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Abstract: This paper proposes a hybrid crop classifier for polarimetric synthetic aperture 

radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, 

and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features 

were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward 

neural network (NN) was constructed and trained by adaptive chaotic particle swarm 

optimization (ACPSO). K-fold cross validation was employed to enhance generation.  

The experimental results on Flevoland sites demonstrate the superiority of ACPSO to  

back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm 

Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the 

computation time for each pixel is only 1.08 × 10−7 s. 

Keywords: artificial neural network; synthetic aperture radar; principle component 

analysis; particle swarm optimization 

 

1. Introduction 

The classification of different objects, as well as different terrain characteristics, with single 

channel monopolarisation SAR images can carry a significant amount of error, even when operating 

after multilooking [1]. One of the most challenging applications of polarimetry in remote sensing is 

landcover classification using fully polarimetric SAR (PolSAR) images [2]. 
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The Wishart maximum likelihood (WML) method has often been used for PolSAR classification [3]. 

However, it does not take explicitly into consideration the phase information contained within 

polarimetric data, which plays a direct role in the characterization of a broad range of scattering processes. 

Furthermore, the covariance or coherency matrices are determined after spatial averaging and therefore 

can only describe stochastic scattering processes while certain objects, such as man-made objects, are 

better characterized at pixel-level [4]. 

To overcome above shortcomings, polarimetric decompositions were introduced with an aim at 

establishing a correspondence between the physical characteristics of the considered areas and the 

observed scattering mechanisms. The most effective method is the Cloude decomposition, also known 

as H/A/α method [5]. Recently, texture information has been extracted, and used as a parameter to 

enhance the classification results. The gray-level co-occurrence matrices (GLCM) were already 

successfully applied to classification problems [6]. We choose the combination of H/A/α and GLCM 

as the parameter set of our study.  

In order to reduce the feature vector dimensions obtained by H/A/α and GLCM, and to increase the 

discriminative power, the principal component analysis (PCA) method was employed. PCA is 

appealing since it effectively reduces the dimensionality of the feature and therefore reduces the 

computational cost.  

The next problem is how to choose the best classifier. In the past years, standard multi-layered  

feed-forward neural networks (FNN) have been applied for SAR image classification [7]. FNNs are 

effective classifiers since they do not involve complex models and equations as compared to 

traditional regression analysis. In addition, they can easily adapt to new data through a re-training 

process. 

However, NNs suffer from converging too slowly and being easily trapped into local extrema if a 

back propagation (BP) algorithm is used for training [8]. Genetic algorithm (GA) [9] has shown 

promising results in searching optimal weights of NN. Besides GA, Tabu search (TS) [10], Particle 

Swarm Optimization (PSO) [11], and Bacterial Chemotaxis Optimization (BCO) [12] have also been 

reported. However, GA, TS, and BCO have expensive computational demands, while PSO is  

well-known for its lower computation cost, and the most attractive feature of PSO is that it requires 

less computational bookkeeping and a few lines of implementation codes. In order to improve the 

performance of PSO, an adaptive chaotic PSO (ACPSO) method was proposed. 

In order to prevent overfitting, cross-validation was employed, which is a technique for assessing how 

the results of a statistical analysis will generalize to an independent data set and is mainly used to 

estimate how accurately a predictive model will perform in practice [13]. One round of cross-validation 

involves partitioning a sample of data into complementary subsets, performing the analysis on one subset 

(called the training set), and validating the analysis on the other subset (called the validation set) [14]. To 

reduce variability, multiple rounds of cross-validation are performed using different partitions, and the 

validation results are averaged over the rounds [15]. 

The structure of this paper is as follows: In the next Section 2 the concept of Pauli decomposition 

was introduced. Section 3 presents the span image, the H/A/α decomposition, the feature derived from 

GLCM, and the principle component analysis for feature reduction. Section 4 introduces the forward 

neural network, proposed the ACPSO for training, and discussed the importance of using k-fold cross 

validation. Section 5 uses the NASA/JPL AIRSAR image of Flevoland site to show our proposed 
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ACPSO outperforms traditional BP, adaptive BP, BP with momentum, PSO, and RPROP algorithms. 

Final Section 6 is devoted to conclusion. 

