method relies on the knowledge of the specification of the linear 
filter employed in filtering and on that of the frequency content of the desired periodic signal to be 
estimated. If specification of a filter and frequency of an input signal to the filter are known, the 
amount of phase-shift and attenuation of the signal at the output of the filter can be known. Using the 
knowledge of the amount of phase-shift and attenuation introduced by the filter for a particular 
frequency, compensation for the phase-shift and attenuation of each frequency component in the 
periodic signal can be performed. 

Since WFLC and BMFLC algorithms can provide information on the frequencies in the desired 
periodic signal together with their respective amplitudes, the algorithms are well suited for the 
proposed method. In Section 2, the existing algorithms are explained briefly and the modified versions 
of the algorithms together with the proposed method are presented.  

2. Methods 

In sub-section 2.1 existing methods for zero-phase estimation of periodic signals are discussed first. 
It should be clear that the existing methods are not the contribution of this paper, but are described 
briefly to aid readers clearly understand the proposed method which is the contribution of the paper. In 
sub-section 2.2, the proposed method of drift-free position estimation using inertial sensors is 
described. Since the proposed method requires the use of an existing estimation method and its 
modification is required, modification to the existing methods are proposed and described. It should be 
noted that analytical integration method for drift-free estimation described in [19] does not account for 
the acceleration drift and the phase-shift and attenuation that has already been introduced by inherent 
hardware filters. The proposed method can handle these issues very well. 

2.1. Existing Methods 

Weighted Fourier Linear Combiner (WFLC) [11-13] is suitable for estimation of periodic or  
quasi-periodic motion with single dominant frequency, whereas Bandlimited Multiple-Fourier Linear 
Combiner (BMFLC) [14-16] is suitable for estimation of band limited signals consisting of multiple 
frequency components. 
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2.1.1. Weighted-Frequency Fourier Linear Combiner (WFLC) 

The WFLC [11-13] algorithm extends the well-known Fourier Linear Combiner (FLC) [22] 
algorithm to also adapt to the time-varying reference signal frequency, using a modification of the 
least-mean-square (LMS) algorithm. As FLC only operates at a fixed frequency, the goal of the WFLC 
algorithm is to adapt to a periodic signal of unknown frequency, phase and amplitude. A block 
diagram of the WFLC algorithm is shown in Figure 1.  

Figure 1. WFLC algorithm. 
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where M is the number of harmonics used, k = 1, 2,… represents time-index, T is a sampling period. 
As in FLC, the weight vector is updated using the LMS algorithm: 
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An estimation of the desired periodic or quasi-periodic signal in the input can be calculated as: 

k
T
kk xws rr .ˆ =  (5) 

However, it should be noted that a good estimation is achieved only when magnitudes of other 
undesired signal components in yk are not too large comparing to the magnitude of sk. 

2.1.2. Bandlimited Multiple Fourier Linear Combiner (BMFLC) 

One limitation of WFLC is its inability to extract a periodic signal containing more than one 
dominant frequency. To overcome that, BMFLC [14-16] was developed. This approach relies on 
choosing a pre-determined band of frequencies based on the prior knowledge of the desired signal’s 
frequency band. Spacing of frequencies is chosen according to user’s requirement. The block diagram 
of BMFLC is shown in Figure 2.  

Figure 2. BMFLC algorithm. 
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where fr are the frequencies within a given band of interest and N represents the number of frequencies 
used. The frequencies can be an integer as well as a rational number. The weights of BMFLC can be 
updated via: 
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k
T
kk xws rr .ˆ =  (9) 

Again, as with WFLC, a good estimation is achieved only when magnitudes of other undesired 
signal components in yk are not too large compared to the magnitude of sk. 

kTf12π

kTf22π

kTfNπ2

kw1

kNw )1( +

kw2

Nkw

kNw )2( +

Nkw2

kε

kx
r

kŝ
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2.2. Proposed Method of Drift-Free Estimation  

In this section, the proposed method of drift-free estimation of desired periodic or quasi-periodic 
signal using one of the algorithms described in the previous section, and compensation for the  
phase-shift and attenuation introduced by the linear filters is described. The proposed method is 
described using acceleration as representative inertial sensor output. A block diagram describing the 
method to obtain the position estimate of desired periodic or quasi-periodic motion which is sensed by 
an accelerometer is shown in Figure 3.  

