
Sensors 2011, 11, 3303-3326; doi:10.3390/s110303303
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Contrast-Independent Biologically Inspired Motion Detection
Birthe Babies 1,2, Jens Peter Lindemann 1,3, Martin Egelhaaf 1,3 and Ralf Möller 1,2,⋆
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Abstract: Optic flow, i.e., retinal image movement resulting from ego-motion, is a crucial
source of information used for obstacle avoidance and course control in flying insects. Optic
flow analysis may prove promising for mobile robotics although it is currently not among the
standard techniques. Insects have developed a computationally cheap analysis mechanism
for image motion. Detailed computational models, the so-called elementary motion detectors
(EMDs), describe motion detection in insects. However, the technical application of EMDs is
complicated by the strong effect of local pattern contrast on their motion response. Here we
present augmented versions of an EMD, the (s)cc-EMDs, which normalise their responses
for contrast and thereby reduce the sensitivity to contrast changes. Thus, velocity changes of
moving natural images are reflected more reliably in the detector response. The (s)cc-EMDs
can easily be implemented in hardware and software and can be a valuable novel visual
motion sensor for mobile robots.
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1. Introduction

When a mobile robot or an animal moves, the images of the environment move on its cameras’ sensors
or on its eyes’ retinae, respectively. These image movements, termed optic flow, can be a valuable source
of information about both the ego-motion of the agent and the spatial structure of the environment [1].
The optic flow generated by translatory movements reflects the distance of objects in the environment
because the images of objects close to the moving observer move faster on the sensor than those of more
distant objects.

Although most mobile robot systems carry at least one camera, optic flow analysis currently plays only
a minor role in their control systems. Because visual motion cannot be sensed directly like luminance,
it has to be computed from the spatio-temporal luminance changes in a sequence of images. Computer
vision approaches to image motion estimation typically involve iterative smoothing processes which
make the process computationally expensive [2,3].

In contrast to most robots, many animals use optic flow for ego-motion estimation and as an important
source of information about the distances in the environment [4,5]. Behaviour control depending on
visual motion perception can be observed throughout the animal kingdom.

Flying insects seem to rely almost exclusively on optical flow in tasks like obstacle avoidance and
visual gaze stabilisation (see e.g., [6] for review). They seem to have developed an approach to
the problem of motion detection and optic flow analysis in their tiny brain that is computationally
cheap. Their local elementary motion detection circuits (EMDs) compute a direction-selective signal
by comparing the time-course of the signals of pairs of adjacent photoreceptors. The resulting local
motion estimates are then spatially pooled by neurons covering large parts of the visual field forming a
set of time-dependent features jointly encoding the optic flow [7].

On the one hand, this biological approach is also very interesting for technical applications, because
it is computationally cheap compared with computer vision algorithms. On the other hand, the
signals of biological EMDs encode the image velocity in a nonlinear and ambiguous way. Their
responses peak at a certain velocity and decrease for velocities beyond this optimum [8]. Further
properties of at least basic EMD models make this motion detection scheme only a poor velocity
sensor: (1) The response amplitudes of basic versions of the EMD depend on the global spatial
frequency composition of the input image [9]. (2) The global contrast of the moving image changes
the response of basic EMDs in a quadratic way [10,11]. (3) The time-dependent responses of individual
EMDs show pronounced fluctuations that depend on the specific details of the pattern analysed by the
EMD; these pattern-dependent fluctuations can be reduced by spatial integration over many EMDs
looking at neighbouring points of the image [12]. (4) Even the time course of spatially integrated
EMD outputs depends not only on pattern velocity but also on acceleration and higher-order temporal
derivatives [10,13].

Control systems for mobile robots often combine the biologically inspired concept of flow-specific
large-field integration with computer-vision algorithms for local velocity estimation that do not show the
strong contrast and pattern dependence of EMDs [14,15]. Systems using biologically inspired EMDs
were also proposed and successfully tested in simulation [16] and in hardware [17] but are limited to
environments with a restricted range of textural properties [18,19].
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Compared to the performance of models employing basic EMD variants, the responses of
motion-sensitive neurons in the brain of insects, such as flies, after which EMDs were modelled,
are much less sensitive to the pattern structure and contrast. In particular, they show the quadratic
dependency on image contrast only for very low contrast values. For higher contrast values, the response
does not increase with increasing contrast and the neuronal responses become less sensitive to the local
contrast variations of the stimulus patterns [10,20–22]. This relative contrast independence is not the
consequence of signal saturation at the level of the wide-field motion sensitive neuron, because the
response can still be modulated by changing the image velocity, but of processing in the peripheral
visual system [23].

To reduce the dependence of EMDs on local pattern contrast and, thus, to approximate the responses
of their biological equivalents, various augmentations of EMDs were proposed. These range from simple
saturating static nonlinearities incorporated into the motion detection process [10,21] to a sophisticated
combination of nonlinearities and temporal filters [18,24]. The augmented models mimic the temporal
properties and adaptive processes in the peripheral visual system, the motion detection process itself, and
the spatially integrating wide-field motion sensitive neurons [18,24,25]. With these biologically inspired
models, the relative independence of the responses of wide-field motion sensitive neurons of local pattern
contrast could be explained to a large extent.

Here, we present a different augmentation of the EMD, making its response independent of local
pattern contrast. This new model was developed predominantly with a focus on usability in robotics.
It implements dynamic normalisation of the response amplitude of the EMD with respect to the local
contrast of the input image by an approximative computation of the correlation coefficient of the signals
of adjacent photoreceptors. We show that this augmentation largely reduces all modulations of the
response of an EMD array unrelated to velocity, making the signals potentially more useful for the
control of mobile robots.

In the following section we describe basic variants of EMDs, proposed by various authors. In
Section 3 we present our approach for a novel EMD augmentation with dynamic contrast normalisation.
Section 4 describes the materials and the methods we used to compare the response behaviour of basic
models and augmented models. In Section 5 we present the test results from simulations based on
real-world images for the different models. In Section 6 we conclude with a discussion.

