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Abstract: This paper reports the design of a tactile sensor patch to cover large areas of 

robots and machines that interact with human beings. Many devices have been proposed to 

meet such a demand. These realizations are mostly custom-built or developed in the lab. 

The sensor of this paper is implemented with commercial force sensors. This has the 

benefit of a more foreseeable response of the sensor if its behavior is understood as the 

aggregation of readings from all the individual force sensors in the array. A few reported 

large area tactile sensors are also based on commercial sensors. However, the one in this 

paper is the first of this kind based on the use of polymeric commercial force sensing 

resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The 

paper discusses design issues related to some necessary modifications of the force sensor, 

its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors 

mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force 

range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames 

per second. Finally, two simple application examples are also carried out with the sensor 

mounted on the forearm of a rescue robot that communicates with the sensor through  

a CAN bus.  
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1. Introduction 

Tactile sensors are basically arrays of force sensors that enable a whole specific surface area to be 

monitored, instead of only discrete point pressure monitoring. They are demanded in applications 

where unstructured environments or uncertainty are present, such as minimally invasive surgery (MIS), 

robotics, rehabilitation, virtual reality, telepresence, or industrial automation [1]. Many different 

approaches have been proposed to manufacture these sensors, most of them are based on piezoresistive 

or capacitive principles, and a few are based on optical or piezoelectrical transduction [2]. Many of 

these sensors are made with silicon or polymers using microelectromechanical systems (MEMS) 

technologies. These technologies are not oriented to large area devices, so they are usually proposed 

for applications that demand high spatial resolution and good performance in terms of errors, such as 

MIS. However, large area devices can be made with skin patches, i.e., by connecting several arrays in 

more complex structures. For instance, a piezoresistive MEMS on polymer sensor that covers an area  

of 25 mm × 25 mm is presented in [3]. The scalability to larger sensors is limited by the wiring 

complexity and the authors proposed the addition of silicon based integrated circuits on the same 

substrate to achieve a modular and large area sensor. Another modular approach based on capacitive 

MEMS on polymer is examined in [4]. Other implementations build a sensor with MEMS on silicon 

and soldered in an array on a flexible PCB [5]. Nevertheless, those sensors that are not oriented to 

cover the fingertips but for example the forearms, do not require a high spatial resolution and are 

usually developed with other technologies. 

Optical tactile sensors are composed of photo emitter and photo detector pairs. Pressure against the 

sensor modulates the light that is captured by the detector. A skin that covers the whole surface of a 

robot and allows a safe interaction with humans is presented in [6]. It is made with infrared LED and 

detector pairs that implement proximity sensors. In [7] a module is presented with 32 tactels that are 

based on a LED, a phototransistor and a urethane foam atop. The amount of light scattered in the foam 

and detected by the phototransistor depends on the pressure exerted on the tactel. Quite high hysteresis 

is observed. In [8] sensors based on fiber Bragg gratings are proposed. The pressure causes a shift in 

the wavelength of the Bragg grating. The tactels have good sensitivity, repeatability and no hysteresis. 

However, each tactel has its own Bragg wavelength, which is a drawback to building large arrays (the 

paper shows results from small arrays of 3 × 3 elements), and the electronics are complex.  

Capacitive tactile sensors exploit the dependence of the capacitance on the distance between the 

plates of a capacitor that has a deformable dielectric layer. Parasitic capacitors and noise are major 

concerns, so signal conditioning must be close to the raw sensor. Conformable and stretchable 

capacitive tactile sensors are commercialized by Pressure Profile Systems [9]. In [10] a modular 

approach is proposed where triangular modules of 12 capacitive tactels are connected to each other to 

cover any shape. An off-the-shelf CDC capacitive to digital converter (AD7147) standard chip from 

Analog Devices is used for signal conditioning in every module. A common drawback of tactile 
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capacitive sensors is hysteresis. However in [11] a sensor is presented that has no hysteresis. This is 

achieved by an appropriate selection of the elastomer between capacitor plates. Signal conditioning is 

carried out with multivibrators made with off-the shelf integrated circuits. 