Figure 3. The block diagram showing the steps in estimation of position from 
accelerometer’s data. 
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In the figure, pk is position of periodic or quasi-periodic motion and ak is corresponding 
acceleration. The acceleration of the periodic or quasi-periodic motion is attenuated by the inherent 
hardware filter of the accelerometer. The attenuated acceleration is designated as a'k. The acceleration 
is numerically integrated to obtain the position which contains the desired periodic or quasi-periodic 
motion as well as low-frequency drift. As mentioned in the previous section, if the position obtained 
from the numerical integration is fed into the input of WFLC or BMFLC algorithm, the estimation 
performance of the algorithm is severely degraded by the low-frequency drift whose magnitude is too 
large compared to that of the periodic or quasi-periodic motion signal. Therefore, the low-frequency 
drift is filtered using a linear high-pass filter. The cutoff frequency and the order of the filter are to be 
chosen so that the low-frequency drift is removed significantly.  

The input signal to WFLC or BMFLC, p'k is an phase-shifted and attenuated version of the desired 
periodic or quasi-periodic signal pk due to filtering by the hardware filter and the high-pass filter. The 
WFLC or BMFLC operates on the p'k using a reference input vector [from Equation (1) for WFLC and 
from Equation (6) for BMFLC] and produces a coefficient or weight vector T

kwr and an estimate of p'k,

kp'ˆ . Since the goal is to achieve pk, compensation for the phase-shift and attenuation is to be 
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performed. The compensation is achieved by performing an inner product operation on the weight 
vector obtained, and the modified reference input vector. The modified reference input vector is 
obtained by modifying the reference input vector such that the modified reference input vector can 
compensate for the phase-shift and attenuation. How to obtain the modified reference input vectors in 
WFLC and BMFLC are described in the later sub-sections. 

2.2.1. Modified-WFLC 

Although employing a single high-pass filer with an appropriate cutoff frequency might be 
sufficient to remove the drift before filtering with WFLC or BMFLC algorithms, the modifications 
made to the algorithms are presented in general for any number of linear filters employed. Therefore, 
the method can handle inherent filters of the sensors. 

Let l
rk

m and ,l
rk
φ respectively be the phase-shift and attenuation introduced by thl filter for thr  

harmonic frequency of the fundamental frequency 
k

w0 at thk sample, where r = 1, 2,…,M; l = 1, 2,…,P; 
and P is the number of filters. Then, in WFLC, a modified reference input vector, 
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A compensated estimate (an estimate with compensation for phase-shift and attenuation) of the 
desired signal becomes: 

k
T
kk xws '.ˆ rr

=  (11) 

The block diagram of the compensation using the modified reference input in WFLC is shown in 
Figure 4. 

Figure 4. The block diagram of the compensation using the modified reference input in WFLC. 
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2.2.2. Modified-BMFLC  

In the case of BMFLC, assuming l
rm and ,l

rφ  r = 1,…,N; l = 1,…,F respectively are the phase-shift 
and attenuation introduced by lth filter for fr frequency, the modified input vector for compensation is 
as follows: 
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where F is the number of filters. A compensated estimate (an estimate with the compensation) of the 
desired signal, kŝ , can be obtained as in Equation (10): 

k
T
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=  (13) 

The block diagram of the compensation using the modified reference input in BMFLC is shown in 
Figure 5. 