2. Basic EMD Models

Based on behavioural experiments which analysed the turning preference of walking beetles in the
presence of wide-field rotational movement, Reichardt and Hassenstein developed a computational
model for motion detection in insects [26]. Variants of this model account for many response properties
of motion-sensitive neurons in the insect brain (for review: [6,27]).

Motion detection seems to be based on similar computational principles across species ranging from
insects to mammals [28]. Models for human motion perception can be shown to be mathematically
equivalent to this elementary motion detector [29].

In its simplest form, the EMD multiplies the signal of one photoreceptor with the delayed signal of
a neighbouring one (l-EMD, Figure 1(a)). Typically, a linear temporal first-order low-pass filter is used
as delay element. This simple correlation is maximal if the delay caused by the image moving from one
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input element to the other is perfectly matched by the delay caused by the filter in the signal pathway.
Lower or higher velocities and different movement directions reduce the correlation of the signals.

To get an anti-symmetric response to motion in opposite directions and to make the detector
insensitive to brightness changes that are independent of motion (so-called flicker), the response of a
mirror-symmetrical circuit connected to the same input elements is subtracted (l-EMD, Figure 1(a)).
The resulting EMD responds to movement in one (“preferred”) direction with a positive signal and to
movement in the opposite (“anti-preferred”) direction with a negative signal. The response reaches a
peak at an optimal velocity. Lower and higher velocities lead to gradually declining responses [8].

Figure 1. The general scheme of basic variants of elementary motion detectors. The
input signals (I1, I2) originating from neighbouring points in space pass through different
combinations of peripheral high-pass filters (Hp) and delaying low-pass filters (Ld). In the
next step, the differently filtered signals of the neighbouring inputs are multiplied (*). In
a final step, the signals from the mirror-symmetrical subunits of an EMD (which are most
sensitive to opposite directions of motion) are combined. The simplest way is to subtract
the signals from each other. (a) The simplest form using just the delaying low-pass filters.
(b) An additional high-pass filter to the input channels removes the mean brightness from
the input signal. (c) A similar behaviour can be achieved by applying a high-pass filter to the
second input of the multiplication element.
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For single spatial wavelength input images (sinusoidal stripe patterns), the optimal velocity and the
maximal response amplitude change with the wavelength λ. The peak of the averaged response occurs
at an optimal temporal frequency ω (i.e., the ratio of velocity v and spatial wavelength λ; ω = 2πv/λ) of
the input signal ([30], see Equation (2)). Hence, the averaged response amplitude of a simple EMD does
not only depend on pattern velocity, but also on its spatial properties, such as on the spatial spectrum
and the contrast. The contrast dependence of a basic EMD is quadratic ([10], see Equation (2)). As a
result, the basic EMD response only robustly reflects the direction of motion, while the velocity cannot
be reconstructed from the signal without further augmentations [8,27].

Several augmentations extending this simplest EMD circuit have been proposed. In most cases,
additional temporal filters were included in the model that lead to changes in the response properties.
Two of these augmentations are shown in Figure 1(b,c). Adding a high-pass filter to the input channels
of the detector (h-l-EMD, Figure 1(b)) removes the mean brightness (“DC component”) from the input
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signal which, if present, results in an oscillation of the response to constant velocity motion [10]. The
reduction of the mean brightness can be achieved by applying a high-pass filter to the second input of
the multiplication element (lh-EMD, Figure 1(c)). The response of this variant of the EMD shows an
improved fit to the dynamic properties of fly motion sensitive neurons [30].

All augmentations that involve just changing the filter configuration conserve the properties of the
EMD; namely that the response is ambiguous, and depends on pattern wavelength and contrast in a way
that only allows the easy reconstruction of the motion direction from the signal.

Mathematical Analysis of the Steady-State Response

The steady-state response of a basic EMD for stimulation with a single-wavelength sinusoidal stripe
pattern can be computed analytically. Considering a sine pattern with a wavelength λ, an average
brightness I , a brightness amplitude ∆I , and a constant velocity v, the time course of the input s(t)
of a photoreceptor at the position φ can be described as:

s(t) = I +∆I · sin (ωt+ φ) (1)

Where ω = 2πv/λ is the temporal frequency of the input signal. The linear temporal filters in the
models cause a frequency-dependent damping of the amplitude A(ω) and lead to a phase shift Φ(ω).
In the steady-state, the damping and phase shift are constant for a given temporal frequency. For the
h-l-EMD (Figure 1(b)) the steady-state response ⟨R⟩ is [30]:

⟨R⟩ = ∆I2 · sin
(
2π

λ
∆φ

)
·

τLd
τ 2Hp

ω3

(1 + (τLd
ω)2)(1 + (τHpω)

2)
(2)

Where τLd
is the time constant of the low-pass filter, τHp is the time constant of the high-pass filter

and ∆φ is the angular distance between the two detector inputs. The mean brightness I of the stimulus
is eliminated by the peripheral temporal high-pass filter in the h-l-EMD and by the subtraction of the two
mirror-symmetrical EMD subunits.

The steady-state value has a maximum at a certain ω = 2πv/λ irrespective of the spatial wavelength
λ of the pattern. As a consequence, the response peaks at different velocities for stripe patterns differing
in wavelength. Furthermore, the maximum amplitude changes for different choices of λ.

Equation (2) also reveals a square dependency on the contrast ∆I . Thus, without further
augmentations, simple EMDs can be used merely for the detection of motion direction, but not to reliably
estimate the stimulus velocity.

3. Correlation Coefficient Based Models

To obtain a detector with a more robust response to image velocity, the dependence on pattern contrast
must be reduced. Nevertheless, the advantage of the simplicity of the EMD models should be maintained.
Therefore we propose a new model variant based on the h-l-EMD and on the equation for the correlation
coefficient.

For two measured signals X1 = {xt
1}, t = 1..T and X2 = {xt

2}, t = 1..T , where x̄1 and x̄2 are the
averaged values of the signals, the empirical correlation coefficient can be calculated by
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ρX1,X2 =

T∑
t=1

w(t)(xt
1 − x̄1)(x

t
2 − x̄2)√

T∑
t=1

w(t)(xt
1 − x̄1)2

√
T∑
t=1

w(t)(xt
2 − x̄2)2

(3)

Where the weighting is usually constant, e.g., w(t) = 1
T−1

(for the empirical variance and covariance).
For a detector that can reflect changes in velocity in a dynamic way, the weighting function must decline
for past measurements.