The last and larger group of sensors reported to cover large areas are those based on piezoresistive 

principles. Several are made of conductive fabric or rubbers [12,13]. A common method of producing 

these sensors consists in implementing an array of electrodes on a flexible printed circuit board, and a 

conductive rubber or polymer is placed atop of them [14,15]. QTC (Quantum Tunneling Composite) 

from Peratech is used in [16] to build the array (64 tactels in the forearm) of custom sized sensors cut 

from A4 size sheets. Wiring is again a concern here. The EIT (Electrical Impedance Tomography) 

technique is used in [17] to implement a stretchable tactile sensor that has electrodes only at the 

contour, thus wiring is reduced. However, tactile sensors based on EIT are less accurate and the 

procedure to read the data from them is quite slow. A sensor is proposed in [18] that communicates 

through microwaves in a two dimensional sheet. It implements a RFID tag and a resonant proximity 

connector in every tactel and the whole array detects binary images (it does not register pressure 

maps). The sensor in [19] also provides a binary output and points to a printing technology plus 

multiplexing to reduce the number of external wires. The sensor in [20] is also made with a large-area 

printing technology and addressing is done with a switching matrix of organic field-effect transistors 

implemented on the same substrate. This is a promising technology, although the estimated scan time 

in a 16 × 16 array is 480 ms. 

Other authors take advantage of the low spatial resolution of the tactile sensor and relatively large 

size of the tactel to implement it with a commercial force sensor. In [21] this approach is adopted with 

silicon based force sensors. These sensors have good performance in terms of drift, hysteresis or 

linearity. However, pieces of elastic material are used to concentrate the force at the diaphragms of the 

pressure-sensing elements and another elastic sheet is used to make the sensor soft and perform a 

spatial filtering. The addition of these elastic materials degrades somewhat the performance. Moreover, 

silicon is fragile and brittle in comparison to other materials like polymers. In [22] polymeric FSRs 

(Force Sensing Resistors) are used as on-off sensors in combination with force-torque sensors to 

compute the magnitude and direction of the force and the contact position. However, it is assumed that 

a simple force is applied, so its application is limited when more complex forces are exerted and more 

detailed information is required, as in the case of holding a human being in the arms of the robot. 

Similar sensors have been used to provide some tactile sensitivity to robotic hands in [23], where they 

are not used as binary sensors but the whole output force range is exploited. Only a few of these 

sensors are necessary in [23] and they are wisely located in the robotics hands.  

This paper presents a large area tactile sensor that is made of the same commercial FSRs soldered 

on a flexible Printed Circuit Board (PCB). Some preliminary results were presented in [24]. Many 

problems arise when these FSRs are intended to be used in this way. Some modifications have to be 

made to the sensor to preserve its performance and behavior as an isolated element. The paper explains 

these modifications and the strategies followed to build the patch and minimize errors and 

interferences. The obtained tactel is characterized and results for the input-output curve, drift, step 

response and mismatching are shown in the paper. The force range of the tactel is 6 N and its 

sensitivity is 0.6 V/N. The patch has 16 × 9 tactels with a spatial resolution of 18.5 mm and it is read at 

a rate of 78 frames per second. Signal conditioning is based on a PIC18F4680. A modular approach is 
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achieved in this way since communication with a CAN bus is also implemented, so many of these or 

similar patches can be connected. Two application examples were also carried out where the sensor 

was used to cover the forearm of the ALACRANE rescue robot [25]. Details are given at the end of  

the paper.  

