
Sensors 2011, 11, 4721-4743; doi:10.3390/s110504721

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Crop Classification by Forward Neural Network with Adaptive
Chaotic Particle Swarm Optimization

Yudong Zhang and Lenan Wu *

School of Information Science and Engineering, Southeast University, Nanjing 210096, China;

E-Mail: zhangyudongnuaa@gmail.com

* Author to whom correspondence should be addressed; E-Mail: wuln@seu.cn;

Tel.: +86-1973-8667-581.

Received: 10 March 2011; in revised form: 24 April 2011 / Accepted: 26 April 2011 /

Published: 2 May 2011

Abstract: This paper proposes a hybrid crop classifier for polarimetric synthetic aperture

radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition,

and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features

were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward

neural network (NN) was constructed and trained by adaptive chaotic particle swarm

optimization (ACPSO). K-fold cross validation was employed to enhance generation.

The experimental results on Flevoland sites demonstrate the superiority of ACPSO to

back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm

Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the

computation time for each pixel is only 1.08 × 10−7 s.

Keywords: artificial neural network; synthetic aperture radar; principle component

analysis; particle swarm optimization

1. Introduction

The classification of different objects, as well as different terrain characteristics, with single

channel monopolarisation SAR images can carry a significant amount of error, even when operating

after multilooking [1]. One of the most challenging applications of polarimetry in remote sensing is

landcover classification using fully polarimetric SAR (PolSAR) images [2].

OPEN ACCESS

Sensors 2011, 11

4722

The Wishart maximum likelihood (WML) method has often been used for PolSAR classification [3].

However, it does not take explicitly into consideration the phase information contained within

polarimetric data, which plays a direct role in the characterization of a broad range of scattering processes.

Furthermore, the covariance or coherency matrices are determined after spatial averaging and therefore

can only describe stochastic scattering processes while certain objects, such as man-made objects, are

better characterized at pixel-level [4].

To overcome above shortcomings, polarimetric decompositions were introduced with an aim at

establishing a correspondence between the physical characteristics of the considered areas and the

observed scattering mechanisms. The most effective method is the Cloude decomposition, also known

as H/A/α method [5]. Recently, texture information has been extracted, and used as a parameter to

enhance the classification results. The gray-level co-occurrence matrices (GLCM) were already

successfully applied to classification problems [6]. We choose the combination of H/A/α and GLCM

as the parameter set of our study.

In order to reduce the feature vector dimensions obtained by H/A/α and GLCM, and to increase the

discriminative power, the principal component analysis (PCA) method was employed. PCA is

appealing since it effectively reduces the dimensionality of the feature and therefore reduces the

computational cost.

The next problem is how to choose the best classifier. In the past years, standard multi-layered

feed-forward neural networks (FNN) have been applied for SAR image classification [7]. FNNs are

effective classifiers since they do not involve complex models and equations as compared to

traditional regression analysis. In addition, they can easily adapt to new data through a re-training

process.

However, NNs suffer from converging too slowly and being easily trapped into local extrema if a

back propagation (BP) algorithm is used for training [8]. Genetic algorithm (GA) [9] has shown

promising results in searching optimal weights of NN. Besides GA, Tabu search (TS) [10], Particle

Swarm Optimization (PSO) [11], and Bacterial Chemotaxis Optimization (BCO) [12] have also been

reported. However, GA, TS, and BCO have expensive computational demands, while PSO is

well-known for its lower computation cost, and the most attractive feature of PSO is that it requires

less computational bookkeeping and a few lines of implementation codes. In order to improve the

performance of PSO, an adaptive chaotic PSO (ACPSO) method was proposed.

In order to prevent overfitting, cross-validation was employed, which is a technique for assessing how

the results of a statistical analysis will generalize to an independent data set and is mainly used to

estimate how accurately a predictive model will perform in practice [13]. One round of cross-validation

involves partitioning a sample of data into complementary subsets, performing the analysis on one subset

(called the training set), and validating the analysis on the other subset (called the validation set) [14]. To

reduce variability, multiple rounds of cross-validation are performed using different partitions, and the

validation results are averaged over the rounds [15].

The structure of this paper is as follows: In the next Section 2 the concept of Pauli decomposition

was introduced. Section 3 presents the span image, the H/A/α decomposition, the feature derived from

GLCM, and the principle component analysis for feature reduction. Section 4 introduces the forward

neural network, proposed the ACPSO for training, and discussed the importance of using k-fold cross

validation. Section 5 uses the NASA/JPL AIRSAR image of Flevoland site to show our proposed

Sensors 2011, 11

4723

ACPSO outperforms traditional BP, adaptive BP, BP with momentum, PSO, and RPROP algorithms.

Final Section 6 is devoted to conclusion.

2. Pauli Decomposition

2.1. Basic Introduction

The features are derived from the multilook coherence matrix of the PolSAR data [5]. Suppose:

 hh hv hh hv

vh vv hv vv

S S S S
S

S S S S

   
    
   

 (1)

stands for the measured scattering matrix. Here Sqp represents the scattering coefficients of the targets,

p the polarization of the incident field, q the polarization of the scattered field. Shv equals to Svh since

reciprocity applies in a monostatic system configuration.

The Pauli decomposition expresses the scattering matrix S in the so-called Pauli basis, which is

given by the following three 2 × 2 matrices:

1 0 1 0 0 11 1 1

, ,
0 1 0 1 1 02 2 2

a b cS S S
     

            
 (2)

Thus, S can be expressed as:
 a b cS aS bS cS   (3)

where:

 , , 2
2 2

hh vv hh vv
hv

S S S S
a b c S

 
   (4)

An RGB image could be formed with the intensities |a|2, |b|2, |c|2. The meanings of Sa, Sb, and Sc are

listed in Table 1.

Table 1. Pauli bases and their corresponding meanings.