We assume a peripheral high-pass filter (Hp) to remove the DC-component from the input signals
(i.e., x̄1,2 = 0). By realising the declining weighting and averaging of a continuous signal by using a
low-pass filter Lw, Equation (3) can be approximated by

ρX1,X2 =
Lw(X1X2)√

Lw(X2
1 )Lw(X2

2 )
(4)

In an EMD, one of the input signals is delayed by a low-pass filter to compensate the delay caused by
the spatial separation of the inputs. Thus we can replace X1 by Ld(X1) or X2 by Ld(X2). Combining
the approximation of the correlation coefficient (4) and the basic EMD with mirror-symmetrical subunits
leads to a new complex EMD which can mathematically be described by

Lw(X1Ld(X2))√
Lw(X2

1 )Lw((Ld(X2))2)
− Lw(Ld(X1)X2)√

Lw((Ld(X1))2)Lw(X2
2 )
. (5)

In the following we call this new model h-l-cc-EMD (correlation coefficient EMD) (Figure 2(a)).
Note that the two variance terms differ only in the phase shifts caused by the low-pass filters Ld of the
detector. When the time constant of the low-pass filters Lw approximating the integration of the variance
terms is large compared to that of the delay filter, these terms are almost equal

Lw((Ld(X))2) ≈ Lw(X
2) (6)

This observation leads us to a simplification of Equation (5)

Lw(X1Ld(X2))− Lw(Ld(X1)X2)√
Lw(X2

1 )Lw(X2
2 )

(7)

In the following we call this new model h-l-scc-EMD (simplified correlation coefficient EMD)
(Figure 2(b)).

The new model maintains the ambiguity and the spatial wavelength dependency of the velocity tuning
of the EMD because the correlation coefficient is still largest when the temporal delays caused by the
delaying filter match those caused by the geometric separation of the inputs.

Note however, that the denominator of the fraction can be zero. With a high-pass filter in the input
lines removing the DC-component of the luminance signals Equation (7), this will happen for zero
velocity stimulation. Consequently, the test implementation treated this special case by returning a zero
detector response if the denominator was approximately zero.



Sensors 2011, 11 3309

Figure 2. Augmented variants of elementary motion detectors. The input signals
(I1, I2) originating from neighbouring points in space pass through different combinations
of high-pass filter (H) and low-pass filter (L). In the next step, the differently filtered
signals of the neighbouring inputs are multiplied (∗) and afterwards a contrast normalisation
is performed (a/b). The normalisation consists of a combination of square (sq), square
root (sqrt) and low-pass filter. For the h-l-cc-EMD (a) the normalisation is based on the
equation for the approximated correlation coefficient (see Equation 4). For the h-l-scc-EMD
(b) this normalisation is simplified (see Equation 6). In a last step the signals from the
mirror-symmetrical subunits of an EMD (which are most sensitive to opposite directions of
motion) are combined. The simplest way is to subtract the signals from each other.
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Mathematical Analysis of the Steady-State Response

Considering the same sine pattern as used above (Equation (1)), the steady-state response of the
h-l-cc-EMD is

⟨R⟩ = T1 − T2√
T3 · T4

− T5 − T2√
T6 · T7

(8)

For the h-l-scc-EMD it simplifies to

⟨R⟩ = ALd
(ω) · T1 − T5√

T4 · T7

(9)

using the following terms for substitution:

T1 = cos
(
ΦLd

(ω) + ΦLw(ω) +
2π

λ
∆φ

)
T2 = cos

(
2(ωt+ φ) + 2ΦHp(ω) + ΦLd

(ω) + ΦLw(ω)−
2π

λ
∆φ

)
T3 =

1

ALw(ω)
− cos

(
2(ωt+ φ) + 2ΦHp(ω) + 2ΦLd

(ω) + ΦLw(ω)
)



Sensors 2011, 11 3310

T4 =
1

ALw(ω)
− cos

(
2(ωt+ φ) + 2ΦHp(ω) + ΦLw(ω)−

4π

λ
∆φ

)
T5 = cos

(
ΦLd

(ω) + ΦLw(ω)−
2π

λ
∆φ

)
T6 =

1

ALw(ω)
− cos

(
2(ωt+ φ) + 2ΦHp(ω) + 2ΦLd

(ω) + ΦLw(ω)−
4π

λ
∆φ

)
T7 =

1

ALw(ω)
− cos

(
2(ωt+ φ) + 2ΦHp(ω) + ΦLw(ω)

)
with
ΦHp(ω) = arctan( 1

τHpω
) phase response of the high-pass,

ΦLd
(ω) = − arctan(τLd

ω) phase response of the first low-pass (delay),
ΦLw(ω) = − arctan(τLwω) phase response of the second low-pass,
ALw(ω) = 1√

1+τ2Lw
ω2

amplitude response of the second low-pass (weighting).

The equations show that the steady-state responses of the novel correlation based EMDs do not depend
on pattern contrast △I . However, the term ωt in the variance estimates (T3, T4, T6, and T7) leads to
an oscillation in the time-dependent response. This oscillation depends on ALw(ω) and decreases with
increasing ω. This oscillation has twice the temporal frequency of the input signal. The effects on the
response behaviour in comparison to the basic EMD models (Section 2) are examined by simulation in
the following.

4. Material and Methods

The responses of the different EMD variants depend to a different extent on the local pattern details
of realistic input images. To quantify the resulting deviations of the responses, we tested the models in
simulation experiments.

4.1. Modelling

The different EMD models were implemented using C++. All components were realised as
differential equations which were solved using the Euler method. The solver step size was 1 ms, i.e., a
sampling rate of 1 kHz was applied.

