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Abstract: Structural faults, such as unbalance, misalignment and looseness, etc., often 

occur in the shafts of rotating machinery. These faults may cause serious machine 

accidents and lead to great production losses. This paper proposes an intelligent method for 

diagnosing structural faults of rotating machinery using ant colony optimization (ACO) 

and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish 

fault types at an early stage. New symptom parameters called “relative ratio symptom 

parameters” are defined for reflecting the features of vibration signals measured in each 

state. Synthetic detection index (SDI) using statistical theory has also been defined to 

evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a 

RRSP for ACO. Lastly, this paper also compares the proposed method with the 

conventional neural networks (NN) method. Practical examples of fault diagnosis for a 

centrifugal fan are provided to verify the effectiveness of the proposed method. The 

verification results show that the structural faults often occurring in the centrifugal fan, 

such as unbalance, misalignment and looseness states are effectively identified by the 

proposed method, while these faults are difficult to detect using conventional neural 

networks.  

Keywords: rotating machinery; structural fault; relative ratio symptom parameter; ant 

colony optimization 
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1. Introduction 

When building an intelligent system for condition diagnosis of plant machinery, symptom 

parameters (SPs) are required to express the information indicated by a signal measured for diagnosing 

machine faults. A good symptom parameter can correctly reflect states and condition trends of plant 

machinery [1-5]. However, if the rotation speed and load of the plant machinery vary while vibration 

signals are being measured and a fault is in an early stage, the signal contains strong noise. If the 

power of the noise is stronger than that of the actual failure signal, misrecognition of useful 

information for the condition diagnosis may result, and the relationships between symptoms and 

failure types become ambiguous.  

Although many studies on intelligent condition diagnosis for plant machinery have been carried out 

using techniques such as neural networks (NN), support vector machines (SVM), etc. [6-12], these 

methods cannot solve ambiguous diagnosis problems. In many cases, the neural networks or support 

vector machines never converge when the learning set data have ambiguity [13].  

Ant colony optimization (ACO) is a new simulative evolutionary algorithm that is also called ant 

colony system (ACS) [14]. ACO was first used for solving the traveling salesman problem (TSP) [15], 

and it has been successfully applied to a large number of difficult optimization problems, like the 

quadratic assignment problem (QAP) [16], routing in telecommunication networks, graph coloring 

problems, scheduling, etc. In recent years, ACO also has been applied to the clustering analysis 

problem and has achieved excellent results. ACO is a kind of simulated evolutionary algorithm based 

on the positive feedback principle of information. It is strong in terms of robustness and can collect 

and classify all data according to the amount of information around the clustering center [17-20]. If the 

state identification for the condition diagnosis of plant machinery can be converted to a clustering 

problem of the feature patterns of vibration signals measured in different states of rotating machinery, 

the condition diagnosis by ACO is possible. 

The faults (such as unbalance, misalignment or looseness, etc.) occurring in a rotating machine with 

a feature spectrum in the low frequency area are called “structural faults”. Structural faults drag shafts 

into excessive fatigue, and are the main reason of subsequent failures, such as bearing and gear ones, 

etc. That is to say, structural faults can cause the machinery system to break down and may lead to 

serious human and economic losses. Therefore, detecting and distinguishing structural faults are 

extremely important for guaranteeing production efficiency and plant safety. 

For the above reasons, this paper proposes a novel method of intelligent condition diagnosis for 

rotating machinery developed by using relative ratio symptom parameters (RRSPs) and ant colony 

optimization (ACO). The RRSPs in the low-frequency domain are defined to reflect the features of 

vibration signals measured in each state. A synthetic detection index (SDI) using statistical theory has 

also defined to evaluate the applicability of the RRSPs for the condition diagnosis. The SDI can be 

used to indicate the fitness of a RRSP for ACO. Moreover, to reduce the convergence time of ACO to 

increase the processing efficiency, the method of local search for the ACO is also presented in this 

paper. A practical example of condition diagnosis for a centrifugal fan verifies that the method is 

effective, and the proposed method is compared with conventional a NN. The flowchart of the 

condition diagnostic procedure proposed in this paper is shown in Figure 1.  
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Figure 1. Flowchart of the condition diagnosis. 
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Calculate the RRSPs with measured signals