Pauli Basis Meaning

Sa Single- or odd-bounce scattering
Sb Double- or even-bounce scattering

Sc
Those scatterers which are able to return the
orthogonal polarization to the one of the incident
wave (forest canopy)

2.2. Coherence Matrix

The coherence matrix is obtained as [16]:

11 12 13
*

12 22 23
* *

13 23 33

[, ,][, ,]T

T T T

T a b c a b c T T T

T T T

 
    
  

 (5)

The average of multiple single-look coherence matrices is the multi-look coherence matrix. (T11, T22,

T33) usually are regarded as the channels of the PolSAR images.

Sensors 2011, 11

4724

3. Feature Extraction and Reduction

The proposed features can be divided into three types, which are explained below.

3.1. Span

The span or total scattered power is given by:

2 2 2

2hh vv hvM S S S   (6)

which indicates the power received by a fully polarimetric system.

3.2. H/A/Alpha Decomposition

H/A/α decomposition is designed to identify in an unsupervised way polarimetric scattering

mechanisms in the H-α plane [5]. The method extends the two assumptions of traditional ways [17]:

(1) azimuthally symmetric targets; (2) equal minor eigenvalues λ2 and λ3. T can be rewritten as:

1

3 2 3

3

0 0

0 0

0 0

HT U U






 
   
  

 (7)

where:

1 2 3

3 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

cos cos cos

sin cos exp() sin cos exp() sin cos exp()

sin sin exp() sin sin exp() sin sin exp()

U i i i

i i i

  
        
        

 
   
  

 (8)

Then, the pseudo-probabilities of the T matrix expansion elements are defined as:

 3

1

j
i

jj

P








 (9)

The entropy [18] indicates the degree of statistical disorder of the scattering phenomenon. It can be

defined as:

3

3
1

log 0 1i i
i

H P P H


    (10)

For high entropy values, a complementary parameter (anisotropy) [1] is necessary to fully

characterize the set of probabilities. The anisotropy is defined as the relative importance of the second

scattering mechanisms [19]:

 2 3

2 3

 0 1
P P

A A
P P


  


 (11)

The four estimates of the angles are easily evaluated as:

3

1

[, , ,] [, , ,]i
i

P       


 (12)

Thus, vectors from coherence matrix can be represented as (H, A,  ,  ,  , ).

Sensors 2011, 11

4725

3.3. Texture Features

Gray level co-occurrence matrix (GLCM) is a text descriptor which takes into account the specific

position of a pixel relative to another. The GLCM is a matrix whose elements correspond to the

relative frequency of occurrence of pairs of gray level values of pixels separated by a certain distance

in a given direction [20]. Formally, the elements of a GLCM G(i,j) for a displacement vector (a,b) is

defined as:
 (,) |{(,), (,) : (,) & (,) } |G i j x y t v I r s i I t v j   (13)

where (t,v) = (x + a, y + b), and |•| denotes the cardinality of a set. The displacement vector (a,b) can be

rewritten as (d, θ) in polar coordinates.

GLCMs are suggested to be calculated from four displacement vectors with d = 1 and θ = 0°, 45°,

90°, and 135° respectively. In this study, the (a, b) are chosen as (0,1), (−1,1), (−1,0), and (−1,−1)

respectively, and the corresponding GLCMs are averaged. The four features are extracted from

normalized GLCMs, and their sum equals to 1. Suppose the normalized GLCM value at (i,j) is p(i,j),

and their detailed definition are listed in Table 2.

Table 2. Properties of GLCM.

Property Description Formula

Contrast Intensity contrast between a pixel and its neighbor Σ|i−j|2p(i,j)

Correlation
Correlation between a pixel and its neighbor (μ denotes the
expected value, and σ the standard variance)

Σ[(i−μi)(j−μj)p(i,j)/(σiσj)]

Energy Energy of the whole image Σp2(i,j)
Homogeneity Closeness of the distribution of GLCM to the diagonal Σ[p(i,j)/(1+|i-j|]

3.4. Total Features

The texture features consist of 4 GLCM-based features, which should be multiplied by 3 since there

are three channels (T11, T22, T33). In addition, there are one span feature, and six H/α parameters. In all,

the number of total features is 1 + 6 + 4 × 3 = 19.

3.5. Principal Component Analysis

PCA is an efficient tool to reduce the dimension of a data set consisting of a large number of

interrelated variables while retaining most of the variations. It is achieved by transforming the data set

to a new set of ordered variables according to their variances or importance. This technique has three

effects: It orthogonalizes the components of the input vectors so that uncorrelated with each other, it

orders the resulting orthogonal components so that those with the largest variation come first, and

eliminates those components contributing the least to the variation in the data set [21].

More specifically, for a given n-dimensional matrix n × m, where n and m are the number of

variables and the number of temporal observations, respectively, the p principal axes (p << n) are

orthogonal axes, onto which the retained variance is maximal in the projected space. The PCA

describes the space of the original data projecting onto the space in a base of eigenvectors. The

corresponding eigenvalues account for the energy of the process in the eigenvector directions. It is

Sensors 2011, 11

4726

assumed that most of the information in the observation vectors is contained in the subspace spanned

by the first p principal components. Considering data projection restricted to p eigenvectors with the

highest eigenvalues, an effective reduction in the input space dimensionality of the original data can be

achieved with minimal information loss. Reducing the dimensionality of the n dimensional input space

by projecting the input data onto the eigenvectors corresponding to the first p eigenvalues is an

important step that facilitates subsequent neural network analysis [22].

The detailed steps of PCA are as follows: (1) organize the dataset; (2) calculate the mean along

each dimension; (3) calculate the deviation; (4) find the covariance matrix; (5) find the eigenvectors

and eigenvalues of the covariance matrix; (6) sort the eigenvectors and eigenvalues; (7) compute the

cumulative energy content for each eigenvector; (8) select a subset of the eigenvectors as the new basis

vectors; (9) convert the source data to z-scores; (10) project the z-scores of the data onto the new basis.
Figure 1 shows a geometric illustration of PCA. Here the original basis is 1 2{ , }x x , and the new basis is

1 2{ , }F F . After the data was projecting onto the new basis, we can find that the data focused along the

first dimension of the new basis.