For all tests, an array of 44 × 5 input elements was used. Each element covers 2◦ visual angle,
thus the array covers a region of 88◦ (vertical) × 10◦ (horizontal). For each input element we applied
a Gaussian shaped spatial low-pass filter at subpixel positions to the high resolution panoramic input
image. The standard deviation of the filter mask was σ = 1.5◦. This smooth subsampling method
allows a continuous movement of the EMD array across the panoramic input image. Since each EMD
operated on two horizontally neighbouring inputs, an array of 44 × 4 EMDs with a horizontal preferred
direction resulted (Figure 3). The responses of the EMDs were spatially averaged. During the tests the
array was shifted across the input images. Using 360◦ panoramic images allowed the simulation of a
continuous motion in the input image for an extended period of time. The test images possess a high
spatial resolution (10 pixels per degree visual angle), thus a high temporal resolution could be simulated.
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Figure 3. Moving EMD array. For the simulation tests an array of 44 × 5 input elements was
used. Each element covers a 2◦ visual angle and applies a Gaussian shaped spatial low-pass
filter (σ = 1.5◦) to the input image. The simulated EMD array has a horizontal preferred
direction, and consists of 176 EMDs. For the analysis, the EMD responses are spatially
averaged. The observed intensity values of the input array change in time, depending on the
horizontal velocity of the presented image.

The simulations were performed using different velocity regimes. For the constant velocity tests,
eleven different velocities between 20◦/s and 1,096◦/s were used (20◦/s, 29◦/s, 44◦/s, 66◦/s, 99◦/s,
148◦/s, 221◦/s, 330◦/s, 492◦/s, 735◦/s, 1,096◦/s). We also tested a stimulation with a sinusoidal speed
profile.

The simulations were carried out for three different EMD versions: (1) h-l-EMD (Figure 1(a)),
Equation (2) h-l-cc-EMD adding dynamic contrast normalisation (Figure 2(a)), and finally (3)
h-l-scc-EMD with a simplified normalisation stage (Figure 2(b)). Since the results obtained for (2)
and (3) are very similar to each other we mostly show results for variants (1) and (3) in the plots. All
input images had a value range between 0 and 255.

4.2. Test Settings

Constant Velocity Tests

In the first tests, we examined the response of the models to a perfect sine pattern.
In addition we generated a panoramic sine pattern by video capture of a printed sine grating.

This signal contains noise and local deviations from the perfect pattern caused by slight changes in
illumination and saturation effects caused by the printer or camera. Thus the resulting pattern is no longer
a perfect single wavelength pattern but has a broader frequency spectrum with a strong fundamental
frequency. The spatial wavelength (16.36◦) and intensity range (0–255) of the perfect sine pattern was
matched to this panorama.

Additional tests examined the EMD array response to natural scenes (Figure 4) that were chosen
to cover a variety of different environments. Four different panoramic images were used which were
generated by stitching multiple photos, resulting in 3,600 × 442 pixel images. For the simulations, only
the green channel was used. The histogram of brightness values of the resulting monochrome image was
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scaled to cover the full range of values (0–255), leading to a global Michelson contrast [31] of 100%
(see Appendix B).

We compared the four panoramic images with regard to changes in the detector response. We
looked for time-dependent changes in response amplitude, preferred pattern velocity, and time-dependent
deviations from the average response. We plot the EMD array responses versus phase of the input pattern
instead of versus time. This allows to compare the variations of the EMD array responses based on the
phase of the input pattern for the different velocities. Additionally the influence of the average image
contrast on the EMD array responses was examined. For this purpose we reduced the global contrast to
values of 75%, 50% and 25% respectively.

Figure 4. For the different tests four different panoramic images were used. These images
where generated using photo stitching. The images have a size of 3,600 × 442 pixels,
corresponding to 10 pixel/◦ horizontal resolution.

P 1

P 2

P 3

P 4

Sinusoidal Velocity Stimulation

EMD responses are known to depend on acceleration and higher order temporal derivatives of the
pattern velocity [13]. Therefore, the final test examines the response of the EMD arrays to stimuli
moving with continuously changing velocity. The velocity varied sinusoidally. The peak velocity
was switched between 400◦/s and 100◦/s. We tested different temporal frequencies for the sinusoidal
velocity modulation. Here we present exemplarily data for 0.2 Hz and 4 Hz respectively, because these
clearly illustrate the acceleration dependency of the EMD response. We used all four panoramic images
and for each image we started at five different positions of the pattern and then calculated the average
response.
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4.3. EMD Parametrisation

The parameters of the different models were determined by systematic variation. The time constants
of the high-pass and low-pass filters were set such that the resulting velocity curve showed a maximum at
100◦/s for the panoramic image 1 (park scene, see Figure 4). Responses of fly motion sensitive neurons
to similar stimulation typically show a peak approximately at this velocity [21,22].

The intention of this parametrisation was to obtain a similar velocity optimum of the different EMD
arrays for the panoramic images. However, for the sine patterns this parametrisation results in different
preferred velocities for the different models.

Only the high-pass filter constants at the input stage and the constants used for the delay elements (first
order low-pass filters) were adjusted. The time constant of the low-pass filter used for the normalisation
in the (s)cc models was set to fixed values (see Appendix A).

4.4. Analysis

For the analysis of the different models, the time-course of the responses of the EMD array was
examined. The transient oscillation observed at stimulus onset [10] was excluded from the analysis. The
duration of the examined EMD array response was chosen so that for all velocities the responses to the
same pattern segment were examined, which makes it easier to differentiate between the consequences
of local and global pattern modifications. For each velocity, the entire response was averaged and the
standard deviation was calculated. The mean values were plotted versus velocities (velocity tuning
curve).

4.5. Quality Criterion

To quantify the robustness of the response of the different models with respect to local pattern
properties, the discriminability with respect to the velocities was quantified using Fisher’s linear
discriminant value. In the following X̄ is the averaged value of a measured signal X = {xt}, t = 1..NX

where NX is the number of data points in the signal. The variance of the signal is defined as

s2X =
1

NX

NX∑
t=1

(xt − X̄)2 (10)

Fisher’s linear discriminant criterion for two such signals X and Y is [32]

JX,Y =
(X̄ − Ȳ )2

s2X + s2Y
(11)

The criterion value increases with increasing distance between X̄ and Ȳ and with decreasing
variances. If both signals consist of nearly constant values, the criterion value approaches infinity.