Select the RRSPs for fault diagnosis by SDI

Diagnose using the leaned ACO

Train the ACO with the selected RRSPs

 

2. Relative Ratio Symptom Parameters (RRSPs) for Fault Diagnosis 

Many symptom parameters have been defined in the pattern recognition field, in this paper through 

analyzing the spectral features of structural faults of rotating machinery, the nine RRSPs in the  

low-frequency domain for structural faults diagnosis of rotating machinery are defined: 
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(4)  

where, fr is the rotating frequency. Pn(fr) and Pd(fr) are the spectrum values at frequency fr in the 

normal state and abnormal states, respectively; Pn(ifr) and Pd(ifr) are the high-order harmonic spectrum 

values at frequency ifr (i = 1 to 10) in the normal state and abnormal states, respectively.  
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Here, fi 
is the frequency and from 0 Hz to the maximum analysis frequency; Asn and Ahn are the root 

mean square values of vibration signals of the shaft direction and the horizontal direction in the normal 

state, respectively; Asd and Ahd are the root mean square values of vibration signals of the shaft 

direction and the horizontal direction in the abnormal states, respectively.  

hnvn

hdvd

AA

AA
P 8  (8)  

Here, Avn is the root mean square values of vibration signals of the vertical direction in the normal 

state; Avd is the root mean square values of vibration signals of the vertical direction in the abnormal 

states. 

ndP  9   (9)  

Here, βn and βd are the skewness values in the normal state and the abnormal states, respectively. 

                   
   

   , and I is the number of the spectrum line,    is the mean  

value of the analysis frequency                    
 
   

 
   ,   is the standard deviation  

                    
 
   .  

3. Synthetic Detection Index (SDI) 

Supposing that x1 and x2 are values of a symptom parameter (SP) calculated from the signals 

measured in state 1 and state 2, respectively, and conforming respectively to the normal distributions 

N(μ1,σ1)and N(μ2,σ2). Here, μ and σ are the average and the standard deviation of the SP. The larger 

the value of 12 xx   is, the higher the sensitivity of distinguishing the two states by the SP. Because  

z = x2 − x1 also conforms to the normal distribution N(μ2 − μ1,σ1 + σ2), there is the following density 

function about z: 
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where, μ2 ≥ μ1 (the same conclusion can be drawn when μ1 ≥ μ2). The probability can be calculated 

with the following formula: 
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where, 1 − P0 is called the “Discrimination Rate (DR)”. With the substitution: 
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into Formulas (11) and (12), the P0 can be obtained by: 
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where, the DI (Discrimination Index) is calculated by: 
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It is obvious that the larger the value of the DI, the larger the value of the “Discrimination Rate  

(DR = 1 − P0)” will be, and therefore, the better the SP will be. Thus, the DI can be used as the index 

of the quality to evaluate the distinguishing sensitivity of the SP. The number of symptom parameters 

used for the diagnosis and fault types are M and N, respectively, and the synthetic detection index 

(SDI) is defined as follows: 
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4. Intelligent Condition Diagnosis Method Using Ant Colony Optimization (ACO) 

In order to effectively and automatically distinguish faults for condition monitoring of rotating 

machinery, a new intelligent condition diagnosis method is proposed based on the RRSPs and the 

ACO. The problem of state identification for the condition diagnosis is converted into the clustering 

problem of the RRSPs calculated by vibration signals measured in different states, which will be 

solved by the ACO. 

4.1. Ant Colony Optimization (ACO) 

The ACO algorithm introduced by Marco Dorigo in his Ph.D. thesis is a population-based  

meta-heuristic that can be used to find approximate solutions to difficult optimization problems. The 

ACO algorithm is inspired by the behavior of ants while finding paths from the colony to food. Ants 

have no sight and are capable of finding the shortest route between a food source and their nest by 

chemical materials called pheromones that they leave when moving. A moving ant lays some 

pheromone on the ground, thus making a trail of this substance. While an isolated ant moves 

practically at random, an ant encountering a previously laid trail can detect it and decide with high 

probability to follow it and reinforce the trail with its own pheromone. What emerges is a form of an 

autocatalytic process through which the greater the number of ants that follow a particular trail makes 

that trail more attractive to be followed. The process is thus characterized by a positive feedback loop, 
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during which the probability of choosing a path increases with the number of ants that previously 

chose the same path [21,22].  