Figure 1. Geometric Illustration of PCA.

4. Forward Neural Network

Neural networks are widely used in pattern classification since they do not need any information

about the probability distribution and the a priori probabilities of different classes. A two-hidden-layer

backpropagation neural network is adopted with sigmoid neurons in the hidden layers and linear

neuron in the output layer via the information entropy method [23].

The training vectors are formed from the selected areas and normalized and presented to the NN

which is trained in batch mode. The network configuration is NI × NH1 × NH2 × NO, i.e., a three-layer

network with NI neurons in the input layer, NH1 neurons in the first hidden layer, NH2 neurons in the

second hidden layer, and NO neuron in the output layer (Figure 2). Their values vary with the

remote-sensing area, and will be determined in the Experimental section.

Sensors 2011, 11

4727

Figure 2. A three-layer neural network.

1

2

NH1
NH2

2

1

.

.

.

1

2

NI

.

.

.

.

.

.

1

2

NO

.

.

.

Layer1 Layer2 OutputInput

4.1. Introduction of PSO

The traditional NN training method can easily be trapped into the local minima, and the training

procedures take a long time [24]. In this study, PSO is chosen to find the optimal parameters of the neural

network. PSO is a population based stochastic optimization technique, which is based on simulating the

social behavior of swarm of bird flocking, bees, and fish schooling. By randomly initializing the algorithm

with candidate solutions, the PSO successfully leads to a global optimum [25]. This is achieved by an

iterative procedure based on the processes of movement and intelligence in an evolutionary system.

Figure 3 shows the flow chart of a PSO algorithm.

Figure 3. Flow chart of the PSO algorithm.

In PSO, each potential solution is represented as a particle. Two properties (position x and velocity v)

are associated with each particle. Suppose x and v of the ith particle are given as [26]:

 1 2(, , ,)i i iNx x x x  (14)

 1 2(, , ,)i i iNv v v v  (15)

Sensors 2011, 11

4728

where N stands for the dimensions of the problem. In each iteration, a fitness function is evaluated for

all the particles in the swarm. The velocity of each particle is updated by keeping track of two best

positions. One is the best position a particle has traversed so far. It is called “pBest”. The other is the

best position that any neighbor of a particle has traversed so far. It is a neighborhood best and is called

“nBest”. When a particle takes the whole population as its neighborhood, the neighborhood best

becomes the global best and is accordingly called “gBest”. Hence, a particle’s velocity and position are

updated as follows:

 1 1 2 2() ()v v c r pBest x c r nBest x      (16)

 x x v t   (17)

where ω is called the “inertia weight” that controls the impact of the previous velocity of the particle

on its current one. c1 and c2 are positive constants, called “acceleration coefficients”. r1 and r2 are

random numbers that are uniformly distributed in the interval [0,1]. These random numbers are

updated every time when they occur. Δt stands for the given time-step and usually equals to 1.

The population of particles is then moved according to Equations (16) and (17), and tends to cluster

together from different directions. However, a maximum velocity vmax, should not be exceeded by any

particle to keep the search within a meaningful solution space. The PSO algorithm runs through these

processes iteratively until the termination criterion is satisfied.

Let NP denotes the number of particles, each having a position xi and a velocity vi. Let pi be the best

known position of particle i and g be the best known position of the entire swarm. A basic PSO

algorithm can be described as follows:

Step 1 Initialize every particle’s position with a uniformly distributed random vector;

Step 2 Initialize every particle’s best known position to its initial position, viz., pi = xi;

Step 3 If f(pi) < f(g), then update the swarm’s best known position, g = pi;

Step 4 Repeat until certain termination criteria was met

Step 4.1 Pick random numbers r1 & r2;

Step 4.2 Update every particle’s velocity according to formula (16);

Step 4.3 Update every particle’s position according to formula (17);

Step 4.4 If f(xi) < f(pi), then update the particle’s best known position, pi = xi. If

f(pi) < f(g), then update the swarm’s best known position, g = pi.

Step 5 Output g which holds the best found solution.

4.2. ACPSO

In order to enhance the performance of canonical PSO, two improvements are proposed as follows.

The inertia weight ω in Equation (16) affects the performance of the algorithm. A larger inertia weight

pressures towards global exploration, while a smaller one pressures towards fine-tuning of current

search area [27]. Thus, proper control of ω is important to find the optimum solution accurately. To

deal with this shortcoming, an “adaptive inertia weight factor” (AIWF) was employed as follow:

 max max min max() / k k       (18)

Sensors 2011, 11

4729

Here, ωmax denotes the maximum inertial weight, ωmin denotes the minimum inertial weight, kmax

denotes the epoch when the inertial weight reaches the final minimum, and k denotes current epoch.

The parameters (r1, r2) were generated by pseudo-random number generators (RNG) in classical

PSO. The RNG cannot ensure the optimization’s ergodicity in solution space because they are

pseudo-random; therefore, we employed the Rossler chaotic operator [28] to generate parameters

(r1, r2). The Rossler equations are as follows:

()

dx
y z

dt
dy

x ay
dt

dz
b xz cz

dt

   

  

   

 (19)

Here a, b, and c are parameters. In this study, we chose a = 0.2, b = 0.4, and c = 5.7. The results are

shown in Figure 4, where the line in the 3D space exhibits a strong chaotic property called

“spiral chaos”.

Figure 4. A Rossler chaotic number generator with a = 0.2, b = 0.4, c = 5.7.

-10
-5

0
5

10
15

-10

-5

0

5

10
0

5

10

15

20

X(t)Y(t)

Z
(t

)

The dynamic properties of x(t) and y(t) are shown in Figure 5, where x(t) and y(t) satisfy both

ergodicity and randomness. Therefore, we let r1 = x(t) and r2 = y(t) to embed the chaotic operator into

the canonical PSO method.