In the tests, the EMD array responses to n different velocities vi, i = 1..n were measured. For each
pair of neighbouring velocities vi and vi+1 we determined Fisher’s criterion Jvi,vi+1

. A cumulative quality
value is computed as average of the resulting n− 1 values

Q =
1

n− 1

n−1∑
i=1

Jvi,vi+1
(12)
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We compared different EMD models with respect to their quality value. A higher quality value implies
better discriminability of the responses to different velocities and fewer pattern noise effects.

5. Results

5.1. EMD Array Response to Sine Pattern

For the first test, the perfect sine pattern and the noisy panoramic sine image generated from video
recordings of a printed pattern were used. The steady-state responses of the EMD arrays to the perfect
sine pattern can be predicted by Equations (2) (see Section 2), (8) and (9) (see Section 3).

The simulated responses of the h-l-EMD array show the predicted behaviour (Figure 5(a,b)), i.e., a
constant response over time. This behaviour is reflected in high quality values (Table 1). This means
that small changes in pattern velocity can be observed almost directly as changes in the output signal.
For the (s)cc-EMD array, oscillations around a constant mean value can be observed (e.g., h-l-scc-EMD
in Figure 5(c,d). The amplitude of these oscillations is reduced with increasing velocity.

Figure 5. Responses of an h-l-EMD array (a, b) and an h-l-scc-EMD array (c, d) to a
perfect sine pattern. (a) and (c) show the responses versus pattern phase for eleven different
velocities after the initial response transient has faded away. (b) and (d) represent the velocity
dependence of the mean response amplitude (logarithmic velocity axis). The dashed line
represents the interpolated velocity curve. Markers indicate the mean values. Additionally
the standard deviation is shown (too small to be visible here). (a, b) h-l-EMD array: The
response shows the predicted nearly constant behaviour. (c,d) h-l-scc-EMD array: The
response is oscillating. The amplitude of the oscillation is inversely correlated with the
velocity.
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The sine pattern with noise has high and low frequency noise in pattern brightness. These
imperfections introduce the above-mentioned additional Fourier components to the spectrum of the sine
pattern. The resulting contrast is lower than in the perfect sine.

In comparison to the noise-free sine pattern, the h-l-EMD model shows strong time-dependent
response modulations to the noisy camera generated sine pattern (Figure 6(a,b)). This results in higher
standard deviations of the time-dependent signals from the mean response and a high minimum to
maximum range of response values (grey line). The modulations in the EMD array response reflecting
high and low frequency noise in pattern brightness lead to low quality values (see Table 1). In addition,
the mean response level at a given velocity was consistently lower than the corresponding mean value of
the response to the perfect sine pattern (Figure 7(a)). The mean response as averaged over a longer period
allows us to distinguish between the different velocities (Figure 6(b)). However, local mean values based
on averaging over a narrow time window would differ from the global mean value. Based on only a short
averaging time this distinction would not be possible. Only direction detection is then possible.

Figure 6. Responses of an h-l-EMD array (a, b) and an h-l-scc-EMD array (c, d) to a
sine pattern with local noise and changes in local intensity. (a) and (c) show the responses
versus pattern phase for eleven different velocities after the initial response transient has
faded away. (b) and (d) represent the velocity dependence of the mean response amplitude
(logarithmic velocity axis). The dashed line represents the approximated velocity curve.
Markers indicate the calculated mean values. Additionally the standard deviation (coloured)
and the minimum to maximum range of values (grey) are shown. (a, b) h-l-EMD array: The
noise leads to a strong response modulation in comparison to the response to the perfect
sine pattern. The different velocities cannot be distinguished as easily as is possible for the
noise-free pattern. (c, d) h-l-scc-EMD array: The fluctuations in the response are reduced,
especially the low-frequency ones, compared to those of the h-l-EMD.
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Figure 7. Velocity tuning of the different models for the perfect sine pattern (P 1) and the
noisy panoramic sine pattern (P 2). (a) The h-l-EMD array shows strong differences in
the responses whereas (b) the h-l-scc-EMD array shows only minor differences (curves are
overlapping).
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Table 1. Quality values Q for the different models (large value indicates a better
discriminability of responses to different velocities). It can be seen that for the basic model
the additional noise and the local intensity changes in the real sine pattern have a strong
effect on the output. The (s)cc models show smaller changes in the quality of the response.
The quality for the real sine pattern is much better in the (s)cc models.

basic model correlator models
h-l-EMD h-l-cc-EMD h-l-scc-EMD

perfect sine 5.4× 1025 849.7 3× 1004

realistic sine 0.715 12.88 494.8

The (s)cc-EMD array shows a more robust response behaviour with respect to pattern noise
(Figure 6(c,d)). The response oscillates with a larger amplitude than that to the perfect sine pattern,
but especially when compared to the responses of the h-l-EMD array, the low-frequency response
fluctuations are largely eliminated (Figure 6(c,d)). The mean response levels show no significant changes
when compared to the results with a perfect sine pattern (Figure 7(b)). Also, the local mean values
are independent from image noise. Only the standard deviations are increased. The amplitude of the
oscillations superimposed on the steady-state response decreases with increasing velocity (Figure 6(d)).

5.2. EMD Response to Different Natural Scenes

Four different natural scene images were tested (Figure 4). The EMD arrays were shifted across these
images with eleven different constant velocities.

The response of the h-l-EMD model strongly depends on local pattern properties (Figure 8(a)). This is
reflected in the pronounced response modulations (Figure 8(b)). For example, at 50◦ the h-l-EMD shows
significant response modulations which are similar for all tested velocities (Figure 8(a)). Additionally
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the response modulations show an asymmetry of the value range (Figure 8(b) grey line). While the
responses show large deviations for values above the mean response values, the values below the mean
response values lie only in a small range. The large response modulations result in a small quality value
(Figure 9(a)). Again, averaging over the entire response obtained for each of the different velocities
reveals a distinct velocity dependence. However, if the averaging time window is too small, the different
velocities can not be distinguished. The responses are not consistently separated from each other.
Responses to velocities associated with a large average response are small in certain pattern positions
(Figure 8(a) inset). Thus, only direction detection is possible, but with a strong pattern noise influence
which can even lead to false direction detection (e.g., negative values at 75◦).

