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Abstract: Losses during storage of biomass are the main parameter that defines the 

profitability of using preserved biomass as feed for animal husbandry. In order to minimize 

storage losses, potential changes in specific physicochemical properties must be identified 

to subsequently act as indicators of silage decomposition and form the basis for preventive 

measures. This study presents a framework for a diagnostic system capable of detecting 

potential changes in specific physicochemical properties, i.e., temperature and the oxygen 

content, during the biomass storage process. The diagnostic system comprises a monitoring 

tool based on a wireless sensors network and a prediction tool based on a validated 

computation fluid dynamics model. It is shown that the system can provide the manager 

(end-user) with continuously updated information about specific biomass quality parameters. 

The system encompasses graphical visualization of the information to the end-user as a 

first step and, as a second step, the system identifies alerts depicting real differences between 

actual and predicted values of the monitored properties. The perspective is that this 

diagnostic system will provide managers with a solid basis for necessary preventive 

measures. 
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1. Introduction  

Silage losses are the main parameter that defines the profitability of the silage production and 

affects the animals in terms of nutrition and hygienic conditions. In order to preserve the nutritional 

quality of stored biomass, certain essential conditions need to be met during the storage process  

(e.g., [1]). Insufficiently maintained cover systems (e.g., tears in the plastic covering, cracks in the 

walls) cause rapid decomposition of the adjacent silage resulting in the dry matter being broken down 

into H2O and CO2 with a subsequent release of heat [2].  

In order to ensure adequate preservation of the silage during the entire storage period, it is important 

to be able to detect potential changes in specific physicochemical properties, such as the temperature 

and the oxygen content of the silage, that can act as indicators of silage decomposition and form the 

basis for preventive measures. It has been shown that it is not possible to detect visibly the silage 

decomposition under the sealed cover leading to unavoidable dry mass losses that can reach levels as 

high as 75% of the total silage before the actual decomposition is even remotely visible [3]. 

Consequently, there is perceived need for the development and implementation of dedicated decision 

systems for the prediction of quality parameters in stored biomasses, for example, by predicting the 

occurrence of oxygen entering the stack by monitoring the temperature and the outside weather 

conditions and incorporating such measures into designated decision support systems and by extension 

into farm management information systems [4,5]. Such decision support systems will enable an early 

and timely detection of process disturbances, which subsequently can be evaluated and provide the 

guidelines for possible preventive measures. This will enable the manager of silage storage facilities to 

accurately monitor and prognosticate vital quality parameters of the silage as part of day to-day 

planning and control of the storage conditions on a continuous basis.  

Traditional invasive monitoring systems to evaluate the condition of the silage have been used  

(e.g., [6,7]). However, these monitoring systems themselves have a negative impact on the 

preservation of the silage stack since the measurement processes are destructive to the airtight sealing 

of the silage stack, causing silage to come into contact with O2 and resulting in decomposition of its 

digestible matter. In any case, non-invasive novel monitoring systems, such as wireless sensors 

capable of precisely measuring silage quality parameters, are preferable. Recently, Green et al. [8] 

presented and evaluated a system composed of novel non-invasive wireless nodes capable of 

measuring the temperature and oxygen inside silage stacks. The developed monitoring system was 

found to be highly accurate, indicating that the designed wireless sensor nodes could potentially be 

used for detecting the occurrence of silage decomposition.  