ACO is a kind of heuristic algorithm with global optimization, which combines distributed 

computing and positive feedback mechanisms and has the following virtues: 

1. Stronger robustness: ACO can transplant other problems, especially all kinds of assembled 

optimized problems. 

2. Greater ability to find the better result: The algorithm adopts the positive feedback principle, 

which quickens the evolution processing and does not become trapped in local optima. 

3. Distributing parallelism calculating: ACO is an evolution algorithm based on ant colonies and 

has parallelism base on them. The individual ants can continue to exchange and transfer the 

information (pheromone), which can lead to a better result. 

4. It is easy to combine ACO with other methods: The algorithm can integrate other enlightened 

methods to improve the performance of the algorithm. 

4.2. ACO for Condition Diagnosis 

Assume that N is the number of sample sets of vibration signals measured in m different states, the 

length of which is n, N = {x1,x2…xn}. Every sample signal has t indentified symptoms (in this paper, 

the symptoms are P1~P9). Then, the clustering analysis is to divide n sample data into m states, such 

that the objective function F shown in Formula (17) is minimized: 
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(19)  

In this paper, the procedure for applying the ACO for the condition diagnosis is proposed as shown 

in Figure 2, and the procedure is explained as follows: 

1. RRSPs used for reflecting the features of sample signals are inputted into the ACO. 

2. Sample signals are randomly classified by artificial ants (artificial ants construct solutions), and 

the pheromone matrix is initialized. 

3. According to the solutions, clustering centers are calculated by Formula (18), and the object 

function of every solution is calculated by Formula (17). 

4. Local search (refer to Section 4.4). 

5. The pheromone matrix is updated (refer to Section 4.5). 

6. According to pheromone matrix, artificial ants update the solutions (refer to Section 4.3). 
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7. Steps (3–6) are looped until the ending condition is satisfied.  

Figure 2. Flowchart of ACO for condition diagnosis. 
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4.3. Construction and Update of Solutions 

In the ACO, every artificial ant will construct the solution S with a length of n and  

S = {ci|I = 1,2…n}， ci = 1,2…m, where ci is the classification result of sample xi. That is, if ci = j, 

then xi is the output vibration data in state j. At the start of the ACO, the solutions S are randomly 

constructed by artificial ants, and with the increase of the iteration number, artificial ants update the 

solutions incessantly according to the pheromone matrix information, followed by the principles given 

as follows:  
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where, dij is the Euclidean distance between clustering center j and sample xi, and: 





t

k

jkikij cxd
1

2)(  (22)  

Here, q is a value chosen randomly with a uniform probability between 0~1, qo is constant, 0 < qo < 1, 

τij represents the pheromone concentration of sample. xi associated with the state j and β is a parameter 

that determines the relative importance of heuristic information (the choice of β is determined 

experimentally, and β > 0).  

If qo < q, the artificial ants choose the state for sample xi by the conversion probability pij given as 

follows: 
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(23)  

4.4. Local Search 

To improve the efficiency and accelerate the convergence speed of the ACO, the method of local 

search for the ACO is presented. The local search method is conducted on all solutions or some 

solutions [23,24]. In this paper, the latter is applied, that is, local search is implemented only for the 

ten solutions with smaller objective functions. The execution process of the local search for the ACO 

is as follows: 

1. All solutions are arranged in ascending order according to the values of the objective function. 

2. Random data Wi {i = 1,2…n} for every sample are produced automatically. 

3. A weight P is set, and 0 < P < 1. 

4. P is compared with Wi, if P > Wi, and then the sample xi is reclassified. 

5. The Euclidean distance between sample xi and every clustering center is calculated, and the 

shortest distance is for the class of sample xi. 

6. Formula (17) is used to compute the objective function again and compare it with the former 

objective function values. If the new one is lower than the former one, the new solution sets are 

kept, or the former solution sets are reduced. 