Figure 8. Time dependent responses to a natural panoramic image (see Figure 4 no. 1, park
scene) moving at different constant velocities (a and c), and velocity dependence of averaged
responses with standard deviation (coloured) and the minimum to maximum response range
(grey) (b and d). (a, b) h-l-EMD array and (c, d) h-l-scc-EMD array. The h-l-EMD array
shows a strong pattern dependency. The responses of the (s)cc-EMDs arrays show a smaller
pattern dependency which is reduced for larger velocities.
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The response behaviour of the (s)cc-EMD arrays is more robust against changes in the pattern
properties (Figure 8(c,d)). The standard deviations of response fluctuations around the mean are smaller
than those of the h-l-EMD model, and the responses are characterised by a more symmetrical value range.
This is also reflected in the corresponding quality values (Figure 9(a)), which are significantly larger for
the (s)cc-EMDs than for the h-l-EMD model, emphasising the increased insensitivity to local pattern
properties. Furthermore, except for velocities close to the peak of the velocity curve, the responses to
the different velocities show a constant magnitude relation (Figure 8(d)). The quality values for the
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h-l-scc-EMD are even higher than the ones for the h-l-cc-EMD. Thus the averaging window necessary
for velocity differentiation is supposed to be smaller for the h-l-s(cc)EMDs than for h-l-EMDs.

Figure 9. (a) Quality values for the response to natural panoramic images (see Figure 4, nos.
1-4). (b) Quality values of the different variants of EMD arrays for the responses to varying
contrast of the panoramic image 1 (see Figure 4, no. 1, park scene). A large quality value
indicates a better discriminability of responses to different velocities. Note the logarithmic
scales of the quality axes of the diagrams.

(a) (b)

The responses of the h-l-EMD model to the four panoramic patterns differ in amplitude and standard
deviation. Figure 10(a) shows the velocity tuning curves of the h-l-EMD model. Also the (s)cc-EMD
is pattern-dependent, but the velocity tuning curves are more similar to each other with respect to the
maximal amplitude, the position of the response peak, and the standard deviation (Figure 10(b)). For all
models and panorama images, the quality values are similar (Figure 9(a)).

Figure 10. Velocity tuning curves of the h-l-EMD array and the h-l-scc-EMD array for all
four panoramic images (P1–P4, see Figure 4). Changing the pattern strongly affects the
amplitude of the response peak in the h-l-EMD model (a). For the h-l-scc-EMD array (b),
the differences between responses to different panoramic images are less pronounced, but a
small variability of the response amplitude remains.
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We varied the global contrast of the panoramic images. The h-l-EMD model shows the predicted
quadratic contrast dependence (Section 2, Figure 11(a,b)). The predicted contrast independence of the
(s)cc-EMD model is also verified by our simulation results (Figure 11(c)). The amplitudes of responses
of the (s)cc-EMD array are contrast independent for all pattern velocities. The quality values of all
models are contrast independent (Figure 9(b)). The quality values of the (s)cc-EMDs are higher than of
the h-l-EMD model.

Figure 11. Velocity tuning curves of the h-l-EMD array and the h-l-scc-EMD array for
different global contrasts. The contrast of the park scene panorama (Figure 4, no. 1) was set
to 100%, 75%, 50%, and 25% respectively. The response of the h-l-EMD array (a) shows
the quadratic contrast dependence (b). In the responses of the h-l-scc-EMD (c) the contrast
dependency is eliminated almost completely (curves are identical for all contrast values).
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5.3. Dynamic Change of Velocity

It has previously been shown that the EMD responses do not only depend on velocity, but also on
higher order temporal derivatives of velocity, most importantly, on acceleration [13]. We therefore
performed dynamic tests, in which the EMD array was shifted with a sinusoidally modulated velocity
across the input images. For the tests, the velocity was varied sinusoidally with maximum velocities
vmax = 100◦/s, and vmax = 400◦/s. The frequency of the velocity modulation was either fv = 0.2 Hz,
or fv = 4 Hz, to assess the effect of the resulting accelerations.

We used all four panoramic images as input patterns and started the simulated movement at five
different locations in the image, resulting in 20 different input signals altogether. Based on the individual
responses (Figure 12, grey lines) we calculated the average response (red line).

We also plot a theoretical response predicted from the steady state response curves derived from
the previous tests (green line). With vmax = 100◦/s the predicted response reflects the velocity
monotonically, but the nonlinear tuning of the detector results in a compressive deformation of the
response when compared to the sinusoidal time course of velocity. In case of vmax = 400◦/s, the
response predicted from the steady-state tuning shows a fall-off of the response for velocities exceeding
the optimal velocity of 100◦/s.

For the first tests with fv = 0.2 Hz, the averaged responses (red line) of the h-l-EMD array can, in a
first approximation, be derived from the steady-state tuning (Figure 12(a,b) green lines matching the red
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ones). The individual responses (grey) show a strong pattern dependency and, for some of the panoramic
images, the response hardly reflects the movement.

For the h-l-scc-EMD in both tests (Figure 12(c,d)) the averaged response (red line) can also be
predicted from the steady-state tuning (green line), including the response fall-off at higher velocities.
Compared to the situation in the h-l-EMD, the individual responses of the h-l-scc-EMD are also more
similar to the predicted response and show only a minor pattern dependence.

For the tests with a frequency of 4 Hz, a similarity to the predicted response can not be observed
either for the individual responses of the h-l-EMD array nor for the average response (Figure 12(e,f)).
The responses show a consistently lower amplitude compared to the predicted signal. The predicted
fall-off at higher velocities is not reflected in the observed response.

The robustness of the responses of the h-l-scc-EMD is less affected by the higher velocity dynamics
(Figure 12(g,h)). As in the low-dynamic tests, the individual responses of the h-l-scc-EMD show
smaller deviations from the average response than those of the h-l-EMD. The response amplitude is
less prominently reduced compared to the predicted response. However, the predicted fall-off of the
response at higher velocities is only weakly observable.