A fully operational decision support will require the comparison or benchmarking between the 

monitored and the preferred conditions. Consequently, any sensor network system should be combined 

with a model for the prediction of the physicochemical properties that are being monitored. A number 

of analytical models have been developed to quantify the deterioration of silage over time  

(e.g., [9,10]). Nevertheless, these models do not provide any information concerning the distribution of 

the physico-chemical parameters inside biomass storage facilities. In order to provide the lacking 

distribution in time and space of these parameters numerical modelling approaches seem to be 

promising as it has been proven for developed computational fluid dynamics models for biomass 

conventional storage systems such as for forage crops [11] or grains [12,13]. 
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Wireless sensor networks provide low-cost and low-power deployments in a number of  

agricultural-related applications [14,15], including, for example, irrigation [16-19], environmental 

monitoring [20], specialty crops [21,22], viticulture [23], and animal production [24,25]. In this paper, 

a diagnostic system comprising both monitoring by a wireless sensor network, and prediction by a 

computational fluid dynamics model, of governing biomass quality parameters will be developed and 

will form the basis for any preventive measures to be implemented by the manager.  

2. System Overview  

The proposed diagnostic tool involves a combination of a network of sensors for the acquisition of 

real-time data in order to provide information about actual conditions within the biomass storage 

facility and a real-time computational fluid dynamics (CFD) modelling approach fitted with selected 

updated weather data in order to provide the predicted conditions within the storage facility assuming 

ideal conditions with no interfering events. The two conditions (actual and predicted) are depicted 

graphically in a user interface allowing the end user to evaluate any deviation between the two 

conditions and decide if preventive actions are required. In more detail, the principal components of 

the diagnostic system include: 

 A sensor network functioning as a data acquisition unit. The measured data include the air 

temperature and the oxygen content within the biomass storage volume. 

 A wireless communication unit for the transmission of sensor data to an on-site data storage 

unit. 

 The data storage unit. This unit serves as an intermediate receiver of acquired data which 

subsequently transmit this data to a dedicated user interface through an internet connection. 

 A central server running the CFD model. This modelling unit uses as input the current weather 

conditions and simulates the course of the air temperature and the oxygen content in time and 

space. The simulation assumes a geometrical configuration similar to the actual one and 

appropriate physical properties of the material. 

 A server providing updated weather data required by the CFD model in a fixed time sequence. 

For the specific model, the required weather data include the (outside) air temperature, relative 

humidity, wind speed and direction, global solar radiation, and surface and soil temperatures.  

 A user interface for visualization purposes. It receives in a regular time-base the two sets of 

conditions and provides a graphical direct comparison.  

These parts are depicted in Figure 1. The following sections detail the individual components of the 

above described system. Specifically, in the next section the sensor unit employed is described. 

Following this section, the CFD model is described in terms of mathematical formulation, biomass 

modelling approach, specification of the boundary conditions, and finally the validation of the model. 

Next, in order to demonstrate the functionality of the system a specific scenario based on experimental 

data is indentified.  
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Figure 1. The basic physical components of the diagnostic system.  

interface user

CFD model central server

sensors network

weather station

 

3. The Sensor Network  

The sensor network combines a number of specific sensor units for measuring temperature and 

oxygen concentration designed by Green et al. (Figure 2) [8]. The sensor unit is a single-chip system 

with fully integrated (433 MHz) RF transceiver, 8051-compatible microcontroller and a  

four-input, 10-bit, 80 ksps A/D converter. The circuit has embedded voltage regulators, which provides 

maximum signal to noise immunity and allows operating on a single 1.9–3.6 V supply. The transceiver 

consists of a fully integrated frequency synthesizer, a power amplifier, a modulator, and a receiver 

unit. Output power and frequency channels and other RF parameters are programmable by use of the 

on-chip serial programmable interface to the sensor core. Each sensor node acts as a transmit-only 

device in a single-hop broadcast network and the data are received by a gateway node. Each sensor 

node actively participates in handshaking communication. Therefore, acknowledgment messages are 

sent back to the originating node when the sensor messages are received by the gateway. The 

acknowledgment messages might include information relevant for network re-tasking purposes, such 

as modifications to the network sampling rate. The selected sampling rate for both sensor measurement 

and packet dissemination was 0.1 Hz, since the temperature and oxygen in the silage stack varied 

slowly. For a detailed description of the sensor unit the reader is referred to [8]. In order to protect the 

sensor node from damage during the ensiling, storage, and feed-out processes, a protective housing 

was developed (Figure 2) providing a maximum tolerance load of 15 kN for the weak axis and  