7. Steps (2–6) are looped until the ten solutions are calculated. 

4.5. Update Pheromone Matrix 

Dorigo proposed three different models: the ant-cycle system, the ant-quantity system and the  

ant-density system [25]. In this research, the ant-cycle system is used to update the pheromone. In the 

ant-cycle system, the pheromone is released after the artificial ant builds all information. It utilizes all 

information. However, the other two systems utilize only partial information. Thus, this system is 

better than the ant-quantity system and the ant-density system. The pheromone will be updated by the 

ten artificial ants that have smaller object functions, and the updating principle is as follows:
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Here, τij represents the pheromone concentration of sample. xi associated with the state j, ρ is the 

decay parameter of the pheromone and, to prevent pheromone excessive accumulation 0 < ρ < 1, Δτij(a) 

is the pheromone values of artificial ant a. 



Sensors 2011, 11  

 

 

4017 

From Formulas (24–26), if sample xistate j, with increasing iteration number, then the pheromone 

τij becomes greater and finally approaches the saturation level. On the contrary, if sample xi state j, 

with increasing iteration number, then the pheromone τij becomes smaller and finally approaches 0. 

Figure 3. Experiment system for the fault diagnosis (a) Illustrate of the centrifugal fan,  

(b) The centrifugal fan in the field, (c) Measurement points of the accelerometer. 

 (a) (b) 

 

 

Figure 4. Structural faults (a) Misalignment state, (b) Unbalance state, (c) Looseness state. 

 

5. Diagnosis and Application  

In this section, the application of condition diagnosis to a centrifugal fan is shown to verify that  

the method proposed in this paper is effective. To illustrate the effectiveness of the proposed method  

in the diagnosis of structural faults of rotating machinery, we also compare it with the conventional 

NN method. 



Sensors 2011, 11  

 

 

4018 

5.1. Experimental System 

 

The centrifugal fan for the diagnosis test and structural faults such as the normal (N), unbalance 

(UN), misalignment (M) and looseness (L) states is shown in Figures 3 and 4, respectively. The three 

accelerometers (PCB MA352A60) with a bandwidth from 5 Hz to 60 kHz and 10 mV/g output were 

used to measure the vibration signals of the horizontal, vertical and shaft directions in the normal (N), 

unbalance (UN), misalignment (M) and looseness (L) states, respectively. The vibration signals 

measured by the accelerometers were transformed into the signal recorder (Scope Coder DL750) after 

being magnified by the sensor signal conditioner (PCB ICP Model 480C02). The original vibration 

signals in time domain and frequency domain are shown in Figure 5 and Figure 6 respectively. These 

signals were measured at a constant speed (600 rpm). The sampling frequency of the signal measurement 

was 50 kHz, and the sampling time was 20 s.  

 

Figure 5. Raw vibration signals in time domain (a) Normal state, (b) Unbalance state,  

(c) Misalignment state, (d) Looseness state. 
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Figure 6. Raw vibration signals in frequency domain. (a) Normal state, (b) Unbalance 

state, (c) Misalignment state, (d) Looseness state. 
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The RRSPs calculated by Formulas (1–9), which have high sensitivity for the condition diagnosis, 

are selected by SDI, as shown in Formula (16). Table 1 lists the SDIs of the RRSPs. The maximum 

value (94.6) of SDI was obtained in the case of the combination of P6, P7 and P8, and, when P6, P7 and 

P8 are singly used for distinguishing each state, the DIs were larger than 1.75. All of the discrimination 

rate of P6, P7 and P8 were larger than 95%. The combination of P6, P7 and P8 has high sensitivity for 

the structural faults diagnosis of the centrifugal fan. Table 2 shows the DIs of P6, P7 and P8.  
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Table 1. SDIs of each RRSP. 

RRSPs SDI DImax DImin 

P1P2P3 48.67 9.8 0.31 

P1P2P4 27.26 5.67 0.41 

… … … … 

P6P7P8 94.60 9.66 1.75 

P6P7P9 81.16 9.66 0.27 

P6P8P9 69.04 7.83 0.27 

P7P8P9 65.24 9.66 0.27 

Table 2. DIs of P6, P7 and P8. 