2. Specifications of the Sensor 

As a reference to design the sensor, we are interested in avoiding violent collisions that can hurt 

humans. When a human being comes into contact with the surface of an object the amount of force 

produced is typically around 0.1–2.0 N and this force can be taken as a reference for the minimum 

value to be detected and does not cause any pain. Regarding maximum force, the average pressure 

exerted against the skin by the weight of a body held in the arms is around 14 kPa (0.15 Kg/cm
2
 

aprox.)
 
and a certain security margin must be taken [21]. The response time in which a human 

completes all processing of tactile stimuli from contact detection to response output is 100–200 ms. 

This is taken in [22] as a reference of the input-output delay of the smart tactile sensor. As regards to 

the spatial resolution, the static simultaneous two-point discrimination threshold of the human skin in 

the forearm is around 38 mm [26]. In the following section we will describe the design of a sensor that 

meets these specifications. Design issues related to the raw sensor and electronics are discussed.  

3. Design of the Raw Sensor 

As mentioned in the introduction, our design is based on commercial force sensing resistors (FSR). 

Three commercial FSRs from Lusense, Tekscan (Flexiforce sensors) and Interlink Electronics are on 

the market. These sensors have been compared in [27] and [28]. The FSRs from Interlink [29] are the 

most robust, and this is an important point in our design because of the hostile environment and heavy 

weights which the robot has to cope with. Moreover, these sensors have a good tradeoff between drift, 

hysteresis and accuracy. A few different sensors are available from Interlink Electronics, two round in 

shape, one square and another strip shaped one. Round sensors are more suitable for forming our array. 

The larger one was chosen (Interlink Electronics Standard 402 FSR) [29] because it allows the 

resolution requirements to be accomplished of less than 38 mm between tactels. In addition it also fits 

our force requirements. Table 1 lists the main performance data of this sensor.  

Table 1. Interlink Electronics Standard 402 FSR Main Features. 

Size 18.28 mm (diameter) 

Actuation Force 0.1 N 

Durability 10 Million actuations without failure 

Force Sensitive Range 0.1–10 N 

Force Repeatability 
0.2% (single part) 

0.6% (part to part) 

Hysteresis +10% 

Operating temp. range −30 °C to 70 °C 
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We had to decide how to arrange the sensors in a flexible sheet that is shaped as a cylinder when 

placed in its final destination. In order to have the best filling factor, we decided to arrange them in a 

triangular grid (see Figure 1(a)). 

A slight, but significant, modification of the sensor refers to the spacer the commercial sensor has 

between the layer with the electrodes and the flexible substrate with printed semi-conductor (see 

Figure 1(b)). This spacer guarantees that there is no response in absence of force applied to the sensor. 

However, the presence of this spacer causes no response even in the case that a flat rigid object presses 

the sensor, because it avoids the contact between the substrate and the electrodes. This is observed 

clearly in our sensor. It does not register any data with the above described array of FSRs. Some 

element must be added atop to allow the force to reach the active area of the sensor, which is the inner 

area beyond the spacer. A possible solution we have adopted is the addition of small polyurethane cones 

(circular bumpers BS-01R, Durometer, Shore A 60–70 Standard [30]) atop each FSR, as Figure 1(c,d) 

illustrate. Trials with continuous sheets of deformable materials were also made. The conclusion was 

that the response depends greatly on the properties of the material. We registered readings with quite 

flexible foams but not with other more rigid elastomers atop the sensor. With a single piece of 

elastomer per sensing resistor, any pressure exerted against a tactel is translated by the cone directly to 

the active area of the FSR. Moreover, this approach allows the characterization as an isolated element. 

Figure 1. (a) Detail of the grid. (b) Layers in a Force Sensing Resistors from Interlink.  

(c) Draw of the sensor with a polyurethane cone atop. (d) A photograph.  