2. Pauli Decomposition 

2.1. Basic Introduction 

The features are derived from the multilook coherence matrix of the PolSAR data [5]. Suppose: 

 hh hv hh hv

vh vv hv vv

S S S S
S

S S S S

   
    
   

 (1) 

stands for the measured scattering matrix. Here Sqp represents the scattering coefficients of the targets, 

p the polarization of the incident field, q the polarization of the scattered field. Shv equals to Svh since 

reciprocity applies in a monostatic system configuration.  

The Pauli decomposition expresses the scattering matrix S in the so-called Pauli basis, which is 

given by the following three 2 × 2 matrices: 

 
1 0 1 0 0 11 1 1

, ,
0 1 0 1 1 02 2 2

a b cS S S
     

            
 (2) 

Thus, S can be expressed as: 
 a b cS aS bS cS    (3) 

where: 

 , , 2
2 2

hh vv hh vv
hv

S S S S
a b c S

 
    (4) 

An RGB image could be formed with the intensities |a|2, |b|2, |c|2. The meanings of Sa, Sb, and Sc are 

listed in Table 1. 

Table 1. Pauli bases and their corresponding meanings. 

Pauli Basis                        Meaning 

Sa Single- or odd-bounce scattering 
Sb Double- or even-bounce scattering 

Sc 
Those scatterers which are able to return the 
orthogonal polarization to the one of the incident 
wave (forest canopy) 

2.2. Coherence Matrix 

The coherence matrix is obtained as [16]: 

 
11 12 13
*

12 22 23
* *

13 23 33

[ , , ][ , , ]T

T T T

T a b c a b c T T T

T T T

 
    
  

 (5) 

The average of multiple single-look coherence matrices is the multi-look coherence matrix. (T11, T22, 

T33) usually are regarded as the channels of the PolSAR images. 
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3. Feature Extraction and Reduction 

The proposed features can be divided into three types, which are explained below. 

3.1. Span 

The span or total scattered power is given by: 

 
2 2 2

2hh vv hvM S S S    (6) 

which indicates the power received by a fully polarimetric system.  

3.2. H/A/Alpha Decomposition 

H/A/α decomposition is designed to identify in an unsupervised way polarimetric scattering 

mechanisms in the H-α plane [5]. The method extends the two assumptions of traditional ways [17]:  

(1) azimuthally symmetric targets; (2) equal minor eigenvalues λ2 and λ3. T can be rewritten as: 

 
1

3 2 3

3

0 0

0 0

0 0

HT U U






 
   
  

 (7) 

where: 

 
1 2 3

3 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

cos cos cos

sin cos exp( ) sin cos exp( ) sin cos exp( )

sin sin exp( ) sin sin exp( ) sin sin exp( )

U i i i

i i i

  
        
        

 
   
  

 (8) 

Then, the pseudo-probabilities of the T matrix expansion elements are defined as: 

 3

1

j
i

jj

P








 (9) 

The entropy [18] indicates the degree of statistical disorder of the scattering phenomenon. It can be 

defined as: 

 
3

3
1

log   0 1i i
i

H P P H


     (10) 

For high entropy values, a complementary parameter (anisotropy) [1] is necessary to fully 

characterize the set of probabilities. The anisotropy is defined as the relative importance of the second 

scattering mechanisms [19]: 

 2 3

2 3

 0 1
P P

A A
P P


  


 (11) 

The four estimates of the angles are easily evaluated as: 

 
3

1

[ , , , ] [ , , , ]i
i

P       


  (12) 

Thus, vectors from coherence matrix can be represented as (H, A,  ,  ,  ,  ). 
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3.3. Texture Features 

Gray level co-occurrence matrix (GLCM) is a text descriptor which takes into account the specific 

position of a pixel relative to another. The GLCM is a matrix whose elements correspond to the 

relative frequency of occurrence of pairs of gray level values of pixels separated by a certain distance 

in a given direction [20]. Formally, the elements of a GLCM G(i,j) for a displacement vector (a,b) is 

defined as: 
 ( , ) |{( , ), ( , ) : ( , ) & ( , ) } |G i j x y t v I r s i I t v j    (13) 

where (t,v) = (x + a, y + b), and |•| denotes the cardinality of a set. The displacement vector (a,b) can be 

rewritten as (d, θ) in polar coordinates. 