There are some other chaotic PSO methods proposed in the past. Wang et al. [29] proposed a

chaotic PSO to find the high precision prediction for the grey forecasting model. Chuang et al. [30]

proposed a chaotic catfish PSO for solving global numeric optimization problem. Araujo et al. [31]

intertwined PSO with Lozi map chaotic sequences to obtain Takagi-Sugeno fuzzy model for

representing dynamic behaviors. Coelho [32] presented an efficient PSO algorithm based on Gaussian

distribution and chaotic sequence to solve the reliability–redundancy optimization problems.

Coelho et al. [33] presented a quantum-inspired version of the PSO using the harmonic oscillator well

to solve the economic dispatch problem. Cai et al. [34] developed a multi-objective chaotic PSO

method to solve the environmental economic dispatch problems considering both economic and

Sensors 2011, 11

4730

environmental issues. Coelho et al. [35] proposed three differential evolution approaches based on

chaotic sequences using logistic equation for image enhancement process. Sun et al. [36] proposed a

drift PSO and applied it in estimating the unknown parameters of chaotic dynamic system.

Figure 5. Chaotic sequence of (a) x(t) and (b) y(t).

0 0.5 1 1.5 2 2.5

x 10
4

-10

-5

0

5

10

15

t

X
(t

)

0 0.5 1 1.5 2 2.5

x 10
4

-10

-8

-6

-4

-2

0

2

4

6

8

t

y(
t)

(a) (b)

The main difference between our ACPSO and popular PSO lies in two points: (1) we introduced in

the adaptive inertia weight factor strategy; (2) we used the Rossler attractor because of the following

advantages [37]: the Rossler is simpler, having only one manifold, and easier to analyze qualitatively.

In total, the procedures of ACPSO are listed as follows:

Step 1 Initialize every particle’s position with a uniformly distributed random vector;

Step 2 Initialize every particle’s best known position to its initial position, viz., pi = xi;

Step 3 If f(pi) < f(g), then update the swarm’s best known position, g = pi;

Step 4 Repeat until certain termination criteria was met:

Step 4.1 Update the value of ω according to formula (18);

Step 4.2 Pick chaotic random numbers r1 & r2 according to formula (19)

Step 4.3 Update every particle’s velocity according to formula (16);

Step 4.4 Update every particle’s position according to formula (17);

Step 4.5 If f(xi) < f(pi), then update the particle’s best known position, pi = xi. If

f(pi) < f(g), then update the swarm’s best known position, g = pi.

Step 5 Output g which holds the best found solution.

4.3. ACPSO-NN

Let ω1, ω2, ω3 represent the connection weight matrix between the input layer and the first hidden

layer, between the first and the second hidden layer, and between the second hidden layer and the

output layer, respectively. When the ACPSO is employed to train the multi-layer neural network, each

particle is denoted by:
 1 2 3[, ,]    (20)

Sensors 2011, 11

4731

The outputs of all neurons in the first hidden layer are calculated by following steps:

 1 1 1
1

(,) 1, 2, ,
IN

j H i H
i

y f i j x j N


 
  

 
  (21)

Here xi denotes the ith input value, y1j denotes the jth output of the first hidden layer, and fH is

referred to as the activation function of hidden layer. The outputs of all neurons in the second hidden

layer are calculated as:

1

2 2 1 2
1

(,) 1, 2, ,
HN

k H j H
j

y f j k y k N


 
  

 
  (22)

where y2j denotes the jth output of the second hidden layer.

The outputs of all neurons in the output layer are given as follows:

2

3 2
1

(,) 1, 2,...,
HN

l O k O
k

O f k l y l N


 
  

 
 (23)

Here fO denotes the activation function of output layer, usually a line function. All weights are

assigned with random values initially, and are modified by the delta rule according to the learning

samples traditionally.

The error of one sample is expressed as the MSE of the difference between its output and the

corresponding target value:

  
1

mse 1, 2,...
ON

m l l S
l

E O T m N


 
   

 
 (24)

where Tk represents the kth value of the authentic values which are already known to users, and NS

represents the number of samples. Suppose there are NS samples, then the fitness value is written as:

1

()
SN

m
m

F E


 (25)

where ω represents the vectorization of the (ω1, ω2, ω3). Our goal is to minimize this fitness function

F(ω) by the proposed ACPSO method, viz., force the output values of each sample approximate to

corresponding target values.

4.4. Cross Validation

Cross validation methods consist of three types: Random subsampling, K-fold cross validation, and

leave-one-out validation. The K-fold cross validation is applied due to its properties as simple, easy,

and using all data for training and validation. The mechanism is to create a K-fold partition of the

whole dataset, repeat K times to use K-1 folds for training and a left fold for validation, and finally

average the error rates of K experiments. The schematic diagram of 5-fold cross validation is shown in

Figure 6.

Sensors 2011, 11

4732

Figure 6. A 5-fold cross validation.

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Training

Validation

Total Number of Dataset

A challenge is to determine the number of folds. If K is set too large, the bias of the true error rate

estimator will be small, however, the variance of the estimator will be large and the computation will

be time-consuming. Alternatively, if K is set too small, the computation time will decrease, the

variance of the estimator will be small, but the bias of the estimator will be large. The advantages and

disadvantages of setting K large or small are listed in Table 3. In this study, K is determined as 10

through trial-and-error method.

Table 3. Large K versus small K.

K value Estimator Bias Estimator Variance Computation Time

Large ↓ ↑ ↑
small ↑ ↓ ↓

If the model selection and true error estimation are computed simultaneously, the data needs to be

divided into three disjoint sets [38]. In another word, the validation subset is used to tune the

parameters of the neural network model, so another test subset is needed only to assess the

performance of a trained neural network, viz., the whole dataset is divided into three subsets with

different purposes listed in Table 4. The reason why the validation set and testing set cannot merge

with each other lies in that the error rate estimation via the validation data will be biased (smaller than

the true error rate) since the validation set is used to tune the model [39].

Table 4. Purposes of different subsets.

Subset Intent

Training Learning to fit the parameters of the classifier
Validation Estimate the error rate to tune the parameters of the classifier
Testing Estimate the true error rate to assess the classifier

5. Experiments

Flevoland, an agricultural area in The Netherlands, is chosen as the example. The site is composed

of strips of rectangular agricultural fields. The scene is designated as a supersite for the earth

observing system (EOS) program, and is continuously surveyed by the authorities.