  

(a)               (b) 

      

(c)               (d) 

The influence of the added cone on the performance of the sensor was tested with some 

experiments. We used the characterization set-up of Figure 2(a). Basically, it consists of a translation 

stage (A) to place the sensor on, a stepper motor (B) to exert the force via a spring (C) and finally a 

force sensor placed at the tip of the probe (D) (Honeywell FSG15N1A). The measurement process is 

automatic and it is controlled by a computer. The computer sends the commands to the motor and 

reads the data from the sensor by means of a data acquisition board. The system is calibrated before 

making the measurements. It is done by pressing with the probe against a precision balance  

(KERN 440-47N) and taking the readings from the balance and from the characterization set-up to 

obtain the calibration curve in Figure 2(b). 
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Figure 2. (a) Characterization set-up. (b) Calibration curve. 

  

(a)                (b) 

 

A first simple test to know the influence of the polyurethane cone was carried out. It consisted of 

repeating the calibration procedure but placing a cone between the probe and the balance. The curve 

obtained is shown in Figure 3. The larger the difference between this curve and the calibration curve in 

Figure 2(b), the larger the influence of the cone would be. Since this difference is negligible, we can 

conclude that the piece of polyurethane does not introduce a significant disturbance in terms of 

hysteresis or linearity. 

Figure 3. Data obtained when the probe presses against a polyurethane cone placed on the balance. 

 

 

Another test was done with the cone atop of one sensing resistor, and both attached on a rigid and 

flat surface. The data registered by the set-up in Figure 2(a) is shown in Figure 4(a,b). On the left, the 

readings from ten cycles of increasing and decreasing force are shown while the figure on the right 

depicts the mean value and standard deviation obtained from this data. The same measurement was 

made but replacing the polyurethane cone with a circular piece of metal and a small piece of fabric at 

the interface with the sensor to achieve a uniform contact pressure. The results are in Figure 4(c,d), 
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where the meaning of data is the same as in Figure 4(a,b). The curves are also very similar this time, 

with no significant differences in terms of errors. The gain is slightly larger in the case of the circular 

piece, but it is because its diameter is 11.5 mm while the diameter of the basis of the cone  

is 10.2 mm. The diameter of the active area of the sensing resistor is 12.7 mm, so a cone that fitted this 

area would perform better.  

Figure 4. (a and b) Static response to a pressure up—pressure down cycle of the modified 

sensor with the cone atop of one sensing resistor. (c and d) Static response of the sensor 

without the polyurethane cone and pressed with a circular piece of metal and a small piece 

of fabric at the interface with the sensor to achieve a uniform contact pressure. 

 

(a) (b) 

 

(c) (d) 

 

Two additional tests were made to establish the dynamic response of the modified sensor. FSRs 

have a rise time between 1–2 ms determined by their mechanical design. A simple test was made to 

assure the modification with the polyurethane cone did not change this dynamic response. Figure 5 

shows the response to a force pulse measured by the silicon force sensor (top curve) and by the 

modified FSR (bottom curve). Responses are in the order of hundreds of microseconds, so they do not 
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determine the limitation of the dynamic response of the sensor to meet a delay below 200 ms. This 

limitation will be given by the electronics discussed in the next section. 

Figure 5. Tactel response to a force pulse. Channel 1 shows the output from the probe 

silicon force sensor and Cannel 2 shows the output from the tactel. 

 

 

Regarding drift, we have followed a procedure similar to that reported in [28] for a characterization 

of commercial force sensors based on similar principles. This procedure consists in measuring the drift 

not only when pressure is exerted on the sensor from a prior situation of no pressure on it, but also the 

result of a few increments from starting pressure different to zero. We also show results of positive as 

well as negative increments. Figure 6 shows the results of this experiment that was performed with the 

set-up in Figure 2(a). A drift of up to 10.7% of the full scale output in 1,974 s is observed in the worst 

case. The largest drift is observed when the starting pressure is zero. This effect could be reduced by 

applying a preload. 