32 kN on the strong axis of the sensor unit, which corresponds to a maximum tractor axle load of  

43 kN. The experimental results showed that 98.9% to 99.3% of the packets disseminated from the 

tested sensor nodes were successfully delivered to the gateway. To transmit a packet including the 

temperature and humidity readings, approximately 12 mA is in total required. The power source is a 

3.6 V, 1.2 Ah lithium battery. For the transmission frequency of 0.1 Hz the operational battery life is 

around 120 days and consequently a typical 4-month storage period can be safely monitored. The 

results of that study indicated that the designed wireless sensor nodes can be used in specific 

applications such as the one proposed in this paper.  
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Figure 2. The sensor unit for temperature and oxygen consecration measurements within 

the protective housing.  

 

4. The Computer Fluid Dynamics (CFD) Prediction Model 

The general-purposes CFD software Fluent
®

 (Fluent Europe Ltd., Sheffield, UK) is used in the 

central server unit for the simulation of the course of the air temperature and the oxygen content within 

the storage facility. Fluent
®

 code uses a finite volume numerical scheme to solve the equations of 

conservation for the different quantities of flow (i.e., mass, momentum, energy, and water vapor 

concentration). First, the code performs the coupled analysis of the pressure and velocity fields and 

then continues with the others parameters, i.e., temperature or water vapor concentration. The 

fermentation process of the biomass is simulated using a customized routine built for the determination 

of the parameters characterizing the specific type of biomass at hand. At the present stage of the 

system’s development, a number of domains of interest have been development for experimental 

purposes and are available as a library. These domains were generated and meshed using Gambit, the 

integrated pre-processor software of Fluent
®

.  

The CFD technique numerically solved the Navier-Stokes equations and the mass and energy 

conservation equations. The three dimensional conservation equations describing the transport 

phenomena for steady flows in free convection are of the general form: 

2( ) ( ) ( )U V W
S

x y z


     
     

  
 (1)  

In Equation (1), Φ stands for the transport quantity in a dimensionless form, while U, V, and W are 

the components of the velocity vector; Γ is the diffusion coefficient; and S
 is the source term.  

The present flow and transport phenomena are described by the Navier-Stokes equations [26,27]. 

The standard k-ε model [28] assuming isotropic turbulence was adopted to describe the turbulent 

transport. The complete set of equations of the k-ε model can be found in [29]. The thermal buoyancy 

effect is approached through the Boussinesq model [27] which offers faster convergence, than 

considering the density variable in all equations. In this model the density is a constant value in all 

solved equations except from the buoyancy term calculation in the momentum equation. In this way 
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the density is eliminated from the buoyancy term using the Boussinesq approximation. CFD enforces 

these conservation laws over a discretised flow domain in order to compute the systematic changes in 

mass, momentum and energy as fluid crosses the boundaries of each discrete region [30]. 

4.1. Biomass Modeling  

The biomass was described using the equivalent macro-porous medium approach, which refers to 

the combination of the porous medium approach with a macro-model of heat and mass transfer between 

the forage and the surrounding air. Details for the porous media modeling can be found in [11].  

Regarding the fermentation process a separate biochemical model was used. Oxygen diffusion is 

assumed to be unidirectionally downward from the top surface to the impermeable bottom, while dry 

matter is assumed to be reduced as a function of the respiration rate, the concentration of oxygen, and 

the concentration of substrate. The two following equations represent the mathematical model:  

21
OM

O OM

C
k C C

t


 

  
(2)  

2 2

2 2

2

22

O O

O O OM

C C
D k C C

t x

 
 

   
(3) 

where COM is the concentration of organic matter (kgOM · m
−3

); 
2OC  is the concentration of oxygen 

(O2/m
3
of air); t is time (h); k1 is the mass respiration rate (kg kg

−1
 h

−1
); k2 is the oxygen depletion rate 

due to respiration m
3
 O2/m

3
 of air h

−1
); DO2 is the oxygen diffusion rate (m

3
 h

−1
). 