GLCMs are suggested to be calculated from four displacement vectors with d = 1 and θ = 0°, 45°, 

90°, and 135° respectively. In this study, the (a, b) are chosen as (0,1), (−1,1), (−1,0), and (−1,−1) 

respectively, and the corresponding GLCMs are averaged. The four features are extracted from 

normalized GLCMs, and their sum equals to 1. Suppose the normalized GLCM value at (i,j) is p(i,j), 

and their detailed definition are listed in Table 2. 

Table 2. Properties of GLCM. 

Property Description Formula 

Contrast Intensity contrast between a pixel and its neighbor Σ|i−j|2p(i,j) 

Correlation 
Correlation between a pixel and its neighbor (μ denotes the 
expected value, and σ the standard variance) 

Σ[(i−μi)(j−μj)p(i,j)/(σiσj)] 

Energy Energy of the whole image Σp2(i,j) 
Homogeneity Closeness of the distribution of GLCM to the diagonal Σ[p(i,j)/(1+|i-j|] 

3.4. Total Features 

The texture features consist of 4 GLCM-based features, which should be multiplied by 3 since there 

are three channels (T11, T22, T33). In addition, there are one span feature, and six H/α parameters. In all, 

the number of total features is 1 + 6 + 4 × 3 = 19. 

3.5. Principal Component Analysis 

PCA is an efficient tool to reduce the dimension of a data set consisting of a large number of 

interrelated variables while retaining most of the variations. It is achieved by transforming the data set 

to a new set of ordered variables according to their variances or importance. This technique has three 

effects: It orthogonalizes the components of the input vectors so that uncorrelated with each other, it 

orders the resulting orthogonal components so that those with the largest variation come first, and 

eliminates those components contributing the least to the variation in the data set [21].  

More specifically, for a given n-dimensional matrix n × m, where n and m are the number of 

variables and the number of temporal observations, respectively, the p principal axes (p << n) are 

orthogonal axes, onto which the retained variance is maximal in the projected space. The PCA 

describes the space of the original data projecting onto the space in a base of eigenvectors. The 

corresponding eigenvalues account for the energy of the process in the eigenvector directions. It is 
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assumed that most of the information in the observation vectors is contained in the subspace spanned 

by the first p principal components. Considering data projection restricted to p eigenvectors with the 

highest eigenvalues, an effective reduction in the input space dimensionality of the original data can be 

achieved with minimal information loss. Reducing the dimensionality of the n dimensional input space 

by projecting the input data onto the eigenvectors corresponding to the first p eigenvalues is an 

important step that facilitates subsequent neural network analysis [22]. 

The detailed steps of PCA are as follows: (1) organize the dataset; (2) calculate the mean along 

each dimension; (3) calculate the deviation; (4) find the covariance matrix; (5) find the eigenvectors 

and eigenvalues of the covariance matrix; (6) sort the eigenvectors and eigenvalues; (7) compute the 

cumulative energy content for each eigenvector; (8) select a subset of the eigenvectors as the new basis 

vectors; (9) convert the source data to z-scores; (10) project the z-scores of the data onto the new basis. 
Figure 1 shows a geometric illustration of PCA. Here the original basis is 1 2{ , }x x , and the new basis is 

1 2{ , }F F . After the data was projecting onto the new basis, we can find that the data focused along the 

first dimension of the new basis. 

Figure 1. Geometric Illustration of PCA. 

 

4. Forward Neural Network 

Neural networks are widely used in pattern classification since they do not need any information 

about the probability distribution and the a priori probabilities of different classes. A two-hidden-layer 

backpropagation neural network is adopted with sigmoid neurons in the hidden layers and linear 

neuron in the output layer via the information entropy method [23].  

The training vectors are formed from the selected areas and normalized and presented to the NN 

which is trained in batch mode. The network configuration is NI × NH1 × NH2 × NO, i.e., a three-layer 

network with NI neurons in the input layer, NH1 neurons in the first hidden layer, NH2 neurons in the 

second hidden layer, and NO neuron in the output layer (Figure 2). Their values vary with the  

remote-sensing area, and will be determined in the Experimental section. 
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Figure 2. A three-layer neural network.  
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4.1. Introduction of PSO 

The traditional NN training method can easily be trapped into the local minima, and the training 

procedures take a long time [24]. In this study, PSO is chosen to find the optimal parameters of the neural 

network. PSO is a population based stochastic optimization technique, which is based on simulating the 

social behavior of swarm of bird flocking, bees, and fish schooling. By randomly initializing the algorithm 

with candidate solutions, the PSO successfully leads to a global optimum [25]. This is achieved by an 

iterative procedure based on the processes of movement and intelligence in an evolutionary system.  