Figure 6. Measured drift of a tactel. 
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The FSR sensors from Interlink also have long leads with the connectors at their ends. These 

connectors are crimped because the leads are damaged by the heat and cannot be soldered directly to 

the PCB. As a consequence, the distance between FSRs in the array is very large unless we allow they 

overlap. We could cut the leads and crimp them again, but this would take a long time. Moreover, it is 

not possible to remove them completely and the distance between tactels would be always larger than 

if the force sensors overlap. Therefore, active areas of the sensors lie on the leads of others (see Figure 7) 

and the spatial resolution is optimum. 

Figure 7. (a) Detail of the placement of the sensors, and (b) a photograph of the whole array. 

 

(a)      (b) 

 

Two more practical issues are important to discuss here. First, we observed that interferences appear 

despite the electronic (described in the next section) being designed to cancel them. After 

investigations we saw the contact of the sensor leads with solderings of other tactels caused such 

interferences. Therefore, insulation of the solderings was required to remove them, as Figure 7(a) 

shows. Figure 8 shows the reading of the sensor when it is pressed with a circular piece of metal with 

and without insulating the solderings. 

Figure 8. Tactile image of a circular object without (a) and with (b) insulating the solderings. 

 

(a)   (b) 
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The other implementation issue refers to the convenience of having a flat and firm surface under the 

force sensing resistor. If the sensors are mounted as Figure 7 depicts and they rest on the tails of other 

sensors, a poor performance is observed. For instance, Figure 9(a) shows the output obtained with the 

characterization set-up of Figure 2(a) when the output from one of the mounted tactels is registered. A 

highly non-linear and distorted output is obtained. Another modification of the sensor is required to 

achieve an output similar to that reported by the manufacturer. It is done by attaching a circular rigid 

plastic piece at the bottom of the sensor, as Figure 9(c) shows. In this way the output from the sensor is 

quite linear, as Figure 9(b) shows. 

Figure 9. (a) Tactel output without and (b) with a rigid flat piece at the bottom.  

(c) Photograph of the modified FSR. 

 

(a)      (b) 

 

(c) 

Finally, another test was carried out to obtain information about the mismatching of the sensors in 

the array, as in [21]. The output of 16 tactels was read with the set-up in Figure 2(a) and the results are 

shown in Table 2. The variations could be tolerated for practical purposes [1], or some calibration 

procedure can be implemented that takes advantage of the microcontroller of the sensor. 

  

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
Without a rigid flat piece at the bottom

Force (N)

O
u
tp

u
t 

(V
)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
With a rigid flat piece at the bottom

Force (N)

O
u
tp

u
t 

(V
)



Sensors 2011, 11                            

 

 

5499 

Table 2. Variations of Tactels. 

Tactel coordinates Gain (Volts/N) 

(5,1) 
(5,3) 
(5,7) 
(5,9) 
(6,9) 
(6,8) 
(6,3) 
(6,2) 
(5,2) 
(5,4) 
(5,6) 
(5,8) 
(5,10) 
(5,11) 
(6,11) 
(6,1) 

0.57 
0.63 
0.65 
0.59 
0.62 
0.68 
0.55 
0.65 
0.55 
0.65 
0.69 
0.61 
0.55 
0.57 
0.57 
0.47 

Average 
S.D. 

0.60 
0.06 

4. Design of the Electronics 

Figure 10(a) shows the local electronics of the smart tactile sensor. It is based on a microcontroller 

PIC18F4680 and is in charge of scanning the array, storing the data and sending it via CAN bus to a 

central processing unit. More capabilities can be added to the smart sensor by taking advantage of the 

microcontroller. Figure 10(b) shows a basic schematic of the main blocks in Figure 10(a) except the 

power supply module. The array is scanned and every tactel output is read.  

The output voltage is given by the following expression: 

ref

ij

G
out V

R

R
V )1(   

where Rij is the force dependant resistance of the element ij in the array, and RG is the resistance to set 

the gain of the transresistance amplifiers at the output of every column. 

Figure 11 shows the readings of the smart tactile sensor when its surface is pressed with the hand. 

The shape of the hand is clearly noticeable and the information about the existence of contact as well 

as the force exerted is provided. 