Figure 5. The block diagram of the compensation using the modified reference input in BMFLC. 
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3. Simulation Methods and Results 

In this section, simulations with periodic signals and real physiological tremor data are presented. 
For illustration of the proposed method in implementation, the simulations are performed with the 
modified BMFLC algorithm. 

3.1. Simulation with Periodic Signals 

For the simulation with periodic signals, a synthesized periodic acceleration consisting of sinusoidal 
components with amplitudes 200 mm/s2 and frequencies of 10 Hz, 11 Hz, and 11.5 Hz is used as a 
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desired periodic signal whose position is to be estimated. The desired periodic signal is superimposed 
with Gaussian white noise having a standard deviation of 40 mm/s2 and a DC offset value of 
5,000 mm/s2 to form the simulated noisy acceleration output from an accelerometer. The DC offset is 
to simulate a sensor bias voltage while noise represents sensor noise. The simulated noisy acceleration 
output is shown in Figure 6.  

Figure 6. Simulated acceleration output consisting of the sinusoidal acceleration signals 
with noise and DC offset. 

 

To simulate the hardware filter of an accelerometer, a first-order low-pass filter with the cutoff 
frequency of 50 Hz is used. Frequency responses of the low-pass filter and the high-pass filter are  
pre-calculated and the components in the range of 8 to 12 Hz are shown in Figures 7 and 8.  

Figure 7. Frequency response of the first-order low-pass filter with a cutoff frequency of 50 Hz. 
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Figure 8. Frequency response of the 4th order high-pass Butterworth filter with a cutoff 
frequency of 5 Hz. 
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since m1 = 0.9981, m2 = 0.9852, φ1 = 77.88 deg, and φ2 = −9.86 deg (refer to Figures 7 and 8). 
Similarly, other components of the modified reference input for other frequencies can be obtained. 
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To compare estimation performance of the proposed method with that of analytical integration 
method, the simulated periodic acceleration is filtered by the simulated filter of the accelerometer, and 
the filtered signal is then double-integrated analytically using the method described in [19]. The same 
BMFLC parameters are used for the analytical integration method. The unfiltered signal is also  
double-integrated analytically for comparison between the two methods when the phase-shift and 
attenuation introduced by the filter of the sensors are negligible. 

To show that the proposed method also works very well with gyroscopes, a simulated periodic 
angular velocity consisting of the same frequency content as the simulated periodic acceleration is 
used. The amplitude of each component is set at 200 mrad/s. Other settings are kept the same, except 
that the periodic angular velocity is integrated only once to obtain orientation. 

3.2. Simulation Results with Periodic Signals 

The position obtained from the integration, which contains periodic position and drift, is shown in 
Figure 9. After filtering the position obtained from integration with the high-pass filter, drift is 
removed. However, the filtered position signal is a phase-shifted and attenuated version of the actual 
periodic motion at 10 Hz.  

Figure 9. True position and position obtained from double-integration of simulated 
acceleration. 
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Figure 10. Plots showing effectiveness of the proposed method. The whole plot of the 
unfiltered position (shown in green line) can be seen in Figure 9. 

 

Figure 11. Position estimation error with the high-pass filter and the proposed method. 

 

Figure 12. Position estimation error obtained with the proposed method (a), the analytical 
integration without the simulated hardware filter (b), and the analytical integration with the 
filter (c). 
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Table 1. Position estimation errors with the proposed method and the analytical integration 
method with and without the simulated hardware filter. 

Without filter With filter 
RMS Error Maximum Error RMS Error Maximum Error 

Error with analytical integration method 
(µm) 

14.8 43.6 24.1 65.1 

Error with the proposed method (µm) 6.2 23.1 6.5 23.6 
Error reduction by the proposed method (%) 58.2 47 73 64 
Error with the proposed method with respect 
to the true position (%) 

10.5 17.7 11.1 18.1 

Figure 13. Orientation estimation error obtained with the proposed method (a), the 
analytical integration without the simulated hardware filter (b), and the analytical 
integration with the filter (c). 