Figure 3 shows the flow chart of a PSO algorithm. 

Figure 3. Flow chart of the PSO algorithm. 

 
 

In PSO, each potential solution is represented as a particle. Two properties (position x and velocity v) 

are associated with each particle. Suppose x and v of the ith particle are given as [26]: 

 1 2( , , , )i i iNx x x x   (14) 

 1 2( , , , )i i iNv v v v   (15) 
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where N stands for the dimensions of the problem. In each iteration, a fitness function is evaluated for 

all the particles in the swarm. The velocity of each particle is updated by keeping track of two best 

positions. One is the best position a particle has traversed so far. It is called “pBest”. The other is the 

best position that any neighbor of a particle has traversed so far. It is a neighborhood best and is called 

“nBest”. When a particle takes the whole population as its neighborhood, the neighborhood best 

becomes the global best and is accordingly called “gBest”. Hence, a particle’s velocity and position are 

updated as follows: 

 1 1 2 2( ) ( )v v c r pBest x c r nBest x       (16) 

 x x v t    (17) 

where ω is called the “inertia weight” that controls the impact of the previous velocity of the particle 

on its current one. c1 and c2 are positive constants, called “acceleration coefficients”. r1 and r2 are 

random numbers that are uniformly distributed in the interval [0,1]. These random numbers are 

updated every time when they occur. Δt stands for the given time-step and usually equals to 1. 

The population of particles is then moved according to Equations (16) and (17), and tends to cluster 

together from different directions. However, a maximum velocity vmax, should not be exceeded by any 

particle to keep the search within a meaningful solution space. The PSO algorithm runs through these 

processes iteratively until the termination criterion is satisfied. 

Let NP denotes the number of particles, each having a position xi and a velocity vi. Let pi be the best 

known position of particle i and g be the best known position of the entire swarm. A basic PSO 

algorithm can be described as follows: 

Step 1 Initialize every particle’s position with a uniformly distributed random vector; 

Step 2 Initialize every particle’s best known position to its initial position, viz., pi = xi; 

Step 3 If f(pi) < f(g), then update the swarm’s best known position, g = pi; 

Step 4 Repeat until certain termination criteria was met 

Step 4.1 Pick random numbers r1 & r2; 

Step 4.2 Update every particle’s velocity according to formula (16); 

Step 4.3 Update every particle’s position according to formula (17); 

Step 4.4 If f(xi) < f(pi), then update the particle’s best known position, pi = xi. If  

f(pi) < f(g), then update the swarm’s best known position, g = pi. 

Step 5 Output g which holds the best found solution. 

4.2. ACPSO 

In order to enhance the performance of canonical PSO, two improvements are proposed as follows. 

The inertia weight ω in Equation (16) affects the performance of the algorithm. A larger inertia weight 

pressures towards global exploration, while a smaller one pressures towards fine-tuning of current 

search area [27]. Thus, proper control of ω is important to find the optimum solution accurately. To 

deal with this shortcoming, an “adaptive inertia weight factor” (AIWF) was employed as follow: 

 max max min max( ) / k k        (18) 
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Here, ωmax denotes the maximum inertial weight, ωmin denotes the minimum inertial weight, kmax 

denotes the epoch when the inertial weight reaches the final minimum, and k denotes current epoch. 

The parameters (r1, r2) were generated by pseudo-random number generators (RNG) in classical 

PSO. The RNG cannot ensure the optimization’s ergodicity in solution space because they are  

pseudo-random; therefore, we employed the Rossler chaotic operator [28] to generate parameters  

(r1, r2). The Rossler equations are as follows: 

 

( )

   

dx
y z

dt
dy

x ay
dt

dz
b xz cz

dt

   

  

   

 (19) 

Here a, b, and c are parameters. In this study, we chose a = 0.2, b = 0.4, and c = 5.7. The results are 

shown in Figure 4, where the line in the 3D space exhibits a strong chaotic property called  

“spiral chaos”. 