Respiration of organic matter in silage is assumed to follow the general chemical reaction of 

carbohydrate respiration estimated by the equation:  
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where the constant 0.9375 is the mass ratio of depleted carbohydrates per unit oxygen, 
2Om  is the mass 

density of oxygen (kg O2 m
−3

 O2), Ra is the specific respiration rate of silage dry matter in air  

(m
3
 O2 kg

−1
 O2 h

−1
) and CO2,0 is the initial concentration of oxygen at t = 0 (0.21 m

3
 O2 m

−3
 gas) 

The oxygen depletion rate is estimate as follows: 
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(5)  

where ε is the porosity (m
2
 O2 m

−3
 total volume). Porosity (ε) was calculated from the relationship [31]: 

1 0.000919    (6)  

where ρ is the bulk density in kg m
−3

. Permeability (y) was calculated from the equation of [32]:  

673 0.614 0.619y DM     (7)  

where DM is silage dry matter in g kg
−1

. The bulk density is the determined parameter that is 

connected with the type of the biomass. Each type of biomass is characterized by a specific bulk 

density which results to specific porosity and permeability values, affecting the physical processes 

related to the biomass storage.  
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A linear equation was used for the viscosity (v) of air as affected by temperature using values  

from [33,34]: 

6(0.425 19.84) 10 .v T     (8)  

4.2. Boundary Conditions  

At the present state of the system’s development, a number of complete three dimensional (3D) 

models are available as a library. The selected control volume represents a large domain in order to 

simulate also the field where the monitored biomass storage facility is located. The cover was 

simulated as a solid zone composed by four rows of cells where the conduction thermal equation is 

being solved. A mixed heat transfer boundary condition (combination of radiation and convection with 

convective heat transfer coefficients) is applied at the external boundary of the solid region. Also, the 

same boundary condition is imposed at the internal margin where the solid and the fluid zones are 

coupled, restoring a conjugated heat transfer treatment at the specific area.  

The grid was selected following grid independence test studies in order to ensure the solution 

independency from numerical errors due to spatial discretization. Grid quality was checked against the 

Fluent
®

 EquiAngleSkew (QEAS) criterion. At the inlet of the computational domain, a logarithmic 

inlet velocity profile (atmospheric boundary layer model) was considered [35]. The air velocity (at a 

reference height) and the air temperature are given as known values using the values of the 

meteorological mast.  

4.3. Model Validation  

A series of validation tests of the CFD model performance, in terms of the temperature and oxygen 

concentration predictions has been carried out. The tests concerned the comparison between the actual 

values (as the measured by the network sensors) and the ones predicted by the model (fitted with the 

updated actual weather conditions). The tests covered the whole time periods of sealing procedures, 

i.e., from initiating sealing until the time when the oxygen concentration reached zero. Furthermore, 

special attention was paid to ensure safe storage conditions (i.e., no damaged covers) since these are 

the precise conditions that the CFD has to emulate and simulate within the proposed diagnostic system.  

Figure 3. The correlation between measured (sensors network) and predicted (CFD model) 

values of the mean air temperature (a) and oxygen concentration (b).  

 

(a) 

 

(b) 
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Figure 3 presents an instance of actual and predicted data (in a time step of 6 h). The error in the 

prediction of the air temperature (for all of the sensors) varied between 3 and 11%, with a correlation 

ratio of predicted (Tpred) and measured values (Tmeas): Tpred = 1.02 Tmea and a correlation coefficient of 

0.78. For the case of the oxygen concentration, the error in the prediction varied between 5 and 14%, 

with a correlation ratio of predicted (O2pred) and measured values (O2meas) as O2pred = 1.03 O2meas with 

a correlation coefficient of 0.90.  