 

Table 2. Orientation estimation errors with the proposed method and the analytical 
integration method with and without the simulated hardware filter. 

Without filter With filter 
RMS Error Maximum Error RMS Error Maximum Error 

Error with analytical integration method 
(mrad) 

1.00  2.92  1.64 4.45 

Error with the proposed method (mrad) 0.54  1.78  0.56 2.03 
Error reduction by the proposed method (%) 45.77 39.18 66.79 60.1 
Error with the proposed method with respect 
to the true orientation (%) 

15.01 20.58 15.68 23.49 

3.3. Simulation with Real Physiological Tremor Data 

In the previous section, simulation of the proposed method using pure periodic signals was 
presented. In order to show that the method works well with the quasi-periodic signals such as 
physiological tremor signals since a tremor is approximately a rhythmic (quasi-periodic) signal [23], 
and can be employed in real-time physiological tremor compensation/cancellation, the method is tested 
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with real physiological tremor data. The tremor data is obtained from surgical instrument tip motion 
which is measured [24] during micromanipulation tasks performed by subjects using a micro motion 
sensing system (M2S2) [25]. The instrument tip motion data is filtered off-line using an off-line  
zero-phase band-pass filter having a pass-band of 5–15 Hz to obtain physiological tremor and remove 
non-tremulous components such as low-frequency drift, intended motion, and sensor and measurement 
noise. 

To simulate a hardware filter [26] present at the output of ADXL-203 accelerometers employed in 
tremor compensation instruments [27,28], the tremor data is filtered using a first-order software  
low-pass filter having a time-constant of 3 ms which is a typical time-constant value of the hardware 
filter at the output of this type of accelerometer [20]. The filtered tremor data is passed through a 
BMFLC filter to estimate it. The estimated output of the BMFLC filter has a phase-lag without using 
the proposed method. The following parameters are used for the implementation of BMFLC: N = 21, 
μ = 0.015 and pass-band range for the periodic signal is set from 9 to 11 Hz. The pass-band of 9 to 
11 Hz is chosen since most power of tremor frequencies of all the subjects are found from FFT to be 
within that band. 

3.4. Simulation Results with Real Physiological Tremor Data 

Figure 14 shows the effectiveness of the proposed method with physiological tremor. A phase-lag 
can be seen in estimate without compensation. The phase-lag is significantly reduced in the estimate 
with compensation. Figure 15 shows physiological tremor, and physiological tremor estimation errors 
with and without compensation. Table 3 shows statistics of root-mean squared (RMS) errors and 
maximum (peak) errors of ten trials of estimation of different physiological tremor signals with and 
without compensation, and the percentage of error reduction due to compensation.  

Figure 14. Plots showing the physiological hand tremor (true position) of a subject, 
estimate of the tremor with and without compensation. 
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Figure 15. Physiological tremor of a subject (a), and estimation errors without 
compensation for the simulated hardware filter (b) and with compensation (c). 

 

Table 3. Mean and standard deviation of RMS errors and maximum (peak) errors of 
estimation of physiological tremor signals from ten subjects with and without proposed 
compensation method. 

RMS Error Maximum (peak) Error 
Error without compensation (µm) 3.46 ± 1.42 15.19 ± 6.85 
Error with compensation (µm) 2.31 ± 0.73 11.77 ± 7.1 
Error reduction due to compensation (%) 30.17 ± 11.46 23.73 ± 17.84 

4. Experiment Methods and Results 

In this section, real-time experiments using an accelerometer as a representative inertial sensor are 
described. A periodic motion is generated using a commercially available nanopositioning stage  
(P-561.3CD from Physik Instrumente, Germany) on which a physiological tremor compensation 
instrument consisting of accelerometers is mounted. The accuracy of the used positioning stage is 
better than 100 nm. The accelerometers used in the instrument are ADXL-203 accelerometers from 
Analog Devices. However, only one accelerometer is used for the experiments to show the 
effectiveness of the proposed method. The setup for the experiment is shown in Figure 16.  