Figure 4. A Rossler chaotic number generator with a = 0.2, b = 0.4, c = 5.7. 
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The dynamic properties of x(t) and y(t) are shown in Figure 5, where x(t) and y(t) satisfy both 

ergodicity and randomness. Therefore, we let r1 = x(t) and r2 = y(t) to embed the chaotic operator into 

the canonical PSO method.  

There are some other chaotic PSO methods proposed in the past. Wang et al. [29] proposed a 

chaotic PSO to find the high precision prediction for the grey forecasting model. Chuang et al. [30] 

proposed a chaotic catfish PSO for solving global numeric optimization problem. Araujo et al. [31] 

intertwined PSO with Lozi map chaotic sequences to obtain Takagi-Sugeno fuzzy model for 

representing dynamic behaviors. Coelho [32] presented an efficient PSO algorithm based on Gaussian 

distribution and chaotic sequence to solve the reliability–redundancy optimization problems.  

Coelho et al. [33] presented a quantum-inspired version of the PSO using the harmonic oscillator well 

to solve the economic dispatch problem. Cai et al. [34] developed a multi-objective chaotic PSO 

method to solve the environmental economic dispatch problems considering both economic and 
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environmental issues. Coelho et al. [35] proposed three differential evolution approaches based on 

chaotic sequences using logistic equation for image enhancement process. Sun et al. [36] proposed a 

drift PSO and applied it in estimating the unknown parameters of chaotic dynamic system. 

Figure 5. Chaotic sequence of (a) x(t) and (b) y(t). 
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(a)       (b) 

The main difference between our ACPSO and popular PSO lies in two points: (1) we introduced in 

the adaptive inertia weight factor strategy; (2) we used the Rossler attractor because of the following 

advantages [37]: the Rossler is simpler, having only one manifold, and easier to analyze qualitatively. 

In total, the procedures of ACPSO are listed as follows: 

Step 1 Initialize every particle’s position with a uniformly distributed random vector; 

Step 2 Initialize every particle’s best known position to its initial position, viz., pi = xi; 

Step 3 If f(pi) < f(g), then update the swarm’s best known position, g = pi; 

Step 4 Repeat until certain termination criteria was met: 

Step 4.1 Update the value of ω according to formula (18); 

Step 4.2 Pick chaotic random numbers r1 & r2 according to formula (19) 

Step 4.3 Update every particle’s velocity according to formula (16); 

Step 4.4 Update every particle’s position according to formula (17); 

Step 4.5 If f(xi) < f(pi), then update the particle’s best known position, pi = xi. If  

f(pi) < f(g), then update the swarm’s best known position, g = pi. 

Step 5 Output g which holds the best found solution. 

4.3. ACPSO-NN 

Let ω1, ω2, ω3 represent the connection weight matrix between the input layer and the first hidden 

layer, between the first and the second hidden layer, and between the second hidden layer and the 

output layer, respectively. When the ACPSO is employed to train the multi-layer neural network, each 

particle is denoted by: 
 1 2 3[ , , ]     (20) 
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The outputs of all neurons in the first hidden layer are calculated by following steps: 

 1 1 1
1

( , )     1, 2, ,
IN

j H i H
i

y f i j x j N


 
  

 
   (21) 

Here xi denotes the ith input value, y1j denotes the jth output of the first hidden layer, and fH is 

referred to as the activation function of hidden layer. The outputs of all neurons in the second hidden 

layer are calculated as: 

 
1

2 2 1 2
1

( , )     1, 2, ,
HN

k H j H
j

y f j k y k N


 
  

 
   (22) 

where y2j denotes the jth output of the second hidden layer.  

The outputs of all neurons in the output layer are given as follows: 

 
2

3 2
1

( , )     1, 2,...,
HN

l O k O
k

O f k l y l N


 
  

 
  (23) 

Here fO denotes the activation function of output layer, usually a line function. All weights are 

assigned with random values initially, and are modified by the delta rule according to the learning  

samples traditionally. 