5. Case Study  

In order to demonstrate the procedural functionality of the proposed system for monitoring and 

diagnosing interfering events within biomass storage facilities, a case study involving an experimental 

set-up and subsequent model estimations and evaluations was carried out and is presented.  

5.1. Experimental Set-Up  

A semi-cylinder silage stack containing cut maize silage was used as a test storage facility. The 

dimensions of the silage stack were 3 m length, 1.5 m width, and 0.6 m height (Figure 4). The biomass, 

after its transportation from the field site to the storage site, was spread out in cumulative thin layers. 

Each layer was compacted (using an auxiliary tractor) and then the silage stack was sealed using an 

airtight cover as a way to prevent oxygen from entering the biomass material. The scope of the 

experiment was to examine the capability of the system to detect potential deviations in temperature 

and oxygen content values from the expected ones under the specific weather and storage conditions. 

The most usual reason for such a deviation is the presence of a tear in the plastic covering. To this end, 

the covering was, on purpose, penetrated generating a tear of 0.01 m diameter located in the right part 

of the centre of the stack. The experiment was carried out during May 2010.  

Figure 4. The sensor network within the prepared storage stack. 

 

 

A network consisting of 15 sensor units was placed in a horizontal grid configuration at a distance 

of 0.10 m from the top of the silage stack (Figure 5). Measurement locations relatively close to the 

surface were selected because spoilage caused by the silage being exposed to air is initiated at near 

surface locations.  
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Figure 5. The configuration of the sensors network within the storage stack. 

 

5.2. Model Calibration  

The Fluent
® 

CFD code [36] was used as a basis where a required external source code for incident 

irradiance boundary conditions (written in C++) was embodied. The corresponding (Navier–Stokes) 

transport equations were solved numerically by a finite volume method, using a two dimensional 

structured mesh consisting of 16,000 cells. The final number of cells resulted from an empirical 

compromise between a dense grid, associated with a long computational time, and a less dense one, 

associated with a marked deterioration of the simulated results. Moreover, the grid quality was 

checked using the EquiAngleSkew criterion [36]. The EquiAngleSkew (QEAS) is a normalized 

measure of skewness. QEAS = 0 describes an equilateral element, and QEAS = 1 describes a completely 

degenerate (poorly shaped) element. In this study, the average value of QEAS was 0.1 in simulations 

indicated a high quality mesh [36]. The SIMPLEC [26] algorithm was used for pressure–velocity 

coupling, yielding an elliptic differential equation in order to formulate the mass conservation 

equation. The discretisation of the convective terms in the Reynolds averaged transport equations was 

materialized by the second order upwind scheme [37] and for the diffusive terms a central difference 

scheme was adopted. The convergence criterion of every time step was set to 10–7 for the continuity, 

momentum, and k-ε transport equations, while for energy and radiation equations the criterion was 10–8. 

The boundary conditions used for simulations were based on average values derived from the 

measurements provided by the meteorological station (cf. to the next section). The initial time  

interval for the present transient simulation was set to 1 s in order to ensure the appropriate small  

Courant-Friedrichs-Lewy factor (<0.5) although the defined 2nd order temporal discretization scheme 

is unconditionally stable. However, as the solution was proceed the time step was gradually increased. 

Finally, predicted numerical values were obtained in a frequency of six hours.  

5.3. Weather Data  

The weather data during the period of the experiment were obtained from the climate database 

developed and run by the Faculty of Agricultural Sciences at Aarhus University (Foulum Research 

Centre weather station [N6261335, E535275]). The updated weather data include hourly values of the 

following parameters: air temperature, air relative humidity, air wind speed, air wind direction, global 

solar radiation, surface temperature, and soil temperature in depths 0.1 m and 0.3 m. 