DI P6 P7 P8 

DIN-M 7.65 5.80 3.36 

DIN-L 6.63 6.18 2.40 

DIN-UN 5.42 2.71 5.74 

DIM-L 7.83 1.75(DImin) 1.85 

DIM-UN 2.66 9.66(DImax) 2.13 

DIL-UN 7.57 8.87 6.37 

5.2. Diagnosis by the Proposed Method  

The main procedure for fault diagnosis using RRSPs and ACO was introduced in Section 1 (refer to 

Figure 1). First, the vibration signals are measured in each known state. Second, the RRSPs are 

calculated using Formulas (1–9). The highly sensitive RRSPs (P6, P7, P8) are selected for condition 

diagnosis by the SDI. Third, the ACO is trained with P6, P7, P8, and the optimal clustering centers are 

obtained. Lastly, the condition of the centrifugal fan can be diagnosed by the trained ACO and RRSPs. 

When a rotating machine is in a looseness state, the spectrum values in the high frequency region 

are obviously higher than in the misalignment and unbalance states. The symptom parameter P6 

indicates the ratio of the spectrum values between high frequency domain and low frequency domain. 

P6 has high sensitivity for distinguishing the looseness state from other states. When a rotating 

machine is in a misalignment state, the vibration level in the shaft direction is stronger than in 

looseness and unbalance states. The symptom parameter P7 is the ratio of the vibration level between 

the shaft direction and the horizontal direction, so P7 has high sensitivity for distinguishing the 

misalignment state from other states. When a rotating machine is in an unbalance state, the vibration 

level of the vertical direction is stronger than in looseness and misalignment states. The symptom 

parameter P8 is the ratio of the vibration level between the horizontal direction and the horizontal 

direction, so P8 has high sensitivity for distinguishing the unbalance state from other states. Therefore, 

the combination of P6, P7 and P8 has high sensitivity for the structural faults diagnosis of the 

centrifugal fan.  

In this research, the state identification for the condition diagnosis is converted to a clustering 

problem for the values of the RRSPs calculated from vibration signals measured in different states of 

the centrifugal fan. The ACO automatically finds the optimal clustering centers and classify all sample 

data according to the amount of information around the clustering centers. The purpose of training the 



Sensors 2011, 11  

 

 

4021 

ACO is the acquisition of optimum clustering centers. P6, P7 and P8 calculated using the vibration 

signals measured in each known state were input into the ACO. After about 150 iterations, the ACO 

converged to the optimum clustering centers. Table 3 lists the parameters values for training the ACO, 

and Figure 7 shows the change of the clustering centers while training the ACO for the condition 

diagnosis of the centrifugal fan. 

Figure 7. The change of the clustering centers while training the ACO for the condition 

diagnosis of the centrifugal fan. (a) At the start of the ACO, (b) after 50 iterations, (c) after 

100 iterations and (d) after 150 iterations. 
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Here, the symbols ◇，○，☆ and △  express the value samples of RRSPs in the normal state, 

unbalance state, misalignment state and looseness state, respectively, and the big symbols represent 

their clustering centers. 

In the training process of the ACO, at first, the sample data are classified into normal, unbalance, 

misalignment and looseness states randomly. The clustering centers and the sum of the spatial distance 

between every sample data and the clustering centers are calculated by Formulas (17–19). With 

increasing iterations, the pheromones are updated incessantly, and according to the pheromone 

information, the classification of the sample data and clustering centers are also updated by artificial 

ants. Finally, the optimal clustering centers with a minimum sum of spatial distances are calculated. As 

an example, parts of the training data and their clustering centers are shown in Table 4.  
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Table 3. Parameters of the ACO. 

Contents Values 

Weight value for updating solution qo 0.5 

Parameter of heuristic information β 0.6 

Weight value of local search P 0.2 

Decay parameter of pheromone ρ 0.1 

Table 4. Parts of acquired data of diagnosis for the ACO. (a) Normal state, (b) Unbalance 

state, (c) Misalignment state, (d) Looseness state. 