The high-dynamic tests clearly show that dynamic responses of EMDs cannot be explained adequately
by steady state velocity tuning. Rather, the responses of arrays of EMDs depend on a combination
of pattern velocity and its higher order temporal derivatives [13]. Since this is a general property of
the detection mechanism and unrelated to pattern contrast, the (s)cc-EMDs do not show a qualitative
improvement in this respect.

For both models, the change of sign in the observed response is delayed with respect to the change of
sign in the prediction based on the velocity tuning. For the low-dynamic tests (fv = 0.2 Hz) this delay
seems to be shorter than in the high-dynamic situation (fv = 4 Hz). Note, however, the different scaling
of the time axis of the plots.

The delay of the h-l-scc-EMD array is significantly larger than that of the h-l-EMD array. This can
be attributed to the phase shift caused by the additional low-pass filters Lw in the contrast-normalising
circuit of the h-l-scc-EMD.

6. Discussion

Flying insects use optic flow information for course stabilisation, obstacle avoidance and navigation.
They extract and analyse this information in their tiny brain using a relatively computationally cheap
process [6,7,9]. This process is based on local motion estimates computed in elementary motion
detectors (EMDs). In a subsequent step, these local motion estimates are spatially integrated by large
field neurons which are assumed to implement a set of matched filters for certain optic flow patterns.
This filter-based architecture, though applied to local velocity, estimates computed by computer-vision
algorithms, was successfully applied to mobile robots [14,15].

In contrast to these algorithms, the insect-inspired EMD encodes the image velocity in a nonlinear
and ambiguous way which complicates the technical application of the EMD principle. The
EMD response peaks at a certain velocity and decreases for velocities below as well as above this
optimum [8]. Furthermore, the EMD shows a strong modulation in its response which is caused by three
factors:
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(i) the response of the detector depends on the spatial wavelength of the input image, which is a
minor issue for natural images composed from a broad spatial spectrum, (ii) the response depends not
only on the velocity but also on its higher temporal derivatives, most prominently the acceleration, (iii)
mathematical analysis reveals a quadratic dependence of the basic EMD response on contrast. However,
experimental results in flies show this quadratic dependency only for very low contrast values. For
higher contrast values the response becomes contrast-independent due to saturation nonlinearities and
adaptive elements in the visual pathway [10].

This discrepancy between the model and its biological counterpart can be reduced by adding
saturation nonlinearities to the EMD circuit and extending the model with additional spatial and
temporal filters which are either experimentally characterised in the insect motion pathway or are at
least biologically plausible [24,25]. On the one hand, using these extensions, the EMD responses are
much less sensitive to contrast changes in the stimulus pattern. On the other hand, these augmentations
add computational overhead and additional free parameters to the algorithm.

In this study we do not aim at a plausible model for the insect visual system but seek to make
the computationally cheap principle of correlation-based motion detection applicable for mobile robot
control. We present an augmentation of the EMDs, the (simplified) correlation coefficient EMD
(h-l-(s)cc-EMD) which reduces the response modulation caused by local changes in pattern contrast.
This is achieved by a dynamic contrast normalisation of the response by means of linear filters and
simple static nonlinearities (square, square root, division). With this contrast normalisation, we can
eliminate pattern noise resulting from local changes in contrast and local average luminance.

We do not address the ambiguity of the EMD response, its dependency on the spatial spectrum of the
stimulus, or the acceleration. Like the basic EMDs, the (s)cc-EMDs have a nonlinear and ambiguous
velocity tuning with a preferred velocity causing the maximal response. Although problematic on the first
glance, this property is not necessarily a drawback of the mechanism. The resulting signal compression
can be advantageous in the context of sensor signals with a limited range. It was also observed that such
a sensor response can increase controller stability [33].

Although the (s)cc-EMD is not meant to model the circuits in the fly brain, the normalisation
mechanism is constructed from system theoretic elements that are also employed to account for the
functional properties of neuronal circuits. In this sense, our EMD model with dynamic contrast
normalisation is a biologically plausible model. Nevertheless the contrast independency implemented in
the (s)cc-EMD is too strong to match observation in biological systems. Models employing a saturation
nonlinearity for signal compression [10,24,25] are generally better suited to fit biological data.

We have shown in an analytical way that the responses of our new EMD models are largely
independent of contrast. However, the response of the new model shows an oscillation depending on
the temporal frequency of the input pattern.

In model simulations we compared the response behaviour of an array of basic EMDs with an array
of our novel (s)cc-EMDs using sinusoidal stripe patterns as well as natural images. The simulations with
a noisy sine pattern show that the pattern noise in the response of the basic model is stronger than in the
contrast normalised EMDs. Although the (s)cc-EMDs show an oscillation behaviour, the dependence on
local pattern properties is largely reduced. The amplitude of the additional oscillation is small compared
to the amplitude of the modulation caused by local pattern structure.
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Figure 12. Responses of the EMD arrays to dynamic stimulation. Blue curves and right
scales show the stimulus velocity versus time, red and grey curves and left scales show the
responses. Grey lines represent individual simulation results, red lines average results for 4
panorama images and 5 different starting positions. The green curves show the theoretical
response predicted from the steady state response curves derived from the previous tests. The
velocity of panorama images was oscillated sinusoidally at 0.2 Hz (a–d) or 4 Hz (e–h). The
peak velocity was 100◦/s (left column) or 400◦/s (right column). Responses of two model
variants are shown: h-l-EMD (a,b,e,f) and h-l-scc-EMD (c,d,g,h).
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Tests on panoramic photo stimuli of visually complex scenes show that the responses of the
EMD array with dynamic contrast normalisation are significantly less dependent on pattern properties
compared to the basic EMD. The (s)cc-EMD array shows a high robustness in the mean response
behaviour independent of the specific panoramic scenes. As a consequence, these models signal changes
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in velocity more reliably in visual environments relevant for the technical application of these sensors.
It could be shown that the robustness of the (s)cc-EMD array increases with increasing velocities.
Consequently, the (s)cc-EMD may be especially suited for a system operating in the super-optimal part
of the velocity tuning curve.