Sensors 2011, 11  

 

 

4999 

5.4. Output / or Results / or Visualized Results  

Figure 6 presents the predicted (by the CFD model) and the actual (as measured by the sensors) 

temporal distribution of the air temperature at a cross section perpendicular to the main axis of the 

storage stack located at its center. Figure 7 presents the predicted and actual oxygen content 

distribution at the same cross section. These figures are part of the visualization layer of the system 

that is simply a visual exception report. The purpose of this report is to deliver to the appropriate  

end-user the information of the possible occurrence of an unexpected event. The user can then evaluate 

this information and act if deemed necessary As it can be seen from the comparison of the two 

conditions (predicted and actual) the actual air temperature and oxygen content distributions inside the 

storage stack varied from the predicted ones. Specifically the actual values of temperature and oxygen 

content are considerably higher than the values predicted by the CFD model. This indicates that there 

is a high level of aerobic activity from microorganisms caused by a higher infiltration rate compared to 

the one under air-tight conditions. It can be deduced that probably there is damage in the storage 

covering allowing the infusion of outside air.  

Figure 6. The predicted temporal distribution of the air temperature (at the stack center) by 

the CFD model (left) and the actual distribution according to the sensor data. 
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Figure 7. The predicted temporal distribution of the oxygen concentration (at the stack 

center) by the CFD model (left) and the actual according to the sensor data. 

 

 

As a further functionality of the overall system the real differences between actual and predicted 

temperature and oxygen concentration must be identified. This implies integrating the measured 

difference and potential incorporated errors of the measurements. This integration is depicted in Figure 8, 

which provides the course of the actual value of the measured property (oxygen concentration in 

Figure 8(a) and temperature in Figure 8(b) combined with its predicted value where the maximum 

expected prediction error has been incorporated. The maximum prediction error was derived from the 

evaluation of the model and values that have been used in the presented case are: 11% for the case of 

the temperature and 14% for the case of the oxygen concentration.  

As it can be seen from Figure 8 after the initial reduction of oxygen, the reduction rate was 

considerable higher in the predicted conditions. 36 h after the silage compaction there is the first 

indication for a real difference in the oxygen concentration. Specifically, the value measured by the 

sensor was 17.5%, which exceeds the error range of the predicted measurement which for the specific 

oxygen concentration predicted value of 15.2 is [13.1% 17.3%]. Based on this deviation, the 36 h 

defines the first alert from the system.  

As regards the course of the air temperature, the first indication of a real difference appeared 48 h 

after air-tight covering. Specifically, the measured by the sensor value was 10.6 °C a value that 

exceeds the error range of the predicted air temperature which for the specific temperature value of  

12 °C is [10.7 °C 13.3 °C]. At the 48 h time point both of the monitored properties are outside of the 

predicted values ranges, and this triggers a more definitive alert from the system.  
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Figure 8. The course of the actual and predicted (with the maximum error incorporated) 

values of the oxygen concentration (a) and temperature (b), and the deviations from the 

maximum error ranges (c).  

 

(a) 

 

(b) 

 

 

(c)  

6. Conclusions  

This study has presented a framework for a diagnostic system capable of detecting potential 

changes in specific physicochemical properties, i.e., temperature and oxygen content, during the 

biomass storage process. The diagnostic system comprises a monitoring tool based on a wireless 

sensor network and a prediction tool based on a validated computation fluid dynamics model.  

Based on the results of the presented study, it was shown that the system can provide the manager 

(end-user) with information about the biomass quality parameters. The information can be provided to 

by graphical visualization as a first step and, as a second step, the system issues alerts depicting real 

deviations between actual and predicted values of the monitored properties.  

The perspective of this diagnostic system is to be integrated in farm management information 

systems where the visualization and alerting can involve multi-delivery mechanisms such as instant 

messaging through e-mail, or wireless devices (e.g., cellular phones). This continuously updated 

information will provide the manager a solid basis for any necessary preventive measures.  
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