Figure 16. A picture (Left) and a schematic drawing (right) of the experimental setup. 
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The tremor is defined as roughly sinusoidal, and approximately rhythmic [23]. Frequency of 
physiological tremor lies in the band of 8 to 12 Hz while its amplitude ranges from a few tens to 
hundreds of microns. To simulate physiological tremor, the nanopositioning stage is programmed to 
generate 10 Hz sinusoidal motion having peak-to-peak amplitude of 100 μm which is the maximum 
travel range of the stage. Therefore, peak-to-peak amplitude of the applied acceleration generated by 
the stage is approximately 400 mm/s2 although the accelerometer’s measurement range is ±1.7 g. The 
voltage output from the accelerometer is acquired at 500 Hz using a 16-bit data acquisition (DAQ) 
card (PD2-MF-150, United Electronic Industries, Inc, USA).  

Before the experiment, static calibration of the accelerometer is performed using a gravity value of 
9.81 m/s2. The sensitivity value of the accelerometer obtained from the calibration is 980 mV/g. The 
time constant and hence the specification of the hardware filter of the accelerometer is measured by 
giving a step input using ST pin of the accelerometer [20] and measuring the time taken for the output 
to reach 63% of its final value. The sampling rate used in measuring the step response is 20 kHz. The 
accelerometer hardware filter time constant obtained from the measurement is approximately 3 ms. 
The step response of the accelerometer is shown in Figure 17. The acquired voltage is then converted 
to acceleration by using the sensitivity value. The converted acceleration is then double-integrated to 
obtain position which in turn is filtered using a third-order high-pass filter with the cutoff frequency of 
7 Hz. The filtered position is then used with the BMFLC. The parameters used for the implementation 
of BMFLC are N = 7, μ = 0.01, and pass-band range for the periodic signal is set from 9 Hz to 12 Hz. 
Compensation for the phase-shift and attenuation introduced by the hardware filter and the high-pass 
filter is performed by having dot product between the modified reference input [shown in 
Equation (12)] and the weight vector produced by the BMFLC.  

Figure 17. Experimental determination of time-constant of the accelerometer hardware filter. 
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double-integrated using the method described in [19] to obtain the position estimation. Table 4 and 
Figure 19 show estimation errors with the proposed method and the analytical integration method. To 
exclude transient errors due to transient adaptation of the algorithm to the signal, calculations of errors 
are performed from six seconds after the start of the estimation. 

Figure 18. (a) Plots of applied position (solid line), position estimate obtained using the 
proposed compensation method (thick dotted line) and output of the high-pass filter 
(dashed line), and (b) errors with and without compensation. 

 

Table 4. Estimation errors obtained with the analytical integration and the proposed 
method. 

RMS Error Maximum Error 
Analytical integration method (µm) 11.5 18.9 
The proposed method (µm) 3 8.9 
Error reduction by the proposed method (%) 75 52 

Figure 19. Estimation errors obtained from (a) analytical integration of the acceleration,  
(b) the proposed method (i.e., by numerically integrating the acceleration, then high-pass 
filtering, and compensating for the effects of both hardware filter and HPF filter). 
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5. Discussion  

As can be seen from Figures 12 and 13, and the quantitative simulation results in Table 1, errors of 
the proposed method are less than those of the analytical integration method, even in the case that the 
phase-shift and attenuation introduced by inherent hardware filters are negligible. Higher estimation 
errors with the analytical integration method are perhaps due to the adaptation of the BMFLC 
algorithm to the input signal which is noisy. With the proposed method, estimation errors are lesser 
since the input signal is not noisy due to the linear filtering stage in the proposed method. Errors of the 
analytical integration method will get larger as the extent of the phase-shift and attenuation introduced 
by the filters of the inertial sensors are larger while those of the proposed method will remain about the 
same. Therefore, the proposed method is even more invaluable when the phase-shift and attenuation 
introduced by the hardware filter are large. 