Figure 10. (a) Photograph of the electronics. (b) simplified schematics. 

 

(a) 
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Figure 10. Cont. 

 

(b) 

Figure 11. (a) and (b) two tactile images of a hand as registered by the tactile sensor. 

  

(a)      (b) 

 

Note that one operational amplifier is required per column in Figure 10(b). Their purpose is to set 

the voltage Vref at the tracks of all columns. Since the voltage of all rows that do not contribute to the 

output is also set to Vref, any possible parasitic path is short circuited. This is a common grounding 

technique [31] in sensors developed from a continuous film of conductive rubber or polymer because 

parasitic resistors are present between tactels. We think it is worth highlighting here that these 

electronics must be used even when we have a discrete array. This is true in our case, because we have 

an array of force sensors. Nevertheless, once they are arranged in rows and columns and connected by 

the corresponding addressing tracks, multiple parasitic paths appear. One of them is depicted in  

Figure 12(a), where a simpler electronics layout that does not cancel the interferences is shown. The 

left part of Figure 12 shows the readings provided by this electronics. Note that crosstalk makes the 

shape of the hand indistinguishable and it is not possible to determine the orientation and size of the 
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object on the sensor. Similarly, the implementation in [32] describes a technique where tactile sensors 

are formed by dispensing conductive polymer on copper electrodes. This is highlighted as a technique 

to reduce crosstalk, although grounding is also necessary. 

Figure 12. (a) Electronics that does not cancel crosstalk and (b) tactile image obatined 

from a hand on the sensor. 

 

(a) 

 

(b) 

 

Regarding the sensor bandwidth, reading out the whole array takes 12.8 ms, so it is much lower 

than the 100–200 ms we had set as a maximum. Moreover, distance between centers of tactels is 1.85 cm 

(see Figure 7(b)), so it is also lower that 3.8 cm which we had set as a goal taking into account the 

static spatial resolution of the human skin in the forearm. Finally, Table 3 shows data from the 

proposed sensor and from other reported tactile sensor patches oriented to cover large areas. 
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Table 3. Performance data from the proposed and other reported tactile sensor patches. 

Author/ 

Year 

Transd. 

Method 
Tech. 

N° of Sensing 

Elements 

Spatial 

Resol. 

Sensor 

BW 

Force/Press. 

Range 

Force/Press. 

Sensitivity 

Ohmura [7]/ 

2006 
Optical 

Flexible 

PCB 
8 × 4 ~30 mm 5 kHz 500 kPa  

Shan [5]/ 

2005 
Piezores. 

MEMS on Si, 

Flex.PCB 
4 × 4 10 mm  2 N 

228 mV/N 

(shear forces: 

34 mV/N) 

Heo [8]/ 

2006 
Optical  3 × 3 5 mm  5 N 1 mN 

Cannata [10]/ 

2008 
Capacitive 

Flexible 

PCB 

12 

(triangular patch) 
2 tactels/cm 

Up to  

0.5 kHz 
  

Ulmen [11]/ 

2010 
Capacitive 

Foam Layer 

PCB 
4 × 4 15 mm 0.080 kHz 100 N 0.02 N 

Shimojo [13]/ 

2004 

Conduct. 

Rubber 
 16 × 3 3 mm  12 N 0.2 MPa 

Kerpa [14]/ 

2003 
Piezores. PCB 10 × 23 15 mm 0.040 kHz 120 kPa 12 bits 

Someya [20]/ 

2004 
FSR Organic FET 16 × 16 2.54 mm 0.003 KHz 30 kPa  

Mukai [21]/ 

2008 

Silicon 

based FSR 
Flexible PCB 8 × 8 18 mm 0.1 kHz 128 kPa  

Sthiel [23]/ 

2006 

FSR 

(QTC) 
PCB 4 × 2     

Proposed 
Polymer 

based FSR 

Flexible 

PCB 
16 × 9 18.5 mm 0.078 kHz 6 N 0.60 V/N 

5. The Sensor in a Robot 

Figure 13(c) shows the sensor mounted on the arm of the rescue robot ALACRANE. This is a fully 

hydraulic robot that has been developed from a modified small demolition machine by Brokk
®

. The 

Main Arm has five DOF with five hydraulic cylinders. This redundant configuration increases its 

reachability of the end-effector. Its payload is 120 kg when it is fully extended, and 450 kg in the 

vicinity of the arm base. 