Sensors 2011, 11

4733

5.1. Refine Lee Filter

The Pauli image of Flevoland is shown in Figure 7(a), and the refine Lee filtered image (Window

Size = 7) is shown in Figure 7(b).

Figure 7. Pauli Image of Flevoland (1,024 × 750). (a) Pauli Image; (b) The refine Lee

filtered images.

(a) (b)

5.2. Full Features

The basic span image and three channels (T11, T22, T33) are easily obtained and shown in Figure 8.

The parameters of H/A/Alpha decomposition are shown in Figure 9. The GLCM-based parameters of

T11, T22, T33 are shown in Figures 10–12.

Figure 8. Basic span image and three channels image. (a) Span (dB); (b) T11 (dB);

(c) T22 (dB); (d) T33(dB).

(a) (b)

(c) (d)

Sensors 2011, 11

4734

Figure 9. Parameters of H/A/α decomposition. (a) H; (b) A; (c)  ; (d)  ; (e)  ; (f)  .

(a) (b)

(c) (d)

(e) (f)

Figure 10. GLCM-based features of T11. (a) Contrast. (b) Correlation. (c) Energy. (d) Homogeneity.

(a) (b)

Sensors 2011, 11

4735

Figure 10. Cont.

(c) (d)

Figure 11. GLCM-based features of T22. (a) Contrast; (b) Correlation; (c) Energy; (d) Homogeneity.

(a) (b)

 (c) (d)

Figure 12. GLCM-based features of T33. (a) Contrast; (b) Correlation; (c) Energy; (d) Homogeneity.

(a) (b)

Sensors 2011, 11

4736

Figure 12. Cont.

 (c) (d)

5.3. PCA

The curve of cumulative sum of variance with dimensions of reduced vectors via PCA is shown in

Figure 13. The detailed data are listed in Table 5. It shows that only 13 features, which are only half

the original features, could preserve 98.06% of variance.

Figure 13. Cumulative sum of variance versus principle components.

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Principle Component

V
ar

ia
nc

e
E

xp
la

in
ed

 (
%

)

Table 5. Detailed cumulative sum of variance.

Dimensions 1 2 3 4 5 6 7 8 9
Variance (%) 26.31 42.98 52.38 60.50 67.28 73.27 78.74 82.61 86.25

Dimensions 10 11 12 13 14 15 16 17 18
Variance (%) 89.52 92.72 95.50 98.06 98.79 99.24 99.63 99.94 99.97

5.4. Area Selection

The classification is run over 13 classes, bare soil 1, bare soil 2, barley, forest, grass, lucerne, peas,

potatoes, rapeseed, stem beans, sugar beet, water, and wheat. Our strategy is a semiautomatic method,

viz. the training area was chosen and labeled manually. For each crop type, we choose a square of size

20 × 20, which is easy to perform since the training area size is 13 × 20 × 20 = 5,200 compared to the

size of the whole image is 1,024 × 750 = 768,000. In order to reduce the complexity of experiment, the

test areas are chosen randomly from rest areas [40,41], with the same square size as the training area.

Sensors 2011, 11

4737

The final manually selected training areas are shown in Figure 14(a). Each square corresponds to a

crop type with the size of 20 × 20. In total, there are 5,200 pixels for our training. The cross validation

procedures loop 10 times, therefore, each loop we use 4,680 pixels for training and the left 520 pixels

for validation. The final randomly selected test areas are shown Figure 14(b). The samples numbers of

training and test area are shown in Table 6.

Figure 14. Sample data areas of Flevoland. (a) Training Area; (b) Test Area; (c) Legend of Colors.

BareSoil 1

BareSoil 2

Barley

Forest

Grass

Lucerne

Peas

Potatoes

RapeSeed

StemBeans

SugarBeet

Water

Wheat

 (a) (b) (c)

Table 6. Sample numbers of training and test area.

Training Area Test Area Total

5,200 10 loops (4,680 for train and 520 for validation) 5,200 10,400

5.5. Network Training

NI is determined as 13 due to the 13 features obtained by PCA. No is determined as 13 due to the 13

classes shown in Figure 14. Both NH1 and NH2 are set as 10 via the information entropy method [42].

Therefore,

the number of unknown variables of the neural network is 13 × 10 + 10 + 10 × 10 + 10 + 10 × 13 + 13 = 393.

Table 7. Parameters of PSO & ACPSO.

Parameters Values

 PSO ACPSO

Dimensions 393 393
Vmax 0.04 0.04

Maximum Iterations 2,000 2,000
kmax 1,500 1,500
NP 24 24
c1 2 2
c2 2 2

Function tolerance 1e−6 1e−6
ωmax - 0.9
ωmin - 0.4

a - 0.2
b - 0.4
c - 5.7

Sensors 2011, 11

4738

The network was trained by the proposed ACPSO algorithm, of which the parameters are obtained

via trial-and-error method and shown in Table 7. Besides, BP algorithm [8], BP with momentum

(MBP) [43], adaptive BP algorithm (ABP) [44], and PSO [45] are employed as comparative algorithms.

The curves of function fitness versus versus epoch of different algorithms are shown in Figure 15,

indicating that the proposed ACPSO converges the most quickly and is capable of finding global

minimum point.

Figure 15. The curve of fitness versus epoch.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epoch

M
S

E

MBP
BP
ABP
PSO
ACPSO

5.6. Classification Accuracy

The confusion matrices on training area of our method are calculated and shown in Figure 16. The

overall accuracies of our method on the training area (combining training and validation subsets) and

test area are 99.0% and 94.0%, respectively. The main drawbacks are around the following four

misclassifications: (I) forest zones are easily misclassified as peas; (II) grasses are easily misclassified

as barley and lucerne; (III) lucerne are easily misclassified as grasses; (IV) sugarbeets are easily

misclassified as peas.