The error of one sample is expressed as the MSE of the difference between its output and the 

corresponding target value: 

  
1

mse     1, 2,...
ON

m l l S
l

E O T m N


 
   

 
  (24) 

where Tk represents the kth value of the authentic values which are already known to users, and NS 

represents the number of samples. Suppose there are NS samples, then the fitness value is written as:  

 
1

( )
SN

m
m

F E


  (25) 

where ω represents the vectorization of the (ω1, ω2, ω3). Our goal is to minimize this fitness function 

F(ω) by the proposed ACPSO method, viz., force the output values of each sample approximate to 

corresponding target values. 

4.4. Cross Validation 

Cross validation methods consist of three types: Random subsampling, K-fold cross validation, and 

leave-one-out validation. The K-fold cross validation is applied due to its properties as simple, easy, 

and using all data for training and validation. The mechanism is to create a K-fold partition of the 

whole dataset, repeat K times to use K-1 folds for training and a left fold for validation, and finally 

average the error rates of K experiments. The schematic diagram of 5-fold cross validation is shown in 

Figure 6. 
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Figure 6. A 5-fold cross validation. 
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A challenge is to determine the number of folds. If K is set too large, the bias of the true error rate 

estimator will be small, however, the variance of the estimator will be large and the computation will 

be time-consuming. Alternatively, if K is set too small, the computation time will decrease, the 

variance of the estimator will be small, but the bias of the estimator will be large. The advantages and 

disadvantages of setting K large or small are listed in Table 3. In this study, K is determined as 10 

through trial-and-error method. 

Table 3. Large K versus small K. 

K value Estimator Bias Estimator Variance Computation Time 

Large ↓ ↑ ↑ 
small ↑ ↓ ↓ 

 

If the model selection and true error estimation are computed simultaneously, the data needs to be 

divided into three disjoint sets [38]. In another word, the validation subset is used to tune the 

parameters of the neural network model, so another test subset is needed only to assess the 

performance of a trained neural network, viz., the whole dataset is divided into three subsets with 

different purposes listed in Table 4. The reason why the validation set and testing set cannot merge 

with each other lies in that the error rate estimation via the validation data will be biased (smaller than 

the true error rate) since the validation set is used to tune the model [39]. 

Table 4. Purposes of different subsets. 

Subset Intent 

Training Learning to fit the parameters of the classifier 
Validation Estimate the error rate to tune the parameters of the classifier 
Testing Estimate the true error rate to assess the classifier 

5. Experiments 

Flevoland, an agricultural area in The Netherlands, is chosen as the example. The site is composed 

of strips of rectangular agricultural fields. The scene is designated as a supersite for the earth 

observing system (EOS) program, and is continuously surveyed by the authorities. 
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5.1. Refine Lee Filter 

The Pauli image of Flevoland is shown in Figure 7(a), and the refine Lee filtered image (Window 

Size = 7) is shown in Figure 7(b). 

Figure 7. Pauli Image of Flevoland (1,024 × 750). (a) Pauli Image; (b) The refine Lee 

filtered images. 

  
(a)     (b) 

5.2. Full Features 

The basic span image and three channels (T11, T22, T33) are easily obtained and shown in Figure 8. 

The parameters of H/A/Alpha decomposition are shown in Figure 9. The GLCM-based parameters of 

T11, T22, T33 are shown in Figures 10–12. 

Figure 8. Basic span image and three channels image. (a) Span (dB); (b) T11 (dB); 

(c) T22 (dB); (d) T33(dB). 

  
(a)                                (b)                                                            

  
(c)                                    (d) 
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Figure 9. Parameters of H/A/α decomposition. (a) H; (b) A; (c)  ; (d)  ; (e)  ; (f)  . 

  
(a)                                               (b)                                  

   
(c)           (d)                                     

   
(e)                               (f) 

Figure 10. GLCM-based features of T11. (a) Contrast. (b) Correlation. (c) Energy. (d) Homogeneity. 

  
(a)                                                      (b)  
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Figure 10. Cont.                        

   
(c)                                   (d) 

Figure 11. GLCM-based features of T22. (a) Contrast; (b) Correlation; (c) Energy; (d) Homogeneity. 

   
(a)                                  (b)                                      

  
 (c)                                                   (d) 

Figure 12. GLCM-based features of T33. (a) Contrast; (b) Correlation; (c) Energy; (d) Homogeneity. 

                     
(a)     (b)    
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Figure 12. Cont.                               