Error plots in Figure 13 and results in Table 2 show the method also works well with gyroscopic 
data. Plots in Figures 14 and 15, and results shown in Table 3 suggest that the proposed method can 
track very well physiological tremor signals, which are representative quasi-periodic signals. The 
phase-shift and attenuation introduced by the simulated hardware filter of an accelerometer are well 
compensated for and hence accuracy of real-time position estimate is improved by proposed method as 
can be seen in Figure 14(b). Therefore, the proposed method is useful for real-time physiological 
tremor compensation [9,10,28]. Experimental results in Table 5 and plots in Figure 18 confirm the 
effectiveness of the proposed compensation method. As can be seen from the table, the RMS error is 
reduced by approximately 90% when compensation for the phase-shift and attenuation introduced by 
both filters is performed. Experiment results in Table 4 and plots in Figure 19 prove superiority of the 
proposed method over the analytical integration method. The RMS error and maximum error of the 
proposed method are lesser than that of the analytical integration method by 75% and 52%, 
respectively.  

To achieve a good performance with the proposed method, filter order and cutoff frequency need to 
be chosen so that the filter removes unwanted low-frequency drift significantly. The choice depends on 
the sensor noise level and the frequency content of the periodic or quasi-periodic signal. However, a 
wide range of filter orders and cutoff frequencies are available to be chosen, and hence the choice is 
not too restrictive. For acceptable reasonable filter order and cutoff frequency, the proposed method 
outperforms the analytical integration method.  

Table 5. RMS error and maximum error of real-time estimation of 10 Hz periodic motion 
with and without compensation for the phase-shift and attenuation introduced by the filters. 

RMS Error Maximum Error 
Error without compensation (µm) 44 66 
Error with compensation (µm) 3.0 9 
Error reduction due to compensation (%) 93 86 

 
Although the effectiveness of the method is proven using a BMFLC algorithm, it is also valid for 

the WFLC algorithm. The main reason to employ the WFLC or BMFLC algorithms in the proposed 
method is because the periodic signals can be modeled by a series of sine and cosine components. The 
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algorithms’ performance is the best for pure periodic motion. If the motion to be estimated is not 
purely periodic, the algorithms’ performance will be degraded and accuracy of estimation will be 
affected depending on the degree of non-periodicity. 

The performance of the algorithms and hence that of the proposed method also depends on the 
value of adaptive gain μ. In Figure 19, there exist some errors during a few seconds after the start due 
to the algorithm’s transient adaptation to the signal. After the algorithm has adapted to the signal, the 
errors are reduced significantly. The adaptation period can be shortened by increasing the adaptive 
gain μ at the expense of larger steady-state error. The optimal value of adaptive gain depends on 
signal-to-noise ratio, and the application requirements. The adaptive gain μ can be chosen to have fast 
convergence without losing stability. The BMFLC algorithm can be viewed as a series of multiple 
notch filters, with the width of each notch being directly proportional to μ. The time constant for 
convergence can be shown to be 1/(2μ) [22]. Typical value of μ is in the range of 0.001 to 0.03 for 
BMFLC [14-16]. Detailed discussion on the optimal gain can be found in [17,29]. 

The algorithms (and hence the proposed method) work very well as long as the approximate band of 
frequencies of the periodic motion is known. If the periodic motion consists of more than one 
dominant frequency, the BMFLC algorithm should be used. If there is only one dominant frequency 
with its harmonics in the periodic motion and the dominant frequency is varying slowly, WFLC is a 
better choice since WFLC can track the periodic motion whose frequency is varying slowly such as 
that of physiological tremors [17]. Although the method was not tested with motion at very high 
frequencies (e.g., of the order of kHz) due to the lack of proper equipment (the nanopositioning stage 
cannot generate very high frequency motion), no compelling reason is seen why the method should not 
work at these frequencies too.  
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