A typical classification accuracy of both training area and test area by BP , ABP, MBP, and PSO are

listed in Table 8, indicating that the proposed algorithm achieves the highest classification accuracy on

both training (99.0%) and test area (94.0%). The random classifier disregards the information of the

training data and returns random predictions, so it is usually employed to find the lowest classification rate.

Yudong also used Resilient back-propagation (RPROP) algorithm to train the neural network to

classify the same Flevoland area [41], and obtains 98.62% on training area and 92.87% on test area.

The PSO ranks the third with 98.1% on training area and 88.7% on test area. The ABP ranks the fourth

with 90.7% and 86.4% on both training and test area, respectively. The BP and MBP performs the

worst with the classification accuracy only a bit higher than the random classifier of 1/131 = 37. 69%,

indicating that only 2,000 iterations are not enough for these two training strategies. Besides, the

classification accuracy of the proposed algorithm was extremely high on the test area due to the

10-fold cross validation.

Sensors 2011, 11

4739

Figure 16. Confusion Matrixes of ACPSO-NN algorithm. (a) Training Area; (b) Test Area.

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

399

7.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.8%

0.2%

0

0.0%

398

7.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.5%

0.5%

0

0.0%

0

0.0%

399

7.7%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.8%

0.2%

0

0.0%

0

0.0%

0

0.0%

387

7.4%

0

0.0%

0

0.0%

10

0.2%

1

0.0%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

96.8%

3.2%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

398

7.7%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.5%

0.5%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

397

7.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.3%

0.7%

0

0.0%

0

0.0%

0

0.0%

7

0.1%

0

0.0%

0

0.0%

390

7.5%

3

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

97.5%

2.5%

0

0.0%

0

0.0%

0

0.0%

5

0.1%

0

0.0%

0

0.0%

0

0.0%

395

7.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

98.8%

1.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

7.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

7

0.1%

0

0.0%

0

0.0%

4

0.1%

0

0.0%

0

0.0%

389

7.5%

0

0.0%

0

0.0%

0

0.0%

97.3%

2.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

7.7%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

398

7.7%

0

0.0%

99.5%

0.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

7.7%

100%

0.0%

99.8%

0.2%

100%

0.0%

99.8%

0.2%

95.3%

4.7%

99.3%

0.7%

99.7%

0.3%

96.1%

3.9%

99.0%

1.0%

99.3%

0.7%

99.5%

0.5%

100%

0.0%

100%

0.0%

100%

0.0%

99.0%

1.0%

Target Class

O
u

tp
u

t
C

la
ss

 Confusion Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

399

7.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.8%

0.2%

0

0.0%

390

7.5%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

3

0.1%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

5

0.1%

97.5%

2.5%

0

0.0%

0

0.0%

381

7.3%

0

0.0%

16

0.3%

3

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

95.3%

4.7%

0

0.0%

3

0.1%

0

0.0%

351

6.8%

0

0.0%

0

0.0%

26

0.5%

7

0.1%

0

0.0%

4

0.1%

9

0.2%

0

0.0%

0

0.0%

87.8%

12.3%

0

0.0%

0

0.0%

33

0.6%

0

0.0%

339

6.5%

28

0.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

84.8%

15.2%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

31

0.6%

362

7.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.1%

90.5%

9.5%

0

0.0%

0

0.0%

0

0.0%

9

0.2%

0

0.0%

0

0.0%

371

7.1%

2

0.0%

0

0.0%

1

0.0%

16

0.3%

0

0.0%

1

0.0%

92.8%

7.3%

0

0.0%

4

0.1%

0

0.0%

16

0.3%

0

0.0%

0

0.0%

0

0.0%

380

7.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

95.0%

5.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

393

7.6%

0

0.0%

0

0.0%

7

0.1%

0

0.0%

98.3%

1.7%

0

0.0%

0

0.0%

0

0.0%

5

0.1%

0

0.0%

0

0.0%

3

0.1%

0

0.0%

0

0.0%

390

7.5%

1

0.0%

0

0.0%

1

0.0%

97.5%

2.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

38

0.7%

0

0.0%

0

0.0%

4

0.1%

352

6.8%

0

0.0%

4

0.1%

88.0%

12.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

9

0.2%

0

0.0%

0

0.0%

391

7.5%

0

0.0%

97.8%

2.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

11

0.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

388

7.5%

97.0%

3.0%

100%

0.0%

98.2%

1.8%

91.8%

8.2%

91.9%

8.1%

87.8%

12.2%

89.2%

10.8%

84.7%

15.3%

96.9%

3.1%

97.5%

2.5%

97.7%

2.3%

92.6%

7.4%

98.2%

1.8%

95.8%

4.2%

94.0%

6.0%

Target Class

O
u

tp
u

t
C

la
ss

Confusion Matrix

(a) (b)

Table 8. A typical classification accuracy of different algorithms (Maximum iterations = 2,000).

Algorithm Training Area Test Area Rank

Random 7.69% 7.69% 7
MBP 8.8% 7.5% 6
BP 8.3% 8.2% 5
ABP 90.7% 86.4% 4
PSO 98.1% 88.7% 3
RPROP[41] 98.62% 92.87% 2
ACPSO 99.0% 94.0 1

5.7. Robustness

In order to compare the robustness of each algorithm, we perform each algorithm 50 runs and

calculated the minimum, the average, and the maximum of the classification rates. The results are

listed in Table 9. It indicates that the results of each algorithm changed at each run, but the variation is

limited, so the rank of the performance of all algorithms is the same as that in Table 8.

Table 9. Statistical results of different algorithms (Maximum iterations = 2,000).

Algorithm
Training Area Test Area

Min Ave Max Min Ave Max

Random 7.58% 7.69% 7.83% 7.58% 7.69% 7.81%
MBP 8.52% 8.83% 9.08% 6.98% 7.44% 7.92%
BP 7.96% 8.33% 8.65% 7.90% 8.17% 8.35%

Sensors 2011, 11

4740

Table 9. Cont.