(a) Normal state 

RRSPs Clustering Center 

P6 P7 P8 x y z 

1.126 1.033 0.749 

1.056 1.005 0.913 
0.941 0.938 1.099 

1.260 0.967 0.967 

… … … 

(b) Unbalance state 

RRSPs Clustering Center 

P6 P7 P8 x y z 

0.430 0.772 0.181 

0.501 0.827 0.223 
0.525 0.779 0.244 

0.588 0.851 0.181 

… … … 

(c) Misalignment state 

RRSPs Clustering Center 

P6 P7 P8 x y z 

0.352 1.366 0.319 

0.342 1.397 0.416 
0.329 1.307 0.452 

0.302 1.440 0.506 

… … … 

(d) Looseness state 

RRSPs Clustering Center 

P6 P7 P8 x y z 

5.748 1.461 0.595 

5.256 1.533 0.581 
4.799 1.636 0.534 

4.963 1.481 0.540 

… … … 

 

Here, x is the coordinate value of clustering center on the P6 axis, y is the coordinate value of 

clustering center on the P7 axis, z is the coordinate value of clustering center on the P8 axis. After 
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training the ACO, to verify the diagnostic capability of the proposed method in this paper, the test data 

measured in each known state that had not been used to train the ACO were used. When inputting the 

test data into the trained ACO, the ACO classified the test data according to the information of the 

optimum clustering centers shown in Table 4 and correctly and quickly output identification results 

based on the pheromone values of the corresponding states. As an example, Figure 8 shows the parts 

of the test data classified according to the information of the optimum clustering centers shown in 

Table 4. Figure 9 shows the change of the pheromones for distinguishing the normal state from 

abnormal states with increasing iterations. Figure 9 shows that the pheromone of the normal state 

gradually increases and finally approaches the saturation level. On the contrary, the pheromones of 

each abnormal state gradually decrease and finally approach 0. Some diagnosis results are listed in 

Table 5. These results verified the efficiency of the intelligent diagnosis method using RRSPs and the 

ACO proposed in this paper. 

Figure 8. Classification of the test signals.  

 

0 

2 

4 

6 

0.5 

1 

1.5 

0 

0.5 

1 

1.5 

P8 

P7 

P6 

 

Figure 9. Pheromones for distinguishing the normal state from abnormal states. 
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Table 5. Diagnosis result using proposed method. 

RRSPs Pheromones 
Judge 

P6 P7 P8 N UN M L 

1.084 0.937 0.854 0.296 0 0 0 N 

0.976 1.114 0.901 0.296 0 0 0 N 

0.430 0.772 0.181 0 0.296 0 0 UN 

0.509 0.856 0.255 0 0.296 0 0 UN 

0.345 1.445 0.277 0 0 0.296 0 M 

0.388 1.399 0.563 0 0 0.296 0 M 

5.049 1.589 0.527 0 0 0 0.296 L 

5.530 1.514 0.618 0 0 0 0.296 L 

… … … … … … … … 

 

To summarize the condition diagnosis method proposed in this paper for a rotating machine,  

Figure 10 shows the flowchart of the method. The state of the rotating machine can be quickly and 

automatically diagnosed by using the RRSPs and the ACO system, as shown in Figure 10. 

5.3. Diagnosis by Neural Network 

In order to compare the performances of the ACO and a neural network (NN) for the condition 

diagnosis, a NN was also built, which consisted of the input layer, the hidden layer and the output 

layer, as shown in Figure 11. The parameters entered into the input layer of the NN were RRSPs. The 

number of neurons in the hidden layer was eighty, and the outputs in the last layer were DN, DUN, DM, 

DL, which indicate the normal (N), unbalance (UN), misalignment (M) and looseness (L) states, 

respectively. The flowchart of fault diagnosis by the NN is shown in Figure 12. 

In this paper, when the NN was applied to fault diagnosis, the diagnostic knowledge (teaching data) 

for the NN was acquired by probability theory using the probability distributions of the RRSPs  

(P6, P7, P8) calculated by the vibration signals measured in each known state and selected by SDI. An 

example for obtaining the possibility grade DN used to judge the normal state is shown as follows. piN 

indicate the value RRSP of the normal state (N),

 

and its mean value and standard deviation are      and 

SiN, respectively. DiN is the possibility grades of the normal state (0 or 1). The training data for 

distinguishing the normal state from another state are calculated as follows: 

122  iNiNiNiNiNiN DSppSp  (27)  

022  iNiNiNiNiNiNiN DpSporSpp  (28)  

For condition diagnosis using two or more RRSPs, the possibility grades DN are defined as follows, 

and M is the number of RRSPs: 

1
{ }N iN

i M
D Min D




～
 (29)  
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Figure 10. The flowchart of the condition diagnosis using the ACO system. 
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Figure 11. NN for pattern recognition in fault diagnosis. 