An experiment has been carried out to show the performance of the sensor in this rescue robot. The 

robot has been programmed with the following reactive behavior. If contact is detected while it is 

doing some task, the manipulator moves back a predefined distance from the trajectory it was 

following. If there is no contact at this moment, the robot resumes the task. If there is still contact, the 

robot keeps still until the contact ceases. 

Figure 13 illustrates this behavior. It shows the Cartesian coordinates x, y, z, referred to the base 

reference system of the robot as well as the average force registered by the tactels whose readings are 

higher than a certain threshold. Figure 13(a) shows a circular trajectory followed by the manipulator 

when no contact is detected, while Figure 13(b) shows the described reactive behavior when the 

manipulator makes contact with an obstacle twice. The first time the contact remains even when the 
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manipulator has moved back, and the second time the contact is undone before the manipulator 

completes the backward movement, therefore the robot resumes its task. This behavior would keep 

people safe as well as objects surrounding the rescue robot and the robot itself.  

Figure 13. (a) Trajectories of the manipulator without contact, and (b) with two contacts. 

(c) Sensor mounted on the ALACRANE (the top right corner of the figure shows a detail 

where the sensor was mounted in a circular shape). 

 

(a)       (b) 

 

(c) 

 

Another experiment was carried out to illustrate the applicability of the sensor. This time the robot 

takes the coordinates of the center of mass of the tactile image (Cx, Cy) to follow a certain trajectory. 

These coordinates are calculated by the microcontroller of the tactile patch as: 

   
     
 
   

   
 
   

,    
     
 
   

   
 
   

      (1) 

where (     ) are the coordinates of the i-th tactel,    is the force registered by it, and N is the number 

of tactels in the tactile sensor. Note that the obtained result takes into account the contact area and also 

the pressure distribution on this area. The trajectories of the center of mass when a dummy human is 

held in the arms of a robot are shown in [20] to illustrate the use of the sensor. Here we show the 

trajectory of the mass center and also how the robot can use this information in a cooperative task with 

a human. Figure 14 shows the starting situation (A), where a metal tube is held by the arm of the robot 
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and by a human. Then the human lifts the end he is holding (B). This is perceived by the robot because 

the mass center is displaced.  

Figure 14. Photographs of the three main steps in the experiment where the robot 

cooperates with a human. 

 

(A)      (B) 

 

(C) 

Figure 15. Trajectories of the mass center (top) and robot arm (curve in blue at the bottom graph). 
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This can be seen in Figure 15, where the trajectories of the center of mass and the robot arm are 

depicted. Now the robot lifts its arm until the location of the center of mass goes back to the initial 

value in (A). At this point, the heights of both ends of the tube are similar again (C), as can be seen in 

Figures 14 and 15. 

6. Conclusions 

A thorough description of the design of a large area tactile sensor has been presented. It is the first 

of this kind based on polymeric commercial force sensing resistors. This choice was made to achieve a 

robust design in a shorter time. Some modifications were needed to maintain the performance of the 

isolated force sensor, once it is incorporated to the tactile array on a flexible substrate. These 

modifications are explained as well as their impact on the response of the sensor. We can see the latter 

is negligible for good design practices that are discussed in the text. The performance of the sensor is 

shown through many experimental measurements of the tactel response as well as of the tactile sensor 

output. Finally, two examples illustrate its use in a rescue robot.  
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