ABP 81.04% 87.18% 94.12% 76.60% 83.55% 89.83%
PSO 95.83% 97.68% 98.52% 83.15% 89.32% 91.54%
RPROP 97.63% 98.71% 98.90% 90.87% 92.65% 93.77%
ACPSO 98.15% 98.84% 99.13% 92.56% 93.80% 94.52%

5.8. Time Analysis

Computation time is another important factor used to evaluate the classifier. The time for network

training of our algorithm costs about 120 s, which can be ignored since the weights/biases of the NN

remain fixed after training unless the property of images changes greatly. For example, the main crops

in Flevoland are involved in the 13 types shown in Figure 14(c), therefore, the classifier can be directly

used to other remote-sensing images of Flevoland without retrain. It will cost about 0.131 + 30,

0.242 + 40, 0.232 + 30, 0.181 + 80, 0.048 = 0.83 s from the input of Flevoland images (size

1,024 × 750) to the output of final classification results as shown in Table 10. For each pixel, it costs

only 1.08 × 10−7s, which is fast enough for real time applications.

Table 10. Computation Time of Flevoland image classification.

Stage Time

Span 0.13 s
H/A/α decomposition 0.24 s
GLCM 0.23 s
PCA 0.18 s
NN Training* 120 s
Classification 0.048 s

(* denotes training time can be ignored)

6. Conclusions

In this study, a crop classification classifier was constructed by following stages. First, a hybrid

feature set was introduced which was made up of the span image, the H/A/α decomposition, and the

GLCM-based texture features. Afterwards, PCA was carried on to reduce the features. The principle

components were sent to the two-hidden-layer neural network, which was trained by the proposed

ACPSO method. 10-fold cross validation was employed to prevent overfitting. Experiments on

Flevoland site show that the proposed ACPSO-NN obtains satisfying results. The ACPSO trains the

neural network more efficiently and effectively than BP, ABP, MBP, PSO, and RPROP methods.

More rigorous testing on more complex problems will be performed in future works.

Acknowledgements

The research is financed by following projects: (1) National Natural Science Foundation of China

(#60872075); (2) National Technical Innovation Project Essential Project Cultivate Project (#706928)

and (3) Nature Science Fund in Jiangsu Province (#BK2007103).

Sensors 2011, 11

4741

References

1. Ilyushin, Y.A. Impact of the plasma fluctuations in the Martian ionosphere on the performance of

the synthetic aperture ground-penetrating radar. Planet. Space Sci. 2009, 57, 1458–1466.

2. Pal, S.K.; Majumdar, T.J.; Bhattacharya, A.K. ERS-2 SAR and IRS-1C LISS III data fusion: A

PCA approach to improve remote sensing based geological interpretation. ISPRS J. Photogramm.

Remote Sens. 2007, 61, 281–297.

3. Khan, K.U.; Yang, J. Polarimetric synthetic aperture radar image classification by a hybrid method.

Tsinghua Sci. Technol. 2007, 12, 97–104.

4. Simons, M.; Rosen, P.A. Interferometric synthetic aperture radar geodesy. In Treatise on

Geophysics; Gerald, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 391–446.

5. Hellmann, M.; Jäger, G. Fuzzy rule based classification of polarimetric SAR data. Aerosp. Sci.

Technol. 2002, 6, 217–232.

6. Gadelmawla, E.S. A vision system for surface roughness characterization using the gray level

co-occurrence matrix. NDTE Int. 2004, 37, 577–588.

7. Quan, J.J.; Wen, X.B.; Xu, X.Q. Multiscale probabilistic neural network method for SAR image

segmentation. Appl. Math. Comput. 2008, 205, 578–583.

8. Fontenla-Romero, O.; Guijarro-Berdiñas, B.; Pérez-Sánchez, B.; Alonso-Betanzos, A. A new

convex objective function for the supervised learning of single-layer neural networks. Patt. Recog.

2010, 43, 1984–1992.

9. Mansour, M.A.A.; Dessouky, M.M. A genetic algorithm approach for solving the daily

photograph selection problem of the SPOT5 satellite. Comput. Ind. Eng. 2010, 58, 509–520.

10. Fernández, A.; Gómez, S. Portfolio selection using neural networks. Comput. Oper. Res. 2007, 34,

1177–1191.

11. Zhang, Y.; Yan, J.; Wei, G.; Wu, L. Find multi-objective paths in stochastic networks via chaotic

immune PSO. Expert Syst. Appl. 2010, 37, 1911–1919.

12. Zhang, Y.D.; Wu, L. Weights optimization of neural network via improved BCO approach. Prog.

Electromagn. Res. 2008, 83, 185–198.

13. Polat, K.; Günes, S. A new method to forecast of Escherichia coli promoter gene sequences:

Integrating feature selection and Fuzzy-AIRS classifier system. Expert Syst. Appl. 2009, 36,

57–64.

14. Delen, D.; Walker, G.; Kadam, A. Predicting breast cancer survivability: A comparison of three

data mining methods. Artif. Intell. Med. 2005, 34, 113–127.

15. Kertész-Farkas, A.; Dhir, S.; Sonego, P.; Pacurar, M.; Netoteia, S.; Nijveen, H.; Kuzniar, A.;

Leunissen, J.A.M.; Kocsor, A.; Pongor, S. Benchmarking protein classification algorithms via

supervised cross-validation. J. Biochem. Biophys. Meth. 2008, 70, 1215–1223.

16. Jouan, A.; Allard, Y. Land use mapping with evidential fusion of features extracted from

polarimetric synthetic aperture radar and hyperspectral imagery. Inform. Fusion 2004, 5, 251–267.

17. Goodarzi, M.; Freitas, M.P. MIA-QSAR coupled to principal component analysis-adaptive

neuro-fuzzy inference systems (PCA-ANFIS) for the modeling of the anti-HIV reverse

transcriptase activities of TIBO derivatives. Eur. J. Med. Chem. 2010, 45, 1352–1358.