   
           (c)                                                (d) 

5.3. PCA 

The curve of cumulative sum of variance with dimensions of reduced vectors via PCA is shown in 

Figure 13. The detailed data are listed in Table 5. It shows that only 13 features, which are only half 

the original features, could preserve 98.06% of variance. 

Figure 13. Cumulative sum of variance versus principle components. 
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Table 5. Detailed cumulative sum of variance. 

Dimensions 1 2 3 4 5 6 7 8 9 
Variance (%) 26.31 42.98 52.38 60.50 67.28 73.27 78.74 82.61 86.25 

Dimensions 10 11 12 13 14 15 16 17 18 
Variance (%) 89.52 92.72 95.50 98.06 98.79 99.24 99.63 99.94 99.97 

5.4. Area Selection 

The classification is run over 13 classes, bare soil 1, bare soil 2, barley, forest, grass, lucerne, peas, 

potatoes, rapeseed, stem beans, sugar beet, water, and wheat. Our strategy is a semiautomatic method, 

viz. the training area was chosen and labeled manually. For each crop type, we choose a square of size 

20 × 20, which is easy to perform since the training area size is 13 × 20 × 20 = 5,200 compared to the 

size of the whole image is 1,024 × 750 = 768,000. In order to reduce the complexity of experiment, the 

test areas are chosen randomly from rest areas [40,41], with the same square size as the training area. 
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The final manually selected training areas are shown in Figure 14(a). Each square corresponds to a 

crop type with the size of 20 × 20. In total, there are 5,200 pixels for our training. The cross validation 

procedures loop 10 times, therefore, each loop we use 4,680 pixels for training and the left 520 pixels 

for validation. The final randomly selected test areas are shown Figure 14(b). The samples numbers of 

training and test area are shown in Table 6. 

Figure 14. Sample data areas of Flevoland. (a) Training Area; (b) Test Area; (c) Legend of Colors. 

  

BareSoil 1

BareSoil 2

Barley

Forest

Grass

Lucerne

Peas

Potatoes
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StemBeans

SugarBeet

Water

Wheat

 
                      (a)                                (b)                                                  (c) 

Table 6. Sample numbers of training and test area. 

Training Area Test Area Total 

5,200 10 loops (4,680 for train and 520 for validation) 5,200 10,400 

5.5. Network Training 

NI is determined as 13 due to the 13 features obtained by PCA. No is determined as 13 due to the 13 

classes shown in Figure 14. Both NH1 and NH2 are set as 10 via the information entropy method [42]. 

Therefore,  

the number of unknown variables of the neural network is 13 × 10 + 10 + 10 × 10 + 10 + 10 × 13 + 13 = 393. 

Table 7. Parameters of PSO & ACPSO. 

Parameters Values 

 PSO  ACPSO  

Dimensions 393 393 
Vmax 0.04 0.04 

Maximum Iterations 2,000 2,000 
kmax 1,500 1,500 
NP 24 24 
c1 2 2 
c2 2 2 

Function tolerance 1e−6 1e−6 
ωmax - 0.9 
ωmin - 0.4 

a - 0.2 
b - 0.4 
c - 5.7 
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The network was trained by the proposed ACPSO algorithm, of which the parameters are obtained  

via trial-and-error method and shown in Table 7. Besides, BP algorithm [8], BP with momentum  

(MBP) [43], adaptive BP algorithm (ABP) [44], and PSO [45] are employed as comparative algorithms. 

The curves of function fitness  versus versus epoch of different algorithms are shown in Figure 15, 

indicating that the proposed ACPSO converges the most quickly and is capable of finding global 

minimum point. 

Figure 15. The curve of fitness versus epoch. 
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5.6. Classification Accuracy 

The confusion matrices on training area of our method are calculated and shown in Figure 16. The 

overall accuracies of our method on the training area (combining training and validation subsets) and 

test area are 99.0% and 94.0%, respectively. The main drawbacks are around the following four 

misclassifications: (I) forest zones are easily misclassified as peas; (II) grasses are easily misclassified 

as barley and lucerne; (III) lucerne are easily misclassified as grasses; (IV) sugarbeets are easily 

misclassified as peas.  