Furthermore, we examined the EMD array responses to continuously changing velocities. For this test
we used a panoramic pattern which moved with sinusoidally modulated velocities. The additional filters
slightly increase the temporal latency of the response to velocity changes. This drawback is outweighed
by a considerable increase in robustness of the responses. Response components caused by accelerations
are not amplified by the normalisation process as the tests with higher frequency sinusoidal velocity
changes indicate. The deviations of responses to individual panorama images from a response averaged
across different patterns is far less pronounced in the (s)cc-EMD responses compared to those of the
h-l-EMD.

The elements used in the (s)cc-EMDs are easily transferable to digital or analog hardware solutions
or real-time systems based on digital signal processors.

First preliminary results obtained with the (s)cc-EMD as an input to a simple saccadic obstacle
avoidance mechanism proposed earlier [19] show that such a system is much less sensitive to changes in
the textural properties of the environment compared to a system based on basic EMDs. Detailed analysis
of obstacle avoidance based on (s)cc-EMD sensors will be presented in a forthcoming study.

Acknowledgements

We are grateful to Nicole Carey and Roland Kern for useful comments. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG).

References

1. Koenderink, J.J.; van Doorn, A.J. Facts of optic flow. Biol. Cybern. 1987, 56, 247–254.
2. Barron, J.L.; Fleet, D.J.; Beauchemin, S.S.; Burkitt, T.A. Performance of optical flow techniques.

Int. J. Comput. Vis. 1994, 12, 43–77.
3. Fleet, D.J.; Weiss, Y. Optical flow estimation. In Handbook of Mathematical Models in Computer

Vision; Paragios, N., Chen, Y., Faugeras, O., Eds.; Springer: New York, NY, USA, 2006;
pp. 237–258.

4. Miles, F.A.; Wallman, J. Visual Motion and Its Role in the Stabilization of Gaze; Elsevier:
Amsterdam, The Netherlands, 1993; Volume 5.

5. Lappe, M. Neuronal Processing of Optic Flow; Academic Press: New York, NY, USA, 2000,
Volume 44.

6. Egelhaaf, M. The neural computation of visual motion information. In Invertebrate Vision;
Warrant, E., Nielsson, D.E., Eds.; Cambridge University Press: Cambridge, UK, 2006;
pp. 399–461.

7. Borst, A.; Haag, J. Neural networks in the cockpit of the fly. J. Comp. Physiol. A 2002,
188, 419–437.



Sensors 2011, 11 3324

8. Borst, A.; Egelhaaf, M. Detecting visual motion: Theory and models. In Visual Motion in the
Stabilization of gaze; Miles, F., Wallman, J., Eds.; Elsevier: Oxford, UK, 1993; pp. 3–27.

9. Egelhaaf, M.; Borst, A. A look into the cockpit of the fly: Visual orientation, algorithms, and
identified neurons. J. Neurosci. 1993, 13, 4563–4574.

10. Egelhaaf, M.; Borst, A. Transient and steady-state response properties of movement detectors. J.
Opt. Soc. Am. A 1989, 6, 116–126.

11. Egelhaaf, M. Insect motion vision. Scholarpedia 2009, 4, 1671.
12. Egelhaaf, M.; Borst, A.; Reichardt, W. Computational structure of a biological motion-detection

system as revealed by local detector analysis in the fly’s nervous system. J. Opt. Soc. Am. A
1989, 6, 1070–1087.

13. Egelhaaf, M.; Reichardt, W. Dynamic response properties of movement detectors: Theoretical
analysis and electrophysiological investigation in the visual system of the fly. Biol. Cybern. 1987,
56, 69–87.

14. Conroy, J.; Gremillion, G.; Ranganathan, B.; Humbert, J.S. Implementation of wide-field
integration of optic flow for autonomous quadrotor navigation. Auton. Robots 2009, 27, 189–198.

15. Beyeler, A.; Zufferey, J.C.; Floreano, D. Vision-based control of near-obstacle flight. Auton.
Robots 2009, 27, 201–219.

16. Neumann, T.; Bülthoff, H. Behavior-oriented vision for biomimetic flight control. In Proceedings
of the EPSRC/BBSRC International Workshop on Biologically Inspired Robotics: The Legacy of
W. Grey Walter, Bristol, UK, 2002; pp. 14–16.

17. Harrison, R.R.; Koch, C. An analog VLSI model of the fly elementary motion detector. In
Proceedings of the 1997 conference on Advances in Neural Information Processing Systems 10,
NIPS ’97, Cambridge, MA, USA, 1998, pp. 880–886.

18. Lindemann, J.P.; Kern, R.; van Hateren, J.H.; Ritter, H.; Egelhaaf, M. On the computations
analyzing natural optic flow: Quantitative model analysis of the blowfly motion vision pathway.
J. Neurosci. 2005, 25, 6435–6448.
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A. Parametrisation

As mentioned in Section 4.3, the models are parametrised by systematic parameter variation. The
criterion for parameter selection was that the velocity curve on the panoramic images shows a maximum
at 100◦/s. This resulted in the time constants τLd

and τHp shown in Table 2.
The time constant of the normalisation part of the (s)cc models τLw does not influence the position

of the peak in the velocity tuning. For application, it is important to note that a large time constant
τLw results in a slower reaction to changes in the velocity while small values τLw reduce the contrast
independence (data not shown). Due to this tradeoff, the choice of τLw depends on constraints of the
application.

Table 2. The time constants used for the different filters in the examined EMD models.

model parameter value [ms]
h-l-EMD τHp 140

τLd
120

h-l-cc-EMD τHp 25
τLd

20
τLw 36

h-l-scc-EMD τHp 15
τLd

15
τLw 36
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B. Contrast Variation

The contrast C of the monochrome input image is measured using the Michelson formula [31]:

C =
Lmax − Lmin

Lmax + Lmin

, (13)

Where Lmax and Lmin are the maximum and the minimum grey value of the image. For the images
scaled to the full range of values (0-255), we defined the contrast as C100 = 100%. To reduce the
contrast, Lmax and Lmin are adapted by shifting

Cx =
x

100
C100 =

(Lmax − d)− (Lmin + d)

(Lmax − d) + (Lmin + d)
. (14)

The pixels are scaled to the range between Lmax − d and Lmin + d.
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