18. Zhang, Y.; Wu, L. Pattern recognition via PCNN and Tsallis entropy. Sensors 2008, 8, 7518–7529.

Sensors 2011, 11

4742

19. Celik, T. A Bayesian approach to unsupervised multiscale change detection in synthetic aperture

radar images. Signal Process. 2010, 90, 1471–1485.

20. Alvarenga, A.V.; Teixeira, C.A.; Ruano, M.G.; Pereira, W.C.A. Influence of temperature variations

on the entropy and correlation of the Grey-Level Co-occurrence Matrix from B-Mode images.

Ultrasonics 2010, 50, 290–293.

21. Werth, M.T.; Halouska, S.; Shortridge, M.D.; Zhang, B.; Powers, R. Analysis of metabolomic

PCA data using tree diagrams. Analytical Biochem. 2010, 399, 58–63.

22. Korte, F.S.; Razumova, M.V.; Feest, E.R.; Wang, D.; Regnier, M. PKA phosphorylation has no

effect on the force-PCA relationship or length dependent activation following L48Q cTNC-Tn

exchange in rat demembranated trabeculae. Biophys. J. 2010, 98, (Supplement 1), 6a.

23. Zhang, Y.; Wu, L. Stock Market Prediction of S&P 500 via combination of improved BCO

approach and BP neural network. Expert Syst. Appl. 2009, 36, 8849–8854.

24. Radulovic, J.; Rankovic, V. Feedforward neural network and adaptive network-based fuzzy

inference system in study of power lines. Expert Syst. Appl. 2010, 37, 165–170.

25. de Carvalho, A.B.; Pozo, A.; Vergilio, S.R.A symbolic fault-prediction model based on

multiobjective particle swarm optimization. J. Syst. Softw. 2010, 83, 868–882.

26. Niknam, T.; Mojarrad, H.D.; Nayeripour, M. A new fuzzy adaptive particle swarm optimization

for non-smooth economic dispatch. Energy 2010, 35, 1764–1778.

27. Bonilla-Petriciolet, A.; Segovia-Hernández, J.G.A comparative study of particle swarm

optimization and its variants for phase stability and equilibrium calculations in multicomponent

reactive and non-reactive systems. Fluid Phase Equilibria 2010, 289, 110–121.

28. dos Santos Coelho, L.; Coelho, A.A.R. Model-free adaptive control optimization using a chaotic

particle swarm approach. Chaos. Soliton. Fractal. 2009, 41, 2001–2009.

29. Wang, J.; Zhu, S.; Zhao, W.; Zhu, W. Optimal parameters estimation and input subset for grey

model based on chaotic particle swarm optimization algorithm. Expert Syst. Appl. 2011, 38,

8151–8158.

30. Chuang, L.Y.; Tsai, S.W.; Yang, C.H. Chaotic catfish particle swarm optimization for solving

global numerical optimization problems. Appl. Math. Comput. 2011, 217, 6900–6916.

31. Araujo, E.; Coelho, L.d.S. Particle swarm approaches using Lozi map chaotic sequences to fuzzy

modelling of an experimental thermal-vacuum system. Appl. Soft Comput. 2008, 8, 1354–1364.

32. Coelho, L.d.S. An efficient particle swarm approach for mixed-integer programming in

reliability-redundancy optimization applications. Reliab. Eng. Syst. Safety 2009, 94, 830–837.

33. Coelho, L.d.S.; Mariani, V.C. Particle swarm approach based on quantum mechanics and

harmonic oscillator potential well for economic load dispatch with valve-point effects. Energ.

Conv. Manage. 2008, 49, 3080–3085.

34. Cai, J.; Ma, X.; Li, Q.; Li, L.; Peng, H. A multi-objective chaotic particle swarm optimization for

environmental/economic dispatch. Energ. Conv. Manage. 2009, 50, 1318–1325.

35. Coelho, L.d.S.; Sauer, J.G.; Rudek, M. Differential evolution optimization combined with chaotic

sequences for image contrast enhancement. Chaos. Soliton. Fractal. 2009, 42, 522–529.

36. Sun, J.; Zhao, J.; Wu, X.; Fang, W.; Cai, Y.; Xu, W. Parameter estimation for chaotic systems with

a drift particle swarm optimization method. Phys. Lett. A 2010, 374, 2816–2822.

Sensors 2011, 11

4743

37. Zhang, Y.; Wu, L.; Wang, S.; Huo, Y. Chaotic Artificial bee colony used for cluster analysis.

Commun. Comput. Inform. Sci. 2011, 134, 205–211.

38. Affleck, R.T.; Melloh, R.A.; Shoop, S.A. Cross-country mobility on various snow conditions for

validation of a virtual terrain. J. Terramech. 2009, 46, 203–210.

39. Pradhan, B. Remote sensing and GIS-based landslide hazard analysis and cross-validation using

multivariate logistic regression model on three test areas in Malaysia. Adv. Space Res. 2010, 45,

1244–1256.

40. Kandrika, S.; Roy, P.S. Land use land cover classification of Orissa using multi-temporal IRS-P6

awifs data: A decision tree approach. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 186–193.

41. Zhang, Y.; Wu, L.; Wei, G. A new classifier for polarimetric SAR images. Prog. Electromagn. Res.

2009, 94, 83–104.

42. Yuan, H.C.; Xiong, F.L.; Huai, X.Y. A method for estimating the number of hidden neurons in

feed-forward neural networks based on information entropy. Comput. Electron. Agric. 2003, 40,

57–64.

43. Majdi, A.; Beiki, M. Evolving neural network using a genetic algorithm for predicting the

deformation modulus of rock masses. Int. J. Rock Mech. Mining Sci. 2010, 47, 246–253.

44. Toprak, A.; Siraç Özerdem, M.; Güler, I. Suppression of impulse noise in MR images using

artificial intelligent based neuro-fuzzy adaptive median filter. Digit. Signal Process. 2008, 18,

391–405.

45. Hamidian, D.; Seyedpoor, S.M. Shape optimal design of arch dams using an adaptive neuro-fuzzy

inference system and improved particle swarm optimization. Appl. Math. Model. 2010, 34,

1574–1585.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