 

 

 

Figure 12. Flowchart of fault diagnosis by the NN. 
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To train the NN, the training data obtained by the method mentioned above were input into the NN. 

After about 10,000 iterations, the NN converged. As an example, part of the acquired training data for 

the NN is shown in Table 6.  

After training the NN, the faults of the centrifugal fan were diagnosed with the learned NN. To 

compare the efficiency of the method proposed in this research with the NN, the same test data used in 

the ACO were input into the learned NN. As an example, some of the diagnosis results are shown in 

Table 7. The symbol × indicate the case in which the NN cannot identify the fault type. 

According to the diagnosis results shown in Table 7, the unbalance and looseness states of the 

centrifugal fan cannot be correctly identified by the NN because the vibration signals contain strong 

noise and there exist ambiguous relationships between the RRSPs and the fault types. 

P6 

P7 

P8 

DN 

DUN 

DM 

DL 
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Table 6. Training data for the NN. 

RRSPs States 

P6 P7 P8 N UN M L 

0.871 0.913 0.662 1 0 0 0 

1.051 1.014 0.884 1 0 0 0 

1.231 1.115 1.106 1 0 0 0 

0.290 1.311 0.241 0 1 0 0 

0.337 1.398 0.412 0 1 0 0 

0.384 1.485 0.583 0 1 0 0 

3.994 1.403 0.498 0 0 1 0 

5.247 1.541 0.593 0 0 1 0 

6.500 1.679 0.688 0 0 1 0 

0.385 0.768 0.145 0 0 0 1 

4.488 0.843 0.215 0 0 0 1 

0.591 0.918 0.285 0 0 0 1 

… … … … … … … 

Table 7. Diagnosis result using the NN. 

RRSPs Fault Types 
Judge 

P6 P7 P8 N UN M L 

1.084 0.937 0.854 0.988 0 0.018 0.009 N 

0.976 1.114 0.901 0.996 0 0.004 0.013 N 

0.430 0.772 0.181 0.001 0.560 0 0.444 × 

0.509 0.856 0.255 0.001 0.562 0 0.443 × 

0.345 1.445 0.277 0.005 0 0.993 0.005 M 

0.388 1.399 0.563 0.005 0 0.992 0.007 M 

5.049 1.589 0.527 0.001 0.561 0 0.443 × 

5.530 1.514 0.618 0.001 0.517 0 0.418 × 

… … … … … … … … 

 

The reasons of the low diagnosis accuracy by using the NN are thought to be: (1) Conventional NN 

cannot reflect the possibility grades of the ambiguous diagnosis problems. (2) Conventional NN will 

never converge when the symptom parameters inputted in the 1st layer have the same values in 

different states. 
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6. Conclusions 

In order to detect faults and distinguish fault types at an early stage, this paper proposes a new 

method for diagnosing structural faults of rotating machinery developed by using relative ratio 

symptom parameters (RRSPs) and ant colony optimization (ACO). The main conclusions can be 

summarized as follows: 

1. The nine symptom parameters called “relative ratio symptom parameters” in the low-frequency 

domain were defined for reflecting the features of vibration signals measured in each state. 

2. The state identification for the condition diagnosis of rotating machinery was converted to  

a clustering problem of the values of the relative ratio symptom parameters (RRSPs) in the  

low-frequency domain, calculated from vibration signals in different states of the machine. Ant 

colony optimization (ACO) was also introduced for this purpose.  

3. The synthetic detection index (SDI) on the basis of statistical theory was also defined to 

evaluate the applicability of the RRSPs. The SDI can be used to select better RRSPs for the 

ACO. 

4. A comparison was made between the proposed method and a neural network (NN), and the 

practical example of faults diagnosis of the centrifugal fan verified the effectiveness of the 

proposed method. The diagnosis results showed that the structural faults which occur in the 

centrifugal fan, such as unbalance, misalignment and looseness states, etc., were automatically 

and effectively identified by the proposed method. However, these faults could not be correctly 

identified by the NN.  

In this paper, we have verified the efficiency of the ACO diagnosis system in order to detect faults 

and distinguish fault types at an early stage. For the future study, we will apply the method to detect 

and diagnose faults at every fault stages, such as initial stage fault, moderate stage fault and serious 

fault etc.  
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