A typical classification accuracy of both training area and test area by BP , ABP, MBP, and PSO are 

listed in Table 8, indicating that the proposed algorithm achieves the highest classification accuracy on 

both training (99.0%) and test area (94.0%). The random classifier disregards the information of the 

training data and returns random predictions, so it is usually employed to find the lowest classification rate. 

Yudong also used Resilient back-propagation (RPROP) algorithm to train the neural network to 

classify the same Flevoland area [41], and obtains 98.62% on training area and 92.87% on test area. 

The PSO ranks the third with 98.1% on training area and 88.7% on test area. The ABP ranks the fourth 

with 90.7% and 86.4% on both training and test area, respectively. The BP and MBP performs the 

worst with the classification accuracy only a bit higher than the random classifier of 1/131 = 37. 69%, 

indicating that only 2,000 iterations are not enough for these two training strategies. Besides, the 

classification accuracy of the proposed algorithm was extremely high on the test area due to the  

10-fold cross validation. 
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Figure 16. Confusion Matrixes of ACPSO-NN algorithm. (a) Training Area; (b) Test Area.  
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Table 8. A typical classification accuracy of different algorithms (Maximum iterations = 2,000). 

Algorithm Training Area Test Area Rank

Random 7.69% 7.69% 7 
MBP 8.8% 7.5% 6 
BP 8.3% 8.2% 5 
ABP 90.7% 86.4% 4 
PSO 98.1% 88.7% 3 
RPROP[41] 98.62% 92.87% 2 
ACPSO 99.0% 94.0 1 

5.7. Robustness 

In order to compare the robustness of each algorithm, we perform each algorithm 50 runs and 

calculated the minimum, the average, and the maximum of the classification rates. The results are 

listed in Table 9. It indicates that the results of each algorithm changed at each run, but the variation is 

limited, so the rank of the performance of all algorithms is the same as that in Table 8. 

Table 9. Statistical results of different algorithms (Maximum iterations = 2,000). 

Algorithm 
Training Area Test Area 

Min Ave Max Min Ave Max 

Random 7.58% 7.69% 7.83% 7.58% 7.69% 7.81% 
MBP 8.52% 8.83% 9.08% 6.98% 7.44% 7.92% 
BP 7.96% 8.33% 8.65% 7.90% 8.17% 8.35% 
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Table 9. Cont. 

ABP 81.04% 87.18% 94.12% 76.60% 83.55% 89.83% 
PSO 95.83% 97.68% 98.52% 83.15% 89.32% 91.54% 
RPROP 97.63% 98.71% 98.90% 90.87% 92.65% 93.77% 
ACPSO 98.15% 98.84% 99.13% 92.56% 93.80% 94.52% 

5.8. Time Analysis 

Computation time is another important factor used to evaluate the classifier. The time for network 

training of our algorithm costs about 120 s, which can be ignored since the weights/biases of the NN 

remain fixed after training unless the property of images changes greatly. For example, the main crops 

in Flevoland are involved in the 13 types shown in Figure 14(c), therefore, the classifier can be directly 

used to other remote-sensing images of Flevoland without retrain. It will cost about 0.131 + 30,  

0.242 + 40, 0.232 + 30, 0.181 + 80, 0.048 = 0.83 s from the input of Flevoland images (size  

1,024 × 750) to the output of final classification results as shown in Table 10. For each pixel, it costs 

only 1.08 × 10−7s, which is fast enough for real time applications. 

Table 10. Computation Time of Flevoland image classification. 

Stage Time 

Span 0.13 s 
H/A/α decomposition 0.24 s 
GLCM 0.23 s 
PCA 0.18 s 
NN Training* 120 s 
Classification 0.048 s 

(* denotes training time can be ignored) 

6. Conclusions 

In this study, a crop classification classifier was constructed by following stages. First, a hybrid 

feature set was introduced which was made up of the span image, the H/A/α decomposition, and the 

GLCM-based texture features. Afterwards, PCA was carried on to reduce the features. The principle 

components were sent to the two-hidden-layer neural network, which was trained by the proposed 

ACPSO method. 10-fold cross validation was employed to prevent overfitting. Experiments on 

Flevoland site show that the proposed ACPSO-NN obtains satisfying results. The ACPSO trains the 

neural network more efficiently and effectively than BP, ABP, MBP, PSO, and RPROP methods. 

More rigorous testing on more complex problems will be performed in future